Multiresolution Rendering of Complex Botanical Scenes

Dana Marshall
Donald S. Fussell
A.T. Campbell, III

Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712
Applied Research Laboratories
The University of Texas at Austin
1000 Burnet Road
Austin, TX 78758

Phone: +1-512-835-3743

Fax: +1-512-490-4220

email: dane@cs.utexas.edu

Abstract

This paper presents a system for rendering very
large collections of randomly parameterized plants
while generating manageable scene geometries for
rendering. A given botanical description of a plant
1s compiled into a hierarchical volume approxima-
tion. This i1s then integrated into a multiresolution
rendering system that uses adaptive volume refine-
ment. For objects that are close to the viewer, ex-
plicit polygons are generated, while objects hidden
or further away are rendered as groups of microsur-
faces. This system can be extended to any polygon
intensive rendering.

1 Introduction

In this paper, we present a method that efficiently
models and renders scenes containing a large num-
ber of plants, each of which can differ macroscopi-
cally in form as well as in detail from all the others.
Our target is scene models containing on the order
of 100 million primitives if modeled using polygons
or particles, and we prevent the actual synthesis and
manipulation of such large databases. This method
is intended for use in speeding the rendering times of
high resolution imagery as well as generating sim-
ple models for low resolution applications such as
motion previews.

Note that in this paper trees, nodes and children
refer to data structures while plants, branches and
leaves refer to biological structures. We first sum-
marize previous work and give an overview of this
work. We describe the data structure of hierarchi-

cal tetrahedra, discuss the representation we use for
plant life and then describe how both are used in
the modeling and rendering algorithm.

2 Previous Work

Previous work on generating and rendering plants
includes fractals and L-systems [14], animat-
ing plant development [11],[12], topological de-
tails [3], and generating biological plants true to
nature.[10],[9] In [4], plants were categorized ac-
cording to the different structures including order,
ramification, and phyllotaxy. These systems are
good at generating accurate plant models and are
not concerned with the problem of rendering the
complex scenes that can be generated.

Systems have been implemented that render large
collection of microsurfaces using voxels [5], texels
[6] , or particles [13], but they don’t address the
transition from polygon to texel or polygon to par-
ticle. Other systems have managed to render scenes
with a large amount of detail but only by repeat-
edly duplicating the representation of a small set of
objects [13, 16]. One method has introduced mul-
tiresolution texels using octrees [7, 8]. One method
[17] improved on this problem by using less complex
copies for plants farther from the viewer.

3 Overview

The rendering process is one of adaptive refinement.
The space within a scene is continually subdivided
until image quality no longer improves with further
subdivision. This occurs when a subvolume occu-



pies some user defined minimum area in the final im-
age (say, one pixel), when the subdivision is empty,
when the subdivision is largely obscured by other
partitions, or when the subdivision is highly visible
and contains so few primitives that furthur subdi-
vision could not improve rendering speed. Subdivi-
sions that are small or largely hidden are rendered
as an approximation of the surfaces that they con-
tain, while the contents of visible volumes are ex-
plicitly modeled and rendered.

Space is partitioned using hierarchical irregular
tetrahedra. This partitioning creates a binary tree
than can be traversed in a manner similar to BSP
trees. A tetrahedron does not represent a partition-
ing of a space by the polygons of a particular scene,
but may contain any number of polygons. The con-
tents can then be rendered directly, or the tetrahe-
dron itself can be rendered as an microfacet-based
approximation of the contents. Tetrahedra can be
subdivided in many ways, thus allowing the scene
to be subdivided according to the complexity the
viewer can see, and/or the complexity of the scene
itself.

We also take advantage of a procedural, volumet-
ric parameterized plant model that allows us to use
an approximation of a plant’s or sub-plant’s esti-
mated shading attributes, volume and surface area
to render a plant or part of a plant as a collection
of microsurfaces without calculating and sampling
the explicit polygons that would be generated.

This method allows us to use the space traver-
sal methods of BSP trees without generating the
enormous BSP tree that a complex scene would
spawn. It enables us to take advantage of a hierar-
chical bounding volume structure without overlap-
ping volumes, and allows us to use a more adaptive
subdivision method than is possible with octrees.

4 The Tetrahedral Model

Our basic scheme begins with a tetrahedral volume
as a first approximation to an object, which is then
recursively refined as needed. The tetrahedron has
the advantages that it can be adaptively subdivided
according to the complexity of the scene, and the
resulting partitioning readily translates to Gouraud
shaded triangles.

The refinement process subdivides tetrahedra
that constitute a scene. A tetrahedron divided by
a plane can result in 2,3,4, or 6 smaller tetrahedra
depending upon whether the plane intersects one,
two, three, or four edges, respectively. (See Fig. 1)

There is some freedom in partitioning the resulting
halves if they are not tetrahedra themselves. One
possibility would be to sample the scene and subdi-
vide according to model complexity. Our renderer,
however, simply chooses a subdivision depending on
the aspect ratio of the resulting tetrahedra in order
to avoid sliver subvolumes.
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Figure 1: Cases of tetrahedron partitioning

If a plane intersects four edges of a tetrahedron, it
is possible, by halving the two unintersected edges,
to subdivide a tetrahedron into eight children. This
generates a balanced tree and further avoids sliver
tetrahedra. (See Fig. 2)

The volume of each tetrahedron can be calculated
easily from Herron’s formula [1] and the equations
of the tetrahedron’s bounding planes. The resulting
data structure is a binary tree with tetrahedra at
some of the interior nodes and all of the terminal
nodes. Interior nodes contain a plane which divides
the space of the child nodes. This allows a front
to back or back to front traversal such as can be
achieved using BSP trees.
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Figure 2: Canonical tetrahedron partitioning

When rendering the model, either the primitives
contained within a tetrahedron, or the tetrahedron
itself, may be drawn. To render a tetrahedron as
a translucent volume approximating a collection of



microsurfaces, note that any tetrahedron projects
to at most 4 triangles on the viewing plane. (See
Fig. 3) Tllumination can be sampled at all vertices
and given a shading function, density information,
and tetrahedron thickness, the resulting triangles

can be Gouraud shaded.

Figure 3: Tetrahedral projections

5 Plants

The method described in this paper can be used to
speed the rendering of any large number of poly-
gons. It also allows us to avoid the creation of
many of those polygons to begin with. Although
our method of plant generation is not the subject
of this paper, we were able to take advantage of the
algorithmic nature of plant structures in order to
defer as much polygon generation as possible.

We describe individual plants by specifying the
characteristics of each order branch. An order 0
branch corresponds to the trunk, order 1 to the
next largest branches, etc. Attributes for each or-
der include length, thickness, orientation, leaf color,
branch color, number of leaves and branches. Addi-
tional information include leaf orientation heuristics
and a pointer to a polygon list modeling a sample
leaf/leaves.

Bounding volumes are calculated for the high-
est order branches by comparing the locations ob-
tained by rotating the longest possible branch by
the largest angle. This bounding volume informa-
tion is used to calculate the extremes of the next
lower order branches. Bounds are generated for all
species of plants and sub-plants before any model-
ing or rendering 1s done.

Average surface area and color /reflectivity infor-
mation for each order is collected as well. The sur-
face area of the sample leaf/leaves is measured and
an estimated total surface area and sample orienta-
tion 1s generated for each order branch. This allows
any branch and its child branches to be treated as
an individual plant during visibility and rendering
estimation.

Actual instances of plants are unique collections
of pseudo random choices of the branch attributes.
The minimal information needed to add a plant to
the scene is the type and location of the plant and a
random number seed. The values of the lowest order
branches are generated in set sequence so that the
same plant is created every time. This ensures that
the same scene will be modeled every time, down to
the last leaf. Parts of a scene that may travel out
of view may be discarded without concern because
they can be re-generated if needed.

If polygons are needed, we generate cylinders for
the branches and replicate variations of a leaf mod-
elled by the user, positioning according to length,
thickness, orientation and color ranges given in the
plant’s description. The transition from this coarse
modeling to a closer detail concerning smooth bi-
furcations, texture and bump mapping is given in
[3]. This gives the user several scales to model
in. Explicit polygons can be included in the scene
and they are either drawn or their attributes are
added to a subvolume’s summary. Plants can be
described exactly, or more general descriptions can
be used that allow the algorithm to generate ran-
dom versions with varying colors. Lower orders of
plants can be modelled to give a general shape to
a plant and the computer can fill in the rest of the
details. Locations of plants themselves can be al-
located automatically using terrain following algo-
rithms or can be placed explicitly by the user.

6 Scene Subdivision

6.1 Preprocessing

Initially the algorithm inputs the list of plants and
polygons that describe the scene and the viewing
pyramid is divided into two tetrahedra. Space out-
side the pyramid is also represented so that plants
which fall outside of the range of view have a
home somewhere in the data structure. If any light
sources fall outside of the viewing pyramid, the
space between them also needs to be refined in order
to calculate accurate shadows. Explicit (previously
modeled) polygons are then divided among the orig-
inal tetrahedra. As the algorithm progresses and
these tetrahedra are subdivided, the polygons are
divided among the child nodes and clipped if nece-
sary, eventually being drawn if their eventual par-
tition is rendered explicitly, otherwise their shading
attributes are added to the tetrahedron’s approxi-
mation.



6.2 Main Loop

The main body of the routine is a three step loop.
The first is the visibility step, in which the con-
tribution of each tetrahedron to the final image is
approximated. The second step is the refinement
step, in which tetrahedra are subdivided if needed
or possibly flagged for explicit polygon generation.
The third is the update step, in which the contents
of the subdivided tetrahedra are spread among its
new children, the children’s rendering attributes are
updated accordingly, and the contents of tetrahedra
which are so flagged may be modelled explicitly into
polygons.

6.3 Visibility

A low resolution image is rendered of tetrahedra
only - all polygons are rendered as their microsur-
face approximation for speed. The binary tree is
traversed and the scene is rendered starting from
front to back so that transparency values can be
accumulated in an alpha buffer along the way. In
this way we get rough values for 1) the total number
of pixels that each tetrahedron affects in the final
image, and 2) the opaqueness of the scene in front of
each tetrahedron, thus given us the total visibility
of each tetrahedron.

6.4 Refinement

We traverse unmodeled terminal tetrahedra and
given their contents and visibility decide if they
need subdivision, or flagging for future modelling.

Tetrahedra that will not benefit from furthur sub-
division are flagged for polygons. This includes
small tetrahedra close to the viewer and tetrahedra
that contain few polygons.

Otherwise, if the overall contribution of a tetra-
hedron to the final image is large then it 1s subdi-
vided. This would include medium sized tetrahedra
that are very visible and tetrahedra that are larger
but are partially hidden by other parts of the scene.
Any extant polygons in these tetrahedra are divided
among the children. The contribution size cutoff is
set by the user. For high resolution images the ideal
size would be one pixel or less. We found in practice
higher sizes still produced good images without any
subdivision artifacts showing.

This tetrahedra that remain are small in relation
to the final image or are tetrahedra that are hidden
and both will be rendered as approximations.

6.5 Update

Contents of newly subdivided tetrahedra are di-
vided among the new children and shading charac-
teristics are updated. Polygons are clipped against
the sub-tree’s clipping planes and then their frag-
ments are sorted among the children.

A plant may be stored in a tetrahedron in three
ways of ascending detail and memory usage. When
a plant or sub-plant’s bounding volume falls within
a tetrahedron it will be added to that tetrahedron’s
plant list. Individual branches may be stored by
saving their endpoints and enough information to
generate the branch and its leaves. And plants can
be modeled into explicit polygons and stored in the
tetrahedron’s polygon list.

Plants are sorted according to each individual
plant’s characteristics. A plant’s bounding volume
is compared against the top level partitioning plane.
If it 1s entirely on one side or the other then the
routine recurs on the lower level tetrahedron. If
the bounding volume is divided then the algorithm
calculates the position of the high order branch(es)
and their corresponding subplants. The subplant’s
bounding volumes are compared against the parti-
tioning plane as if they were an individual plant and
the algorithm recurs.

The newly calculated branch positions are also
compared against the partitioning plane. If the end-
points are on either side then the branch is clipped
by the partitioning plane and the two half branches
recur on lower level tetrahedra.

Once a terminal tetrahedron is reached then
plants are added to that tetrahedron’s plant list,
branches are added to that tetrahedron’s branch
list, polygons are added to that tetrahedron’s poly-
gon list and the shading information of that tetra-
hedron is updated accordingly. Total surface area,
color and sample orientation are all updated with
the arrival of each new plant, branch, or polygon,
weighted according to the contributing amount of
surface area.

When the location of a plant ends up in a subdivi-
sion that has been flagged for explicit polygon gen-
eration, all of it’s offspring branches and leaves are
modelled and stored. In order to minimize memory
requirements,; this modelling can be defered until
final image rendering.

7 Rendering

After the final update step, there is a shadow pass
in which the scene is rendered from the viewpoint of



the individual light sources and illumination sam-
ples are taken at the set of key points for each tetra-
hedron or polygon. The rendering is done front to
back with volume shadow information being col-
lected in a gray scale image buffer and polygon
shadows being collected in a z-buffer of proportional
size to the image resolution. Once light values have
been collected for all tetrahedra and polygons, the
final image 1s rendered back to front.

If tetrahedra are rendered as an approximation
of their contents the equation used is one to sim-
ulate the rendering of a collection of microsurfaces
comprising a low albedo volume [6, 2].

If p(s) is the density at a given position in space
z(s),y(s), z(s) and r is a conversion factor from den-
sity to light attenuation, the total transparency of
a ray from tnear to t is given by:

t

—-r s)ds
T=c¢ tnearp( )

And the brightness of a ray is:

tfar
h= /tnear TZ
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Ii(t)p cos(¢)p(t)dt

Where T is the transparency and I;(¢) is the ith
light source arriving at position ¢ along the ray.
The light is multiplied by the phase factor pcos(¢)
which approximates the light reflected when strik-
ing a spherical particle. (The factor p an adjustable
shading parameter) In our system we assumed the
density p constant and the illumination 7(¢) linear
throughout the tetrahedra to allow the integral to
be evaluated as a summation.

In [6], the phase factor pcos(¢) was replaced by
a reflection function derived from a sample plane
orientation to approximate the contents of a texel:

pcos(a) + scos(f) PP

where « is the angle between the sample normal
and the light source, 3 is the angle between the view
vector and the reflection of the sample normal and
p, s, and spexp are user specified shading parame-
ters.

Using the original particle model equation was
not really satisfactory due to a lack of plane de-
pendent specular highlights. The plane equation,
however, is primarily useful if all elements inside a
subdivision are of like direction, so a weighted aver-
age of the two was used, the weight determined by
the resulting length of the average normal. The
average plane orientation was determined by the
variation of plane orientations within a tetrahedron.

An entirely random collection of plane orientations
would be approximated by the particle model equa-
tion and an entirely uniform collection would be
approximated by the sample plane rendering equa-
tion.

8 Results

8.1 Test Scenes

Figure 4 shows the catalog of flora used for this
project. Figure 6 is a test image. It took 21 min-
utes to model and refine and 6 minutes to render
in software on a SPARC Center 2000E. Shadows
were not mapped to polygon surfaces but illumina-
tion was sampled only at polygon vertices. Thus
the shape of the shadows on the ground plane re-
flects the illumination of the vertices of the resulting
polygons’ subdivision. The model is a row of eighty
trees which if expanded would contain 3.79 million
polygons. The image contains 784049 polygons and
2053 (out of 15857 generated) tetrahedra. Figure
5 shows a top view of the model generated for this
scene. The viewer is positioned at the left where
one can see parts of the model clipped off due to
the hither plane and viewing pyramid. As one looks
to the right, one can see fewer polygons generated
and coarser volume subdivision. Figure 8 shows the
refine sequence. We generated an image for each of
the latter steps in the refine procedure.

Figure 9 shows a larger model. Haze was added
to the view. It took 68 minutes to model and refine
and each image took 28 minutes to render. The
image has 9.4 million polygons and 18512 (out of
108217 generated) tetrahedra. The model is gen-
erated from 8636 plants which, if fully expanded,
would make 78.2 million polygons.

8.2 Animation

Animation results are promising. For any individ-
ual frame the number of subvolumes that need to
be divided is small. We created an animation by
moving the viewer location in the test scene. While
the initial frame of the test scene takes 21 minutes
of modeling and 6 minutes of rendering time, sub-
sequet frames took on average 6.64 minutes apiece,
with only 40-70 additional volumes subdivided each
frame. In addition, the subdivision criteria can be
set to generate coarser images for doing test scenes.
In these scenes the transition between tetrahedron
and polygons can be seen, but the frame rate incre-
ses proportionally.



8.3 Memory

The biggest demand for memory is the number of
generated polygons. Given the large polygon per
pixel ratio for images such as these even with 100%
accurate hidden polygon elimination there is on or-
der of 4 million polygons for a modest image (say
512 x 512 with 4 samples per pixel).

This can be avoided in still images by saving any
explicit polygon generation until the rendering step.
Polygons can be generated as each tetrahedron is
drawn and then discarded. This shifts the great-
est memory demand to the storage of tetrahedra,
plants, and branches - an order of magnitude less.

Shadow information must be calculated from
tetrahedra instead of polygons, but increasing the
density of spatial subdivision gives satisfactory re-
sults. Figures 6 and 7 were generated using both
methods. In Figure 6, polygons were calculated and
stored whenever a tetrahedron was flagged for poly-
gon generation. In Figure 7, all polygon modeling
was deferred until the final rendering pass. This
method includes all of the modeling in the final ren-
dering step which increases the time counted for the
final rendering step but the overall calculation time
is the same.

9 Conclusion

Large collections of flora contitute one of the most
complex and time consuming collections of models
to render. We have developed a procedural volu-
metric plant model which is designed to allow very
large collections of plants to be rendered using mul-
tiresolution space partitioning techniques to avoid
dealing with prohibitively large databases. Our
modeling technique combines desirable properties of
bounding volumes and the subspace orderings pro-
vided by BSP trees as part of the model itself. Fu-
ture work includes developing heuristics for scene
dependent splitting plane selection and use of hier-
archical volume subdivision for calculation of global
illumination.
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Figure 4: Plant Calalog
Figure 7: Test Scene - Low Memory

Figure 5: Test Scene - Top View

Figure 8: Refine Sequence
Figure 6: Test Scene - High Memory



Figure 9: Complex Scene



