
Visual Metaphors for Understanding Logic Program Execution

Eric Neufeld� Anthony J� Kusalik� and Michael Dobrohoczki

Department of Computational Science

University of Saskatchewan

Saskatoon� Saskatchewan� Canada� S�N �W�

fneufeld�kusalik�dobrog�cs�usask�ca

Abstract
A classic notion in logic programming is the sep�

aration of logic and control� Logic is for problem
solving� control is for directing inference� However�
practical experience in the classroom suggests that
problem�solving students nonetheless devote much
e�ort to understanding control issues such as elim�
inating looping behaviours and improving program
e�ciency�
In the case of Prolog� this requires a clear un�

derstanding of the operation of both uni�cation and
backtracking� Students often try to get this under�
stand by tracing executions� but the common four�
port debugger used in Prolog is not as helpful as it
could be� In particular� it provides information in
low bandwidth textual form�
This paper describes a new visualization system

for logic programming that uses colour tagging to
trace uni�cation through the Prolog proof tree� A
user can dynamically 	tag
 a term or subterm with
a colour that is immediately propagrated through
the displayed tree� The colour is also propagated
through the proof tree on subsequent execution
steps� This 	colour uni�cation
 has an interesting
relationship with usual Prolog uni�cation� Initial ex�
periences reveal several interesting visual metaphors
that assist understanding of logic program execution�
Experience to date also suggests new directions for
visualization of logic programs�

Keywords� �program� execution visualization� pro�
gramming tools� colour

� Introduction

Advocates of logic programming sometimes sum up
their view of computing with Kowalski�s �Kow�a�
phrase�

Algorithm � Logic � Control �

This is interpreted to mean that programmers are
freed from worrying about control issues� Instead�
they become problem solvers� succinctly stating
premises and queries in the �rst�order predicate cal�
culus� after which an independent control module or
program executor derives proofs of queries from the
premises by appropriately controlling the direction
of inference� Kowalski argues �Kow�b� that� among
other things� this conceptual separation allows inex�
perienced programmers to focus on the logic compo�
nent� leaving the control component to the computer�

Although logical languages such as Prolog give the
problem solver a powerful language in which to ex�
press problems and indeed free the problem solver
from much of the tedium of computer programming�
the authors �nd that even in introductory treatments
of Prolog� students spend a lot of time understanding
programming techniques dictated by Prolog�s pro�
cedural semantics� For example� the backtracking
and uni�cation algorithms exhibit many subtleties�
especially in the context of the �cut� �OK���� As
well� clauses often must be reordered to eliminate
looping behaviours� As a �nal example� di�erence
lists and accumulator variables� used to improve ef�
�ciency� seem to be better understood by some stu�
dents when given a procedural interpretation�

A useful exercise for Prolog learners� both for gain�
ing an understanding of how Prolog works and for
understanding or debugging their own programs� is
tracing execution� One possible tool for tracing is the
common four�port debugger �Byrd���� However� this
debugger has certain limitations because it provides
information in low bandwidth textual form� roughly
speaking� it prints the procedure call showing bound
variables� as well as other information describing the
state of the computation� Novice users �nd this un�
satisfying� They also �nd the surfeit of information
reported ba�ing or bewildering�

To help learners understand the execution model
of Prolog� we have built a protypical system that
animates the construction of the Prolog proof tree
and uses colour tagging to help visualize uni�ca�
tion� Most systems for graphically visualizing Prolog
�Boja��� DeCl��� EiBr��� focus on portraying suc�
cess or failure of clauses and backtracking� and use
an AND�OR tree or some subset thereof to show uni�
�cation between a subgoal and a clause head� How�
ever� these systems provide little visual information
on the e�ects of uni�cation on the rest of the tree�
The system described here dynamically displays the
Prolog proof tree� but also allows a user to tag a term
or subterm with a colour that is immediately prop�
agated backwards and forwards through the proof
tree� and continues to be propagated as the compu�
tation continues� Like�coloured terms are joined by
coloured lines at the point of uni�cation� The user
may subsequently 	clear
 the view by 	uncolouring

terms� Another interesting feature of this system is
that it provides a real�time animation of the proof
tree� and not just a static display of the �nal proof�
�Some of these animations are interesting in their
own right� for instance� nondeterministic programs
constructing a list of unbound variables of the right
length� This topic is not pursued further here��

The system was built with the belief that certain
visual metaphors would emerge as users worked with
the system� and in turn these metaphors would be
useful in pedagogy� The speculation was that cer�
tain patterns of colour might characterize frequently�
used operations �e�g�� decomposition of data struc�
tures� and movements of colour might characterize
others �e�g�� returning an answer through an accumu�
lator variable�� Initial experience with this system
con�rms that such metaphors arise and that they
seem to aid understanding of program structure and
also assist in trouble�shooting incorrect programs� In
fact� it seemed easier to debug the examples provided
herein because of the availability of colour� Some of
the anticipated metaphors turned out to be inter�
esting� and some new metaphors appeared� They
are consequences of the movement of colour during
program execution� but also of the relationships of
coloured �gures�

The following section explains how colour uni�ca�
tion works� The rest of the paper describes some
of the visual metaphors found� and their use for de�
bugging or understanding programs� As program�
ming languages evolve� and more and more compu�
tation takes place 	behind the scenes
 �for exam�
ple� constructors and destructors in object�oriented

languages�� it seems reasonable to believe that these
ideas will �nd wider applicability in the visualization
of high level programming languages�

� How colour uni�cation works

This paper presumes an understanding of Prolog�s
backtracking and uni�cation algorithms �ClMe���
OK���� �For the reader unfamiliar with Prolog�
the following approximation may help� Prolog al�
lows multiple de�nitions of procedures� in the same
way object�oriented languages allow overloading of
function de�nitions� except that Prolog allows mul�
tiple de�nitions of procedures with the same type
signature� The execution model allows backtrack�
ing through such multiply�de�ned procedures until a
successful execution path is found� Uni�cation can
be thought of as Prolog�s parameter�passing mecha�
nism� However� uni�cation is much more than that
since� for instance� given two di�erent calls of the
same procedure� a particular variable could be an
input variable in one case and an output variable in
the other��
To track the attachment of bindings to particu�

lar terms� a colour attribute is associated internally
with each term by the Prolog interpreter� Via a
graphical user�interface� a user of the system may
paint any term� including constant terms� with a
colour� The uni�cation algorithm is extended to
unify colour attributes whenever two terms success�
fully unify� Three cases arise�

�� Neither term has a colour� i�e� the colour at�
tribute is not set for either term� In this case�
the terms are made to share the same colour at�
tribute� This means that if one of the terms is
subsequently given a colour by explicit user ac�
tion �i�e� 	tagging
� or via uni�cation� the set�
ting of the colour attribute will also a�ect the
other term� Shared colour attributes let the user
colour and uncolour terms 	on the �y
 to view
relationships among di�erent variables�

�� Only one term has colour� The uncoloured term
takes on the colour of the coloured term�

�� Both terms have a colour� If the colours are the
same� there is nothing to consider� Otherwise
there is a colour con�ict�

The e�ects of colour uni�cation are undone on back�
tracking� just as other e�ects of normal uni�cation�
Several approaches to handling colour con�icts

have been investigated� As a technical detail� it is
necessary that colour uni�cation succeed whenever

normal uni�cation would� even when con�icts do not
result in colour matching� The simplest approach is
to not change the colour of either term� This makes
it easy to locate a point where two constants are
matched� Alternately� the colour uni�cation algo�
rithm can choose the dominant colour from the term
	higher
 in the stack or heap� or use a prede�ned
colour hierarchy� As well� colours could be made to
mix in various ways� Initially� the simple approach
of not changing either colour when a colour con�ict
occurs was implemented� However� the system is be�
ing extended to allow users to dynamically select the
course of action followed by system� Such an exten�
sion will allow gathering of feedback on which ap�
proaches to the colour con�ict problem are most ap�
pealing and useful�
A related issue is whether it should be possible to

allow identical terms �not made this way by uni�ca�
tion� to be coloured di�erently or whether it should
be possible to automatically colour all identical terms
identically� Which is ideal will probably be decided
empirically by preferences of users�

� The Colour Prolog System

A Prolog interpreter implementing colour uni�ca�
tion and colour tagging has been implemented using
C and standard X�Windows libraries� The system
provides both a text�oriented interface �for input of
queries� and overall control of the system� and a vi�
sual interface� The visual interface consists of a large
pane in which the execution tree is drawn� and well
as buttons for controlling aspects of the execution
and scroll bars for positioning large images� Mouse
clicks while the cursor is over a term in the drawn tree
are used to tag terms with colour� Each mouse but�
ton corresponds to a di�erent colour� Mouse clicks
are interpreted as toggles� in that tagging an already�
coloured term will 	untag
 �i�e� uncolour� that term�
The visual interface is exempli�ed in the screen

dump in Figure � �� Since details of that interface are
secondary to this discussion� the buttons and scroll
bars are eliminated from the screen dumps in remain�
ing �gures�

� Visual metaphors in logic program execu�

tion

Colour tagging of certain terms results in interesting
characteristic patterns� All images in this section
were produced by our system�

�The �gures can be seen in full�colour in the elec�

tronic version of the conference proceedings� or obtained via

http���www�cs�usask�ca�projects�envlop�Colour Prolog

�GI���

��� Building up answers

The following logic program

find�vowel� ��� �� ��

find�vowel� �H	T
�� �H	T�� � �

vowel�H��

find�vowel� T
� T� ��

findvowel� �H	T
�� T� � �

findvowel� T
� T� ��

vowel� a �� vowel� e �� vowel� i ��

vowel� o �� vowel� u ��

when called with a query such as
� find�vowel� �a�b�e�i�p�o�� Answer � �
gradually 	builds up
 the answer variable� passing
additions upward as it recurses through the input
list� as Figure � shows�
This program is more interesting as an anima�

tion� where the user literally sees the answer variable
	built up
�

��� Accumulator variables

More spectacular is the behaviour of 	accumula�
tor variables
� where answers are accumulated� but
passed downward �toward the leaves of the tree��
When the program encounters its base case� the ac�
cumulated result is usually uni�ed with an answer
variable and returned upwards �towards the root of
the tree�� This propagation from the bottom to the
top of the tree is generally a signi�cant event dur�
ing an animation� especially if an answer is passed
back after a deep computation� A classic example
of a program with accumulator variables is the 	list
reverse
 predicate reverse�	�

reverse� ��� L� L ��

reverse� �Hd	Tl�� AccumL� FinalL � �

reverse� Tl� �Hd	AccumL�� FinalL ��

For reasons of e�ciency �see discussion of 	naive re�
verse
 below�� the answer is constructed by cons�ing
the current head of the input list to the head of an
answer list that must be passed downwards� Thus�
in the program above the �rst argument is the list
being reversed� the second is the accumulating re�
versed list� and the last is the �nal result �the re�
versed list�� The �rst two arguments are sometimes
merged into a single argument� and the predicate
known as 	di�erence�list reverse
�
Figure � shows an initial query where the user has

tagged the two elements of the input list red and
green� Figures � and � illustrate the colours prop�
agating as the program recurses� The 	crossovers

show the answer list being built up� Figure � gives a

Figure ��
nd vowel�� example

Figure �� Initial tagging of terms in reverse�	 query

Figure �� Second step in reverse�	 query

Figure �� Third step in reverse�	 query

sense of what happens when the base case is reached
and all the colours of the answer list immediately

Figure �� Final step in reverse�	 query

propagate from the bottom to the top of the tree�
Such bursts of colour signal completion�
Figure � illustrates tagging 	on the �y
� The an�

swer variable was coloured blue after resolution was
complete� This con�rms the action of the di�er�
ence list accumulator� the portion of the output that
comes after the reverse input list is none other than
the second argument of the original query�
To give another example of the impression con�

veyed by completion of accumulation� consider an
alternate situation� The initial query is similar to
the one before� but the colour tagging scheme is dif�
ferent� In this case� green marks the elements of the
input list� red marks the base case of the list� and

Figure �� On�the��y tagging in reverse�	 example

the answer variable is tagged blue� Figure shows
execution nearly complete� with green crossovers il�
lustrating the cons�ed output list formation� The
dramatic movement of blue and green arcs to the
initial query in Figure � indicates that a solution

Figure � Nearing completion of alternate reverse�	
query

has been found and returned�

��� Program e�ciency

The logic program of the previous subsection is a
classic example of using accumulator variables to
make an ine�cient program e�cient� The so�called
	naive reverse

nrev� ��� �� ��

nrev� �Hd	Tl�� RevL � �

nrev� Tl� RevTl ��

append� RevTl� �Hd�� RevL ��

append� ��� L� L ��

append� �Hd	Tl�� L�� �Hd	Res�� �

append� Tl� L�� Res ��

is O�n���� in the size of its input list� since it must
on average execute an append�	 of n�� elements on
each of n steps�

Figure �� Completion of alternate reverse�	 query

Figure � depicts correct execution of the
naive reverse�� predicate� In this example� the three
di�erent elements of the input list are coloured dif�
ferently� Note that the proof tree contains three
coloured append 	clusters
� Interestingly� each clus�
ter contains a copy of the coloured append cluster to
its left� suggestive of the execution complexity of the
program� This proof is 	wide
� and contains copies of
portions of itself� whereas the proof tree for accumu�
lating list reverse �Figures ���� is narrow and doesn�t
contain this kind of visual redundancy� Hence� the
operational behaviour and e�ciency for both formu�
lations of list reverse are evident from the output
provided by the system�

��� Program Errors

Visual metaphors provided by the system have also
proven useful for debugging programs� they can por�
tray errors resulting from problems in program logic
or from misunderstandings of the procedural seman�
tics of Prolog� For example� the display in Figure
�� shows the �nal step in a query using an erro�
neous formulation of the accumulating reverse pred�
icate� From the display� it is evident that the result
in the accumulating variable is not being returned
�through the last variable�� A problem with pred�
icate arguments is suspected� Since terms are be�
ing propogated correctly in preceding steps �as evi�
denced by the colour bands�� the error is most likely
in the base case of the predicate� This� in fact� is the
correct diagnosis� as the erroneous program used to
create the display was

reverse� ��� X� Y �� � error here

Figure �� Correctly executed 	naive reverse

Figure ��� Completion of erroneous reverse�	 pro�
gram

reverse��H	T��X�Y� �

reverse�T��H	X��Y��

Logical errors also frequently express themselves
with recurrent visual motifs� A beginning Prolog
programmer might write the following formulation
for 	naive reverse
�

nrev� ��� �� ��

nrev� �Hd	Tl�� RevL � �

append� �Hd�� Tl� NewRev ��

nrev� NewRev� RevL ��

Figure �� shows an image given by the system for
this example� What should be evident to the user
is that the problem �at each level of recursion� is
getting no smaller� In fact� the problem at each level
is simply a new instance of the previous one� Thus�
the user can not only see that there is an error� but
what the nature of that error might be�

	 Conclusions and Future Directions

The Prolog visualization system described here pro�
vides and supports visual metaphors that may help
learners of logic programming more quickly get a bet�
ter understanding of logic program execution� This

paper has presented a sampling of these metaphors�
and illustrated how they might be useful�
Other possibilities for assisting users learn and un�

derstand logic programs are being implemented and
explored� For instance� a peculiarity of Prolog is that
when uni�cation fails� everything is lost� However�
errors commonly occur when using negation as fail�
ure� which works precisely when uni�cation fails� It
might be useful for failed branches to leave a faint
trace� rather than disappear altogether�
Another idea� also under implementation� is in�

put program colouring� The need for such a facil�
ity arises when using the system to debug a pro�
gram with many predicates of the same name and
arity� Trying to trace execution of such predicates�
especially with the four�port debugger� is confusing�
However� tracing is simpler if di�erent input clauses
of the same name and arity can be coloured di�er�
ently� the location of a bug can be pinpointed when
it occurs under an instance of a clause of a particular
colour�
A problem with the present system is that even

modest programs can quickly use up signi�cant
screen real estate� Although a Prolog novice can
learn a lot by carefully studying a modest program�
a wider view for program execution is essential for
debugging more practical programs� We are investi�
gating simple perspective transformations that will
allow the user to look closely at certain parts of pro�
grams� while maintaining contact with relevant data
in distant parts of the program through colour traces�

Acknowledgements

We would like to thank the reviewers for some use�
ful constructive criticism on an earlier draft of this
paper� and NSERC for research funding�

References

�Byrd��� L� Byrd� 	Understanding the Control
Flow of PROLOG Programs
� Pro�
ceedings of the Logic Programming

Figure ��� Erroneous 	naive reverse

Workshop� edited by S�� A� T!arnlund�
pp� ������� �����

�Boja��� D� Bojantchev� 	XPGT User�s Guide
�
Computer Science and Engineering De�
partment� Case Western Reserve Uni�
versity� Cleveland� Ohio� �����

�ClMe��� W� Clocksin and C� Mellish� Program�
ming in Prolog� �th edition� Springer�
Verlag� �����

�DeCl��� A� Dewar and J� Cleary� 	Graphical
display of complex information within
a Prolog debugger
� in International
Journal of Man�Machine Studies� Vol�
��� ����� pp� ��������

�EiBr��� M� Eisenstadt and M� Brayshaw� 	The
Transparent Prolog Machine �TPM��
An execution model and graphical de�
bugger for logic programming
� Jour�
nal of Logic Programming� Vol� �� No�
�� ����� pp� ������

�HS��� J� D� Horton and B� Spencer� 	Clause
trees� a tool for understanding and
implementing resolution in automated
reasoning
� Arti
cial Intelligence� ac�
cepted for publication�

�Kow�a� R� Kowalski� 	Algorithms " Logic
Control
� Communications of the
ACM� Vol� ��� No� � pp� ��������
����

�Kow�b� R� Kowalski� em Logic for Problem
Solving� Elsevier Science Publishing�
����

�OK��� R� O�Keefe� em The Craft of Prolog�
MIT Press� �����

