
An E�cient Volumetric Method for Building Closed

Triangular Meshes from ��D Image and Point Data

Gerhard Roth and Eko Wibowoo

Institute for Information Technology� Building M ��� Montreal Road
National Research Council of Canada� Ottawa� Canada K�A �R�

E�mail� roth	iit
nrc
ca Web� http���www
iitsg
nrc
ca��roth

Abstract
We present a volumetric method that can e��

ciently create triangular meshes from ��D geometric
data� This data can be presented in the form of im�
ages� pro�les or unordered points� The mesh model
can be created at di�erent resolutions and can also
be closed to make a true volumetric model�

Keywords� Mesh Creation� Triangular Meshes�
Model Building� Range Data� Virtual Reality�

� Introduction
This paper presents an algorithm to build a geo�

metric model from �D data of the surface of an object
obtained by a range sensor 	
�� Such sensors are also
called geometric sensors because they are able to di�
rectly capture the geometry of an object� Typically
this is done by using an optical source� such as a laser�
to obtain the distance to the object�s surface 	�� An�
other possibility is the use of X�ray tomography 	��
to obtain the cross sections of the object cut by the
X�rays� There are an ever increasing number of ge�
ometric sensors being developed by di�erent compa�
nies and research organizations 	��� As is shown in
Figure 
� some geometric sensors can acquire entire
images� others can only acquire a single �D pro�le or
slice of an object� while still others can only acquire
a single point at a time� If the �D data is produced
in point form there is no known neighbour relation�
ship between data points� Such an unordered set of
data points is called cloud data� and is common in
industrial practice 	���

Figure 
� Di�erent types of �D data� points�
pro�les and images�

To scan an entire object the sensor must view the
object�s surface from a su�cient number of di�er�
ent views� This �D data from each view must then
be registered so that it is all in a single co�ordinate

frame� This registration process can be done me�
chanically� by moving the geometric sensor using an
accurate positioning device� It can also be done from
the data itself� by minimizing the error between over�
lapping �D data regions� Both methods are common
and have been shown to work successfully 	�� ��� In
this paper we will assume that all the �D data has
already been properly registered�
In order to make practical use of the registered �D

data it is necessary to construct a geometric model
from this data� The �rst question is what type of
geometric model to create� One of the most com�
mon model formats is a triangular mesh� which con�
sists of a large number of triangular faces� If the
�D data is presented as a set of images it is trivial
to create such a mesh by simply triangulating each
image� However� since there is often considerable
overlap between the �D images from di�erent views�
a mesh created in this fashion will have many redun�
dant faces� It is desirable to create a non�redundant
mesh� in which there are no overlapping faces�
This paper� which is a continuation of previous

work 	��� describes a voxel�based algorithmwhich has
the following characteristics�

� It uses a simple voxel data structure which is
very e�cient in both space and time�

� It is able to process �D data in image� pro�le
and point cloud format�

� It has a number of di�erent ways of handling
noisy and spurious �D data points�

� It can �ll holes in the triangulation to close the
mesh and create a true volumetric model�

� It can report the accuracy of the triangular mesh
relative to the original �D data�

� It can handle �D data which has an associated
intensity or colour value�

� Previous work
The methods in the literature that are able to cre�

ate non�redundant meshes from multi�view �D data



can be divided into two groups� the volumetric ap�
proaches� and the surface approaches�
The volumetric approaches 	�� 
�� �� 

� 
� 
�� 
��

store the �D data points into a volumetric data struc�
ture� typically a voxel grid or an octree� The triangu�
lar mesh is then created using an Iso�Surface extrac�
tion algorithm� usually marching cubes 	
��� which
operates on this volumetric data structure� The sur�
face approaches 	
�� 
�� 
�� 
�� �� create an initial
set of triangular regions from the original �D images�
These regions are then stitched together to make the
�nal mesh�
Surface approaches are limited to processing �D

data in image format� They do not handle cloud
data� and it is not clear how any surface approach
could ever achieve this goal� In fact� many voxel
approaches also do not handle cloud data �the only
exception is 	���� but the underlying volumetric data
structure clearly makes this possible� Another seri�
ous problem with the surface approaches is the re�
quirement that all the original data points be in
memory while the algorithm is in operation� By con�
trast� in the volumetric methods� once a point has
been processed by the Iso�Surface algorithm it can be
discarded� Therefore for a volumetric approach the
required space is proportional to the number of oc�
cupied volume elements� while for a surface approach
it is proportional to the number of data points�
If the goal is to create the most accurate mesh

possible relative to the original data then a surface
approach is superior to a volumetric approach� This
is because surface methods triangulate the data at
the original resolution� By contrast the volumetric
methods can not set the size of their volumetric data
structure to the same resolution as the �D data be�
cause then each volumetric element would contain
too few data points 	

�� However� in practice we
�nd that more �D data is collected than is neces�
sary� Therefore the number of data points is typ�
ically at least two or three times greater than the
number of triangles that we want to have in the �nal
mesh� In this case a volumetric approach will suc�
ceed because each volumetric element will contain a
su�cient number of data points�
For both the volumetric and surface methods an

issue that has rarely been dealt with in the past is
how to close the �nal mesh� The mesh is often passed
to a rapid prototyping system to create a physical
duplicate 	
�� or is decimated further by a compres�
sion algorithm 	� for faster display� Both types of
processing require that the input mesh be closed and
topologically correct� Therefore it is essential to be
able to produce a mesh which has these characteris�
tics� Achieving this goal is equally di�cult for both
the volumetric and surface approaches�
A recent volumetric method 	
� is similar to our

proposed algorithm� However� there are signi�cant
di�erences� We can handle both cloud and image
data� while this method handles only image data�
Our way of closing the triangular mesh is less general�
but is simpler and more e�cient� Also� because of
our e�cient voxel data structure our method is about

one order of magnitude faster�

� Data Structures
The basic data structure we use is a voxel grid of

�xed dimensions in x� y and z� This voxel grid will
contain the original data points� along with the �nal
mesh triangles� It is essential to be able to access
the voxels e�ciently� and to be able to traverse and
check the topology of the �nal mesh�

��� Accessing Voxels
One way that a voxel needs to be accessed is ran�

domly� by using its x� y and z index in the grid� This
is accomplished by using a lookup table which maps
the voxel indices to a voxel pointer 	��� If there is a
pointer for each possible voxel� then this table would
be very large� However� since geometric sensors scan
only the surface of an object� only the pointers to the
occupied surface voxels need to be stored� If the av�
erage x� y or z dimension of the hash table is n� then
the total number of possible voxels in the �D grid is
n�� However� in general the number of surface voxels
is O�n��� which is much smaller� For this reason we
use a hash table to store only the pointers to the oc�
cupied voxels� The size of this hash table should be
close to the number of occupied voxels� which must
be estimated before the actual �D data is processed�
We have computed the percentage of occupied vox�

els for a large number of di�erent objects and voxel
grid sizes� In general� we �nd that between 
� and
�� of the total number of possible voxels are occu�
pied� The percentage decreases as the total number
of voxels in the grid increases� We dynamically ad�
just the size of the hash table as a function of the
total number of possible voxels in the grid� Table 

shows our hash table size as a percentage of the to�
tal number of voxels� for di�erent sized voxel grids�
The sizes in this table represent a conservative up�
per bound on our experiments� Even if the number
of occupied voxels is greater than this percentage�
the hash table will still work� but it will be slower�

Total Number of Expected Percentage
Possible Voxels of Occupied Voxels
� �� ���� ��� �

� �� ���� ��� and � �� ���� ��� �
� �� ���� ��� �

Table 
� The allocated size of the hash table as
a percentage of the total number of possible
voxels�

The hash table is excellent for random access of
any voxel element� It will simply return a null pointer
when an attempt is made to access a voxel which is
not occupied� However� we often need to traverse
all the occupied voxels in a single pass� This is the
case� for example� when we wish to do some post pro�
cessing such as closing holes in the triangular mesh�
To �nd all the occupied voxels using the hash table
would mean referencing every possible voxel to check
if it is occupied� which is not practical�



For this reason we use a linked list structure to con�
nect all the occupied voxels together� In this way we
can traverse the occupied voxels very quickly� These
two data structures allow both e�cient random ac�
cess �hash table� and e�cient traversal of all occu�
pied voxels �linked list��

��� Individual Voxel Structure
The marching cubes Iso�Surface algorithm creates

the triangular mesh elements that de�ne the surface�
Regardless of how many triangles exist in each voxel�
every triangle vertex must be on one of the twelve
possible voxel edges� Triangles in a voxel often share
an edge with triangles in the neighbouring voxels�
For this reason each voxel is linked to up to twelve
shared triangle vertices through a set of pointers� A
triangle vertex also points back to each of the up to
four possible voxels of which it is a member�
This data structure has two advantages� First� it

enables the marching cubes algorithm to be imple�
mented e�ciently� since every triangle vertex that is
shared between voxels needs only be computed once�
Second� it is possible to determine if a triangle in a
voxel shares an edge with a neighbouring voxel by
checking the vertex�to�voxel pointers of each vertex
in that edge� This operation is important in the hole
closing algorithm that is described in Section ����

� Algorithm Overview
With this voxel grid as the underlying data struc�

ture the following sequence of operations are exe�
cuted to create the triangular mesh�

Set the voxel size automatically or manually�

Add each data point to the appropriate voxel�

Eliminate spurious data points�

Compute the local normal for each data point�

Smooth the normals with a relaxation algorithm�

Run marching cubes to get the triangulation�

Close any small holes that exist�

Compute the intensity or colour of each triangle�

Remove small isolated triangle regions�

Find the mesh accuracy relative to the �D data�

��� Set the Voxel Size
The �rst requirement is to set the dimensions of

the voxel grid� This a�ects the number of triangles in
the mesh� as well as the accuracy of the mesh relative
to the �D data� Here we have two possibilities� The
�rst is to set the voxel size manually� The second is to
do this automatically using a simple heuristic� take
one hundred random �D points and �nd the closest
neighbouring point to each of these points� Then
set the voxel size to three times the average of these
one hundred minimum inter�point distances� This
assures us that the each voxel grid element is likely
to contain at least one data point 	

��

��� Add Each Data Point to the Appro�
priate Voxel

Once the size of the voxel grid has been set it is
necessary to add each �D data point to the appro�
priate voxel� If the voxel does not already exist then

it is �rst created and attached to the list of occupied
voxels� Besides the actual �D data any other rele�
vant information� such as the local surface normal or
the colour also must be saved�

��� Eliminate Spurious Points
There are often spurious points in �D data due

mostly to the problem of edge curl 	��� This occurs
with optical sensors when the optical source �usually
a laser beam� is half on and half o� the edge of an
object� In this case an invalid �D point is often the
result� Such a point does not actually exist on the
surface of any object� it is truly spurious� This phe�
nomenon becomes more noticeable as the distance
to the scanned objects increases� or the amount of
re�ected light from the laser beam decreases�
The key to dealing with such points is to note that

if the sensor were moved to a di�erent viewpoint�
then similar artifacts would appear� but in di�erent
locations� Therefore these spurious points are often
pierced by rays joining valid surface points to the
sensor viewpoint� as is shown in Figure � This fact
has been noted previously and used to deal with the
problem of hole closing 	
� and to increase the mea�
surement con�dence of �D data 	��� We use this
principle to remove spurious data points�

Figure � Voxels which are pierced often �un	
�lled circle
 by rays from the viewpoint are
likely to be spurious�

For each data point we walk along the voxel grid
from this point towards the the sensor viewpoint�
All the occupied voxels along this traversal are voted
against� Those voxels that have many votes against
them are considered to be spurious� and are removed�
We only perform the voxel traversal for a small dis�

tance from each voxel� This avoids the requirement
to traverse the entire viewing volume� but still re�
moves spurious points that are close to valid points�
Spurious points that are far from any valid surface
points tend to produce isolated and small triangu�
lar mesh regions in the �nal triangulation� For this
reason such points can easily be removed by a �D
connectivity algorithm� as described in Section ����
While this approach is very e�ective it only works
when the sensor viewpoint is available� which is not
the case for cloud data� How to remove spurious
points in cloud data is still an active area of research�



��� Compute The Normals
The marching cubes algorithm that is described in

the next section requires that each data point have
an associated normal� For image and pro�le data
the normal can be computed by simply �nding the
closest neighbouring row and column points� These
two neighbours along with the original data point
are then used to compute the local normal estimate�
When doing this computation it is important not to
use neighbouring points that cross a depth discon�
tinuity� or jump edge 	
�� For image or pro�le data
the orientation of this computed normal is toward
the sensor viewpoint�
Computing the normal when the input data con�

sists of �D points in unordered form �cloud data� is
more complex� In this case we �nd the closest two
neighbouring points in the voxel grid� and then use
these points along with the original point to compute
the normal� The di�culty is in setting the normal
orientation� Since by de�nition a cloud data point
has no associated viewpoint� there is no obvious way
to decide on which way the normal should be ori�
ented� If the normal points in the wrong direction
then the marching cubes algorithm will produce er�
rors� This is because it requires a signed distance�
and a �ipped normal will produce the wrong sign�

Figure �� Setting the normal signs in a voxel
slice� Un�lled circles are set from the orthog	
onal view directions� while �lled circles are set
by normal propagation�

Consider the voxel grid and the six axis directions
����x����y����z�� If we look from in�nity down
each axis into the voxel grid then those voxels that
are visible must have their normals point towards the
viewing direction� We �x the normal direction for
these visible points� Then we propagate the normal
direction to their neighbouring voxels� The results of
this propagation process are shown for a single slice
of the voxel grid in Figure �� This heuristic only
works when the voxel grid de�nes a closed object�
one without any missing data� This is a reasonable
assumption since in many cases no attempt is made
to create a model until all the surface data is avail�
able�

��� Smooth the Normals Using a Relax�
ation Algorithm

Depending on the quality of the sensor data it may
be necessary to smooth the normals that are associ�
ated with each data point� First we �nd the voxel
whose normal most agrees with its occupied neigh�
bours� This voxel is then used as the seed of a re�
cursive smoothing algorithm� This algorithm sets
each voxel normal to the average of the normals of
the voxel neighbours� When noise in the original �D
data produces inaccurate normal estimates then this
method tends to produce a smoother triangulation�

��	 Run the Marching Cubes Algorithm
Marching cubes is an Iso�Surface algorithm which

extracts the zero set of a signed distance function
	
��� In this application the signed distance function
must be created from the �D data points and their
normals� For each voxel vertex this signed distance�
which we call the �eld value� is computed by tak�
ing the weighted average of the signed distances of
every point in the eight neighbouring voxels� Once
the �eld value at each voxel vertex is known then a
linear interpolation process �nds the intersection of
the underlying surface with each edge of the voxel�
Each of these intersection points is a vertex of the
�nal triangulation� The triangles that approximate
this surface in the voxel are found using a lookup
table�
One advantage of the marching cubes algorithm is

the ability to weight each of these signed distances�
In our application it is sensible to weight the indi�
vidual points according to their estimated accuracy
	�� 
� 

�� The most signi�cant source of inac�
curacy occurs when the surface normal is close to
being orthogonal to the line of sight of the sensor�
When this happens� the re�ected laser spot tends to
spread and distort which causes signi�cant errors in
the computed depth� For this reason the Cosine of
the angle between the local surface normal and the
viewing direction is used as a weighting value 	
��

��
 Closing holes
There are often small gaps or holes between the tri�

angles in each voxel� If the data is unevenly sampled�
or the size of the voxel grid is too high� then there
will be some voxels that do not have any data points�
Also� there are sometimes areas of the object�s sur�
face that have not been scanned by the sensor�
These gaps need to be closed in order to create a

model which has no holes� Producing a closed model
is important for two reasons� The �rst is that only
such a model can be sent to a rapid prototyping ma�
chine to make a physical duplicate 	
�� The second
is that a model that has even a small number of holes
is di�cult to process further by such operations as
mesh compression 	��
In the �rst step of the closing algorithm we �nd

all triangle edges that are not connected to other tri�
angles� Such edges are called free edges and indicate
a hole in the triangulation� A hole loop is a closed
sequence of free edges which run in the proper di�
rection� This direction is found using the right hand



rule� if the thumb of the right hand is placed along
the normal of the triangle face then the edges of the
triangle must point in the direction of the index �n�
ger� The direction of the free edge traversal in a hole
loop must be opposite to this direction�
The �rst requirement is to �nd the hole loops� In

our voxel data structure each triangle vertex points
back to all the voxels that have triangles which con�
tain that vertex� This pointer structure is used to
traverse the free edges in each hole loop using a recur�
sive search� The recursion is e�cient because usually
about half the hole loops contain three edges �one
triangle in size�� and only 
�� have more than �ve
edges�
Once a hole loop has been found� it must be tri�

angulated� We �t a plane through the �D vertices of
the hole loop edges� Then we project these vertices
onto this plane� and check for self intersections in the
hole loop� If there are none� then we triangulate the
projected hole loop in this plane 	��� This same se�
quence of triangle vertices is then used to triangulate
the �D hole loop�
This approach will not work when a hole loop con�

tains a triangle island� that is a number of valid tri�
angles that are inside this loop� However� we have
found that such cases are quite rare because the hole
loops are usually small� It will also not work if the
�D hole loop is not coplanar� This is rarely the case
for small holes� but is sometimes true for large holes�
As opposed to some authors 	
�� we believe that
large holes should be closed by obtaining more �D
data� and do not expect our hole closing algorithm
to handle this case�

��� Colour and Intensity mapping
For each �D data point there is sometimes an as�

sociated intensity or colour value provided by the �D
sensor 	��� In this case we assign to each triangle ver�
tex the colour or intensity value of the closest data
point� If the voxel grid resolution is not too coarse
the result is a very realistic mapping of colours on
top of the triangulation�

��� Remove Isolated Mesh Regions
Generally any noise points that have not been

eliminated by the method described in Section ���
are not close to any valid surface points� There�
fore� when the remaining noise points are triangu�
lated they tend to produce small and isolated tri�
angular mesh regions� We apply a �D connectivity
algorithm to �nd the size of each set of connected
triangles in the �nal mesh� Then those connected
triangle regions that contain fewer than a small num�
ber of triangles are removed� since they are likely to
be noise� This deals e�ectively with any remaining
noise points�

��� Compute the accuracy of the �nal
mesh

When we have created the �nal triangular mesh
we would like to know the accuracy of this mesh rel�
ative to the original �D data points� For each point
in a voxel we �nd the distance to the closest triangle

that is part of the same voxel� We then �nd the max�
imum of this closest distance for all the data points�
This number tells us the maximum deviation of the
triangular mesh from the original �D data� It can be
no greater than the length of the longest side of the
voxel grid�
The goal in mesh creation is to achieve a speci�ed

mesh accuracy relative to the original data� Usually
this required accuracy is in the range of 
�
� mm to
 mm� Note that when we speak of accuracy we are
talking about the faithfulness of the �nal triangula�
tion relative to the �D data� That is not the same as
the accuracy of the original �D data relative to the
true object geometry�
It is possible to increase the mesh accuracy by sim�

ply reducing the voxel size� As we have noted pre�
viously� the voxel grid size must be at two to three
times greater than the sampling density of the �D
data 	

�� This is a limitation of all voxel approaches
to mesh creation� However� since �D data is usu�
ally oversampled� a mesh of the desired accuracy can
usually be obtained�

� Experiments
We have taken �D data in both cloud and image

format from various sources and created a number
of mesh models� The experiments were run on a Sil�
icon Graphics Challenge processor� with �
Mbytes
of physical memory� The results are summarized in
Table � The source of the data for each model is ac�
knowledged by referencing the paper that used this
data� or by referencing the organization that pro�
vided the data� Some of models such as the duck
were created from both cloud and image data�
In general the results validate our claim that our

method is an order of magnitude faster than others
in the literature� However� not all of these models
were closed properly� The soldier and teapot have
large regions of the objects surface where there is no
�D data 	
��� As we have stated previously� our clos�
ing algorithm can not handle such large holes� We
believe that in such cases more �D data should be
obtained� Figure � shows the rendered mesh created
from �D data in both image and cloud format while
Figure � shows the rendered colour mesh for a num�
ber of di�erent colour objects�

� Conclusions and Future Work
Our voxel approach to creating meshes has shown

itself to be e�cient� simple and general� Any mesh
creation algorithm must read the input data� and
store the �nal triangulation� Assume there are n
�D data points� and the �nal triangulation has k
triangles� Then the time requirement of any mesh
creation algorithm is at least O�n�� and the space re�
quirement is at least O�k�� In our case the required
space is proportional to the number of occupied vox�
els� and the execution time is proportional to the
number of �D data points� Therefore our algorithm
is optimal� at least in the asymptotic sense�
Since there may be many points in a voxel� the

number of �D data points is often much larger than



Model Data Data Number Voxel Create and Close Number
Name Source Type Points Dimensions Times �secs�� Triangles
Duck NRCC Image �K ��� ��� �� � � ��K
Duck NRCC Point �K ��� ��� �� ��� � ��K
Boat NRCC Image ���K ��� ���� �� ��� �� ���K
Elephant NRCC Image ���K ���� ��� ��� ��� � �K
Teapot NRCC ��� Image ��K ��� ���� � � � ��K
Soldier NRCC ��� Image ��K ���� ��� �� � � ��K
Bunny Cyber
 ���� Image ���K ���� ���� ��� ��� �� ���K
Dragon Cyber
 ���� Image �
�M ����������� ���� �� ���K
Club U
 Wash
 ��� Point ��K ��� �� �� �� � �K
Star Daimler Point ���K ��� ��� ��� ��� � ��K
IMS Part Daimler ���� Point �
�M ���� ���� ��� ���� �� ���K

Table � The results of running the algorithm on various �D data sets�

the number of voxels� Therefore storing only the
occupied voxels enables our approach to handle very
large �D data sets� In this paper we have only shown
examples of object models� We are currently apply�
ing this same algorithm to environment modelling�
Here the goal is to model large environments� such
as factories� In this case the amount of �D data in�
creases by at least an order of magnitude over object
modelling� Because we can handle such large data
sets our approach is well suited to the task of envi�
ronment modelling�
The web site listed in the title page has some of the

mesh models created by this algorithm� along with
other related research� In the future� we plan to make
the executable version of this program available on
the same web site�

References
��� P	 J	 Besl and R	 C	 Jain
 �Three dimensional ob�

ject recognition
 ACM Computing Surveys
 vol	 ��

pp	 ������
 Mar	 ����	

��� M	 Rioux
 �Laser range�nders based on synchro�
nized scanning
 Applied Optics
 vol	 ��
 pp	 �����
����
 ����	

��� J	 C	 Russ
 The image processing handbook	 CRC
Press
 ����	

��� P	 Besl
 �Active
 optical range imaging sensors

Machine Vision and Applications
 vol	 �
 no	 �

pp	 �������
 ����	

��� R	 Fisher
 A	 Fitzgibbon
 A	 Gionis
 M	 Wright

and D	 Egger
 �A hand�held optical surface scan�
ner for environment modeling and virtual reality

Tech	 Rep	 DAI No	���
 University of Edinburgh

Dec	 ����	

��� H	 Gagnon
 M	 Soucy
 R	 Bergevin
 and D	 Lauren�
deau
 �Registration of multiple range views for auto�
matic ��d model building
 in Proceedings of IEEE

Computer Vision and Pattern Recognition Confer�
ence
 �Seattle
 Washington�
 pp	 �������
 June
����	

��� Y	 Chen and G	 Medioni
 �Object modelling by reg�
istraion of multiple range images
 Image and Vision
Computing
 vol	 ��
 pp	 �������
 Apr	 ����	

��� G	 Roth and E	 Wibowo
 �A fast algorithm for mak�
ing mesh models from multi�view range data
 in
Proceedings of the DND�CSA Robotics and Knowl�
edge Based Systems Workshop
 �St	 Hubert
 Que�
bec�
 pp	 �������
 Oct	 ����	

��� H	 Hoppe
 T	 DeRose
 T	 Duchamp
 J	 McDonald

and W	 Stuetzle
 �Surface reconstruction from un�
organized data points
 in Computer Graphics ���
Siggraph��� Conference Proceedings
 vol	 ��
 pp	 ���
��
 July ����	

���� C	 Bajaj
 F	 Bernardini
 and G	 Xu
 �Automatic
reconstruction of surfaces and scalar �elds from �d
scans
 in Computer Graphics� Siggraph ��	 Pro�
ceedings
 pp	 �������
 ����	

���� A	 Hilton
 A	 Toddart
 J	 Illingworth
 and
T	 Windeatt
 �Reliable surface reconstruction from
multiple range images
 in Fourth International
European Conference on Computer Vision
 vol	 �

pp	 �������
 Apr	 ����	

���� B	 Curless and M	 Levoy
 �A volumetric method
for building complex models from range images

in Computer Graphics� Siggraph ��� Proceedings

pp	 �������
 ����	

���� M	�E	 Algorri and F	 Scnmitt
 �Surface reconstruc�
tion from unstructured data
 Computer graphics
forum
 vol	 ��
 no	 �
 pp	 �����
 ����	

���� M	 Wheeler
 Y	 Sato
 and K	 Ikeuchi
 �Consen�
sus surfaces for modelling ��d objects from multi�
ple range images
 Tech	 Rep	 CMU�CS�TR�������




Carnigie Mellon Univ	
 School of Computer Science

Pittsburg
 PA
 ����	

���� W	 E	 Lorenen and H	 E	 Cline
 �Marching cubes�
a high resolution �d surface reconstruction algo�
rithm
 in Computer Graphics� Siggraph�
� Confer�
ence Proceedings
 vol	 ��
 pp	 �������
 July ����	

���� G	 Turk and M	 Levoy
 �Zippered polygon meshes
from range images
 in Computer Graphics �Sig�
graph ���
 vol	 ��
 pp	 �������
 ����	

���� M	 Rutishauser
 M	 Stricker
 and M	 Trobina

�Merging range images of arbitrarily shaped ob�
jects
 in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition
 pp	 ����
���
 ����	

���� M	 Soucy and D	 Laurendeau
 �A general approach
to the integration of a set of range views
 IEEE
Transactions On Pattern Analysis and Machine In�
telligence
 vol	 ��
 pp	 �������
 Apr	 ����	

���� M	 Soucy and D	 Laurendeau
 �A dynamic integra�
tion algorithm to model surfaces from multiple range
views
 Machine Vision and Applications
 vol	 �

no	 �
 pp	 �����
 ����	

���� R	 Pito
 �Mesh integration based on
co�measurements
 in International Conference on
Image Processing
 pp	 �������
 ����	

���� R	 Aubin
 �A world wide assessment of rapid pro�
toyping technologies
 in Proceedings of the Intelli�
gent Manufacturing Systems International Confer�
ence on Rapid Prototyping
 �Stuttgart
 Germany�

pp	 �����
 ����	

���� H	 Hoppe
 T	 DeRose
 T	 Duchamp
 J	 McDonald

and W	 Stuetzle
 �Mesh optimization
 in Computer
Graphics� Siggraph ��� Proceedings
 pp	 �����
 ����	

���� G	 Wyvill
 C	 McPheeters
 and B	 Wyvill
 �Data
structure for soft objects
 Visual Computer
 no	 �

pp	 �������
 ����	

���� B	 Curless and M	 Levoy
 �Better optical triangula�
tion through spacetime analysis
 in Fifth Interna�
tional Conference on Computer Vision
 �Cambridge

Massachusetts�
 pp	 �������
 ����	

���� P	 Hebert
 D	 Laurendeau
 and D	 Poussart
 �Scene
reconstruction and description� geometric primitive
extraction from multiple view scattered data
 in
Proc� IEEE Conference on Computer Vision and
Pattern Recognition
 �New York�
 pp	 �������
 ����	

���� P	 Boulanger
 G	 Roth
 and G	 Godin
 �Applications
of ��d active vision to rapid product development

in Proceedings of the Intelligent Manufacturing Sys�
tems International Conference on Rapid Prototyp�
ing
 �Stuttgart
 Germany�
 Feb	 ����	

���� R	 Seidel
 �A simple and fast incrmental random�
ized algorithm for triangulating polygons
 Compu�
tational geometry� theory and applications
 vol	 �

pp	 �����
 ����	

Figure �� Two models created from image
data �the elephant and dragon
� the other
�Mercedes	Benz star
 created from cloud
data�



Figure �� Four colour models �duck� vase� mummy� and totem� produced by vertex colour
mapping and Gouraud shading�


