An Efficient Volumetric Method for Building Closed
Triangular Meshes from 3-D Image and Point Data

Gerhard Roth and Eko Wibowoo

Institute for Information Technology, Building M 50, Montreal Road
National Research Council of Canada, Ottawa, Canada K1A OR6
E-mail: roth@iit.nrc.ca Web: http://www.iitsg.nrc.ca/ roth

Abstract
We present a volumetric method that can effi-
ciently create triangular meshes from 3-D geometric
data. This data can be presented in the form of im-
ages, profiles or unordered points. The mesh model
can be created at different resolutions and can also
be closed to make a true volumetric model.

Keywords: Mesh Creation, Triangular Meshes,
Model Building, Range Data, Virtual Reality.

1 Introduction

This paper presents an algorithm to build a geo-
metric model from 3D data of the surface of an object
obtained by a range sensor [1]. Such sensors are also
called geometric sensors because they are able to di-
rectly capture the geometry of an object. Typically
this is done by using an optical source, such as a laser,
to obtain the distance to the object’s surface [2]. An-
other possibility is the use of X-ray tomography [3]
to obtain the cross sections of the object cut by the
X-rays. There are an ever increasing number of ge-
ometric sensors being developed by different compa-
nies and research organizations [4]. As is shown in
Figure 1, some geometric sensors can acquire entire
images, others can only acquire a single 3D profile or
slice of an object, while still others can only acquire
a single point at a time. If the 3D data is produced
in point form there is no known neighbour relation-
ship between data points. Such an unordered set of
data points is called cloud data, and 1s common in
industrial practice [5].

Figure 1: Different types of 3D data: points,
profiles and images.

To scan an entire object the sensor must view the
object’s surface from a sufficient number of differ-
ent views. This 3D data from each view must then
be registered so that it 1s all in a single co-ordinate

frame. This registration process can be done me-
chanically, by moving the geometric sensor using an
accurate positioning device. It can also be done from
the data itself, by minimizing the error between over-
lapping 3D data regions. Both methods are common
and have been shown to work successfully [6, 7]. In
this paper we will assume that all the 3D data has
already been properly registered.

In order to make practical use of the registered 3D
data it is necessary to construct a geometric model
from this data. The first question is what type of
geometric model to create. One of the most com-
mon model formats is a triangular mesh, which con-
sists of a large number of triangular faces. If the
3D data is presented as a set of images it is trivial
to create such a mesh by simply triangulating each
image. However, since there is often considerable
overlap between the 3D images from different views,
a mesh created in this fashion will have many redun-
dant faces. It is desirable to create a non-redundant
mesh, in which there are no overlapping faces.

This paper, which is a continuation of previous
work [8], describes a voxel-based algorithm which has
the following characteristics.

e It uses a simple voxel data structure which is
very efficient in both space and time.

e It is able to process 3D data in image, profile
and point cloud format.

e It has a number of different ways of handling
noisy and spurious 3D data points.

e It can fill holes in the triangulation to close the
mesh and create a true volumetric model.

e It can report the accuracy of the triangular mesh
relative to the original 3D data.

e It can handle 3D data which has an associated
intensity or colour value.

2 Previous work
The methods in the literature that are able to cre-
ate non-redundant meshes from multi-view 3D data

can be divided into two groups, the volumetric ap-
proaches, and the surface approaches.

The volumetric approaches [9, 10, 8, 11, 12, 13, 14]
store the 3D data points into a volumetric data struc-
ture, typically a voxel grid or an octree. The triangu-
lar mesh is then created using an Iso-Surface extrac-
tion algorithm, usually marching cubes [15], which
operates on this volumetric data structure. The sur-
face approaches [16, 17, 18, 19, 20] create an initial
set of triangular regions from the original 3D images.
These regions are then stitched together to make the
final mesh.

Surface approaches are limited to processing 3D
data in image format. They do not handle cloud
data, and it is not clear how any surface approach
could ever achieve this goal. In fact, many voxel
approaches also do not handle cloud data (the only
exception is [9]), but the underlying volumetric data
structure clearly makes this possible. Another seri-
ous problem with the surface approaches is the re-
quirement that all the original data points be in
memory while the algorithm is in operation. By con-
trast, in the volumetric methods, once a point has
been processed by the Iso-Surface algorithm it can be
discarded. Therefore for a volumetric approach the
required space is proportional to the number of oc-
cupied volume elements, while for a surface approach
it 1s proportional to the number of data points.

If the goal is to create the most accurate mesh
possible relative to the original data then a surface
approach is superior to a volumetric approach. This
is because surface methods triangulate the data at
the original resolution. By contrast the volumetric
methods can not set the size of their volumetric data
structure to the same resolution as the 3D data be-
cause then each volumetric element would contain
too few data points [11]. However, in practice we
find that more 3D data is collected than is neces-
sary. Therefore the number of data points is typ-
ically at least two or three times greater than the
number of triangles that we want to have in the final
mesh. In this case a volumetric approach will suc-
ceed because each volumetric element will contain a
sufficient number of data points.

For both the volumetric and surface methods an
issue that has rarely been dealt with in the past is
how to close the final mesh. The mesh is often passed
to a rapid prototyping system to create a physical
duplicate [21], or is decimated further by a compres-
sion algorithm [22] for faster display. Both types of
processing require that the input mesh be closed and
topologically correct. Therefore it is essential to be
able to produce a mesh which has these characteris-
tics. Achieving this goal is equally difficult for both
the volumetric and surface approaches.

A recent volumetric method [12] is similar to our
proposed algorithm. However, there are significant
differences. We can handle both cloud and image
data, while this method handles only image data.
Our way of closing the triangular mesh is less general,
but is simpler and more efficient. Also, because of
our efficient voxel data structure our method is about

one order of magnitude faster.

3 Data Structures

The basic data structure we use is a voxel grid of
fixed dimensions in ¢,y and z. This voxel grid will
contain the original data points, along with the final
mesh triangles. It is essential to be able to access
the voxels efficiently, and to be able to traverse and
check the topology of the final mesh.

3.1 Accessing Voxels

One way that a voxel needs to be accessed is ran-
domly, by using its z,y and z index in the grid. This
1s accomplished by using a lookup table which maps
the voxel indices to a voxel pointer [23]. If there is a
pointer for each possible voxel, then this table would
be very large. However, since geometric sensors scan
only the surface of an object, only the pointers to the
occupied surface voxels need to be stored. If the av-
erage x,y or z dimension of the hash table is n, then
the total number of possible voxels in the 3D grid is
n3. However, in general the number of surface voxels
is O(n?), which is much smaller. For this reason we
use a hash table to store only the pointers to the oc-
cupied voxels. The size of this hash table should be
close to the number of occupied voxels, which must
be estimated before the actual 3D data is processed.

We have computed the percentage of occupied vox-
els for a large number of different objects and voxel
grid sizes. In general, we find that between 1% and
6% of the total number of possible voxels are occu-
pied. The percentage decreases as the total number
of voxels in the grid increases. We dynamically ad-
just the size of the hash table as a function of the
total number of possible voxels in the grid. Table 1
shows our hash table size as a percentage of the to-
tal number of voxels, for different sized voxel grids.
The sizes in this table represent a conservative up-
per bound on our experiments. Even if the number
of occupied voxels is greater than this percentage,
the hash table will still work, but 1t will be slower.

Total Number of
Possible Voxels

FExpected Percentage
of Occupied Voxels

< 1,000,000 6
> 1,000, 000 and < 2,000, 000 4
> 3,000, 000 1

Table 1: The allocated size of the hash table as
a percentage of the total number of possible
voxels.

The hash table is excellent for random access of
any voxel element. It will simply return a null pointer
when an attempt is made to access a voxel which 1s
not occupied. However, we often need to traverse
all the occupied voxels in a single pass. This is the
case, for example, when we wish to do some post pro-
cessing such as closing holes in the triangular mesh.
To find all the occupied voxels using the hash table
would mean referencing every possible voxel to check
if 1t is occupied, which is not practical.

For this reason we use a linked list structure to con-
nect all the occupied voxels together. In this way we
can traverse the occupied voxels very quickly. These
two data structures allow both efficient random ac-
cess (hash table) and efficient traversal of all occu-
pied voxels (linked list).

3.2 Individual Voxel Structure

The marching cubes Iso-Surface algorithm creates
the triangular mesh elements that define the surface.
Regardless of how many triangles exist in each voxel,
every triangle vertex must be on one of the twelve
possible voxel edges. Triangles in a voxel often share
an edge with triangles in the neighbouring voxels.
For this reason each voxel is linked to up to twelve
shared triangle vertices through a set of pointers. A
triangle vertex also points back to each of the up to
four possible voxels of which it is a member.

This data structure has two advantages. First, it
enables the marching cubes algorithm to be imple-
mented efficiently, since every triangle vertex that is
shared between voxels needs only be computed once.
Second, it is possible to determine if a triangle in a
voxel shares an edge with a neighbouring voxel by
checking the vertex-to-voxel pointers of each vertex
in that edge. This operation is important in the hole
closing algorithm that is described in Section 4.7.

4 Algorithm Overview

With this voxel grid as the underlying data struc-
ture the following sequence of operations are exe-
cuted to create the triangular mesh.

Set the voxel size automatically or manually.
Add each data point to the appropriate voxel.
Eliminate spurious data points.

Compute the local normal for each data point.
Smooth the normals with a relaxation algorithm.
Run marching cubes to get the triangulation.
Close any small holes that exist.

Compute the intensity or colour of each triangle.

Remove small isolated triangle regions.
Find the mesh accuracy relative to the 3D data.

4.1 Set the Voxel Size

The first requirement is to set the dimensions of
the voxel grid. This affects the number of triangles in
the mesh, as well as the accuracy of the mesh relative
to the 3D data. Here we have two possibilities. The
first is to set the voxel size manually. The second 1s to
do this automatically using a simple heuristic: take
one hundred random 3D points and find the closest
neighbouring point to each of these points. Then
set the voxel size to three times the average of these
one hundred minimum inter-point distances. This
assures us that the each voxel grid element is likely
to contain at least one data point [11].

4.2 Add Each Data Point to the Appro-
priate Voxel
Once the size of the voxel grid has been set it is

necessary to add each 3D data point to the appro-
priate voxel. If the voxel does not already exist then

it 1s first created and attached to the list of occupied
voxels. Besides the actual 3D data any other rele-
vant information, such as the local surface normal or
the colour also must be saved.

4.3 Eliminate Spurious Points

There are often spurious points in 3D data due
mostly to the problem of edge curl [24]. This occurs
with optical sensors when the optical source (usually
a laser beam) is half on and half off the edge of an
object. In this case an invalid 3D point is often the
result. Such a point does not actually exist on the
surface of any object: it is truly spurious. This phe-
nomenon becomes more noticeable as the distance
to the scanned objects increases, or the amount of
reflected light from the laser beam decreases.

The key to dealing with such points is to note that
if the sensor were moved to a different viewpoint,
then similar artifacts would appear, but in different
locations. Therefore these spurious points are often
pierced by rays joining valid surface points to the
sensor viewpoint, as is shown in Figure 2. This fact
has been noted previously and used to deal with the
problem of hole closing [12] and to increase the mea-
surement confidence of 3D data [20]. We use this
principle to remove spurious data points.

Figure 2: Voxels which are pierced often (un-
filled circle) by rays from the viewpoint are
likely to be spurious.

For each data point we walk along the voxel grid
from this point towards the the sensor viewpoint.
All the occupied voxels along this traversal are voted
against. Those voxels that have many votes against
them are considered to be spurious, and are removed.

We only perform the voxel traversal for a small dis-
tance from each voxel. This avoids the requirement
to traverse the entire viewing volume, but still re-
moves spurious points that are close to valid points.
Spurious points that are far from any valid surface
points tend to produce isolated and small triangu-
lar mesh regions in the final triangulation. For this
reason such points can easily be removed by a 3D
connectivity algorithm, as described in Section 4.9.
While this approach is very effective it only works
when the sensor viewpoint is available, which is not
the case for cloud data. How to remove spurious
points in cloud data is still an active area of research.

4.4 Compute The Normals

The marching cubes algorithm that is described in
the next section requires that each data point have
an associated normal. For image and profile data
the normal can be computed by simply finding the
closest neighbouring row and column points. These
two neighbours along with the original data point
are then used to compute the local normal estimate.
When doing this computation it is important not to
use neighbouring points that cross a depth discon-
tinuity, or jump edge [1]. For image or profile data
the orientation of this computed normal is toward
the sensor viewpoint.

Computing the normal when the input data con-
sists of 3D points in unordered form (cloud data) is
more complex. In this case we find the closest two
neighbouring points in the voxel grid, and then use
these points along with the original point to compute
the normal. The difficulty is in setting the normal
orientation. Since by definition a cloud data point
has no associated viewpoint, there is no obvious way
to decide on which way the normal should be ori-
ented. If the normal points in the wrong direction
then the marching cubes algorithm will produce er-
rors. This is because it requires a signed distance,
and a flipped normal will produce the wrong sign.

U

)

1

Figure 3: Setting the normal signs in a voxel
slice: Unfilled circles are set from the orthog-
onal view directions, while filled circles are set
by normal propagation.

Consider the voxel grid and the six axis directions
(+/—2,+/—y,+/—z). If we look from infinity down
each axis into the voxel grid then those voxels that
are visible must have their normals point towards the
viewing direction. We fix the normal direction for
these visible points. Then we propagate the normal
direction to their neighbouring voxels. The results of
this propagation process are shown for a single slice
of the voxel grid in Figure 3. This heuristic only
works when the voxel grid defines a closed object,
one without any missing data. This is a reasonable
assumption since in many cases no attempt is made
to create a model until all the surface data is avail-

able.

4.5 Smooth the Normals Using a Relax-

ation Algorithm

Depending on the quality of the sensor data it may
be necessary to smooth the normals that are associ-
ated with each data point. First we find the voxel
whose normal most agrees with its occupied neigh-
bours. This voxel is then used as the seed of a re-
cursive smoothing algorithm. This algorithm sets
each voxel normal to the average of the normals of
the voxel neighbours. When noise in the original 3D
data produces inaccurate normal estimates then this
method tends to produce a smoother triangulation.

4.6 Run the Marching Cubes Algorithm

Marching cubes is an Iso-Surface algorithm which
extracts the zero set of a signed distance function
[15]. In this application the signed distance function
must be created from the 3D data points and their
normals. For each voxel vertex this signed distance,
which we call the field value, is computed by tak-
ing the weighted average of the signed distances of
every point in the eight neighbouring voxels. Once
the field value at each voxel vertex is known then a
linear interpolation process finds the intersection of
the underlying surface with each edge of the voxel.
Each of these intersection points is a vertex of the
final triangulation. The triangles that approximate
this surface in the voxel are found using a lookup
table.

One advantage of the marching cubes algorithm is
the ability to weight each of these signed distances.
In our application it is sensible to weight the indi-
vidual points according to their estimated accuracy
[25, 12, 11]. The most significant source of inac-
curacy occurs when the surface normal is close to
being orthogonal to the line of sight of the sensor.
When this happens, the reflected laser spot tends to
spread and distort which causes significant errors in
the computed depth. For this reason the Cosine of
the angle between the local surface normal and the
viewing direction is used as a weighting value [12].

4.7 Closing holes

There are often small gaps or holes between the tri-
angles in each voxel. If the data is unevenly sampled,
or the size of the voxel grid is too high, then there
will be some voxels that do not have any data points.
Also, there are sometimes areas of the object’s sur-
face that have not been scanned by the sensor.

These gaps need to be closed in order to create a
model which has no holes. Producing a closed model
is important for two reasons. The first is that only
such a model can be sent to a rapid prototyping ma-
chine to make a physical duplicate [21]. The second
is that a model that has even a small number of holes
is difficult to process further by such operations as
mesh compression [22].

In the first step of the closing algorithm we find
all triangle edges that are not connected to other tri-
angles. Such edges are called free edges and indicate
a hole in the triangulation. A hole loop is a closed
sequence of free edges which run in the proper di-
rection. This direction is found using the right hand

rule: if the thumb of the right hand is placed along
the normal of the triangle face then the edges of the
triangle must point in the direction of the index fin-
ger. The direction of the free edge traversal in a hole
loop must be opposite to this direction.

The first requirement is to find the hole loops. In
our voxel data structure each triangle vertex points
back to all the voxels that have triangles which con-
tain that vertex. This pointer structure is used to
traverse the free edges in each hole loop using a recur-
sive search. The recursion is efficient because usually
about half the hole loops contain three edges (one
triangle in size), and only 10% have more than five
edges.

Once a hole loop has been found, it must be tri-
angulated. We fit a plane through the 3D vertices of
the hole loop edges. Then we project these vertices
onto this plane, and check for self intersections in the
hole loop. If there are none, then we triangulate the
projected hole loop in this plane [27]. This same se-
quence of triangle vertices is then used to triangulate
the 3D hole loop.

This approach will not work when a hole loop con-
tains a triangle island; that is a number of valid tri-
angles that are inside this loop. However, we have
found that such cases are quite rare because the hole
loops are usually small. It will also not work if the
3D hole loop 1s not coplanar. This is rarely the case
for small holes, but is sometimes true for large holes.
As opposed to some authors [12], we believe that
large holes should be closed by obtaining more 3D
data, and do not expect our hole closing algorithm
to handle this case.

4.8 Colour and Intensity mapping

For each 3D data point there is sometimes an as-
sociated intensity or colour value provided by the 3D
sensor [4]. In this case we assign to each triangle ver-
tex the colour or intensity value of the closest data
point. If the voxel grid resolution is not too coarse
the result is a very realistic mapping of colours on
top of the triangulation.

4.9 Remove Isolated Mesh Regions

Generally any noise points that have not been
eliminated by the method described in Section 4.3
are not close to any valid surface points. There-
fore, when the remaining noise points are triangu-
lated they tend to produce small and isolated tri-
angular mesh regions. We apply a 3D connectivity
algorithm to find the size of each set of connected
triangles in the final mesh. Then those connected
triangle regions that contain fewer than a small num-
ber of triangles are removed, since they are likely to
be noise. This deals effectively with any remaining
noise points.

4.10 Compute the accuracy of the final
mesh

When we have created the final triangular mesh

we would like to know the accuracy of this mesh rel-

ative to the original 3D data points. For each point

in a voxel we find the distance to the closest triangle

that is part of the same voxel. We then find the max-
imum of this closest distance for all the data points.
This number tells us the maximum deviation of the
triangular mesh from the original 3D data. It can be
no greater than the length of the longest side of the
voxel grid.

The goal in mesh creation is to achieve a specified
mesh accuracy relative to the original data. Usually
this required accuracy is in the range of 1/10 mm to
2 mm. Note that when we speak of accuracy we are
talking about the faithfulness of the final triangula-
tion relative to the 3D data. That is not the same as
the accuracy of the original 3D data relative to the
true object geometry.

It is possible to increase the mesh accuracy by sim-
ply reducing the voxel size. As we have noted pre-
viously, the voxel grid size must be at two to three
times greater than the sampling density of the 3D
data [11]. This is a limitation of all voxel approaches
to mesh creation. However, since 3D data is usu-
ally oversampled, a mesh of the desired accuracy can
usually be obtained.

5 Experiments

We have taken 3D data in both cloud and image
format from various sources and created a number
of mesh models. The experiments were run on a Sil-
icon Graphics Challenge processor, with 512Mbytes
of physical memory. The results are summarized in
Table 2. The source of the data for each model is ac-
knowledged by referencing the paper that used this
data, or by referencing the organization that pro-
vided the data. Some of models such as the duck
were created from both cloud and image data.

In general the results validate our claim that our
method is an order of magnitude faster than others
in the literature. However, not all of these models
were closed properly. The soldier and teapot have
large regions of the objects surface where there is no
3D data [18]. As we have stated previously, our clos-
ing algorithm can not handle such large holes. We
believe that in such cases more 3D data should be
obtained. Figure 4 shows the rendered mesh created
from 3D data in both image and cloud format while
Figure 5 shows the rendered colour mesh for a num-
ber of different colour objects.

6 Conclusions and Future Work

Our voxel approach to creating meshes has shown
itself to be efficient, simple and general. Any mesh
creation algorithm must read the input data, and
store the final triangulation. Assume there are n
3D data points, and the final triangulation has k
triangles. Then the time requirement of any mesh
creation algorithm is at least O(n), and the space re-
quirement is at least O(k). In our case the required
space 1s proportional to the number of occupied vox-
els, and the execution time is proportional to the
number of 3D data points. Therefore our algorithm
is optimal, at least in the asymptotic sense.

Since there may be many points in a voxel, the
number of 3D data points is often much larger than

Model Data Data | Number Voxel Create and Close | Number
Name Source Type Points | Dimensions Times (secs.) Triangles
Duck NRCC Image | 68K 96, 73, 51 8, 2 35K
Duck NRCC Point 68K 96, 73, 51 11, 2 35K
Boat NRCC Image | 314K 99, 177, 99 43, 10 150K
Elephant | NRCC Image | 312K 149, 65, 125 24,5 98K
Teapot NRCC [18] Image | 67K 79, 131, 80 8,5 56K
Soldier NRCC [18] | Image | 91K 116, 60, 49 8,3 47K
Bunny Cyber. [16] | Image | 354K | 169, 167, 131 43, 10 195K
Dragon Cyber. [12] | Image | 1.7TM 347,420,393 235, 37 642K
Club U. Wash. [9] | Point 17K 45, 68, 11 2,1 6K
Star Daimler Point 106K 108, 75, 127 13, 2 36K
IMS Part | Daimler [26] | Point 1.OM | 173, 257, 125 137, 21 354K

Table 2: The results of running the algorithm on various 3D data sets.

the number of voxels. Therefore storing only the
occupied voxels enables our approach to handle very
large 3D data sets. In this paper we have only shown
examples of object models. We are currently apply-
ing this same algorithm to environment modelling.
Here the goal is to model large environments, such
as factories. In this case the amount of 3D data in-
creases by at least an order of magnitude over object
modelling. Because we can handle such large data
sets our approach is well suited to the task of envi-
ronment modelling.

The web site listed in the title page has some of the
mesh models created by this algorithm, along with
other related research. In the future, we plan to make
the executable version of this program available on
the same web site.

References
[1] P. J. Besl and R. C. Jain, “Three dimensional ob-
ject recognition,” ACM Computing Surveys, vol. 17,
pp. 75-145, Mar. 1985.

[2] M. Rioux, “Laser rangefinders based on synchro-
nized scanning,” Applied Optics, vol. 23, pp. 3837—
3844, 1985.

[3] J. C. Russ, The image processing handbook. CRC
Press, 1995.

[4] P. Besl, “Active, optical range imaging sensors,”
Machine Vision and Applications, vol. 1, no. 1,
pp. 127-152, 1988.

[5] R. Fisher, A. Fitzgibbon, A. Gionis, M. Wright,
and D. Egger, “A hand-held optical surface scan-
ner for environment modeling and virtual reality,”
Tech. Rep. DAI No.778, University of Edinburgh,
Dec. 1995.

[6] H. Gagnon, M. Soucy, R. Bergevin, and D. Lauren-
deau, “Registration of multiple range views for auto-
matic 3-d model building,” in Proceedings of IELEFE

Computer Vision and Pattern Recognition Confer-
ence, (Seattle, Washington), pp. 581-586, June
1994.

[7] Y. Chen and G. Medioni, “Object modelling by reg-
istraion of multiple range images,” Image and Vision
Computing, vol. 10, pp. 145-155, Apr. 1992.

[8] G. Roth and E. Wibowo, “A fast algorithm for mak-
ing mesh models from multi-view range data,” in
Proceedings of the DND/CSA Robotics and Knowl-
edge Based Systems Workshop, (St. Hubert, Que-
bec), pp. 349-356, Oct. 1995.

[9] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald,
and W. Stuetzle, “Surface reconstruction from un-
organized data points,” in Computer Graphics 26:
Stggraph’92 Conference Proceedings, vol. 26, pp. 71—
78, July 1992.

C. Bajaj, F. Bernardini, and G. Xu, “Automatic
reconstruction of surfaces and scalar fields from 3d
scans,” in Computer Graphics: Siggraph '95 Pro-
ceedings, pp. 109-118, 1995.

[11] A. Hilton, A. Toddart, J. Tllingworth,

T. Windeatt, “Reliable surface reconstruction from

[10]

and
multiple range images,” in Fourth International
FEuropean Conference on Computer Vision, vol. 1,
pp. 117-126, Apr. 1996.

B. Curless and M. Levoy, “A volumetric method
for building complex models from range images,”
in Computer Graphics: Siggraph ’96 Proceedings,
pp. 221-227, 1996.

M.-E. Algorri and F. Scnmitt, “Surface reconstruc-
tion from unstructured data,” Computer graphics
forum, vol. 15, no. 1, pp. 47-60, 1996.
M. Wheeler, Y. Sato, and K. Ikeuchi,

sus surfaces for modelling 3-d objects from multi-
ple range images,” Tech. Rep. CMU-CS-TR-96-168,

[12]

[13]

[14] “Consen-

[15]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Carnigie Mellon Univ.; School of Computer Science,
Pittsburg, PA, 1996.

W. E. Lorenen and H. E. Cline, “Marching cubes:
a high resolution 3d surface reconstruction algo-
rithm,” in Computer Graphics: Siggraph’87 Confer-
ence Proceedings, vol. 21, pp. 163-169, July 1987.
G. Turk and M. Levoy, “Zippered polygon meshes
from range images,” in Computer Graphics (Sig-
graph ’94), vol. 26, pp. 311-318, 1994.

M. Rutishauser, M. Stricker, and M. Trobina,
“Merging range images of arbitrarily shaped ob-
jects,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 573—
580, 1994.

M. Soucy and D. Laurendeau, “A general approach
to the integration of a set of range views,” IEEF
Transactions On Pattern Analysis and Machine In-
telligence, vol. 17, pp. 344-358, Apr. 1995.

M. Soucy and D. Laurendeau, “A dynamic integra-
tion algorithm to model surfaces from multiple range
views,” Machine Vision and Applications, vol. 8,
no. 1, pp. 53-62, 1995.

R. Pito, “Mesh integration based on
co-measurements,” in International Conference on
Image Processing, pp. 397-400, 1996.

R. Aubin, “A world wide assessment of rapid pro-
toyping technologies,” in Proceedings of the Intelli-
gent Manufacturing Systems International Confer-
ence on Rapid Prototyping, (Stuttgart, Germany),
pp. 4548, 1994.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald,
and W. Stuetzle, “Mesh optimization,” in Computer
Graphics: Siggraph 93 Proceedings, pp. 19-25, 1993.

G. Wyvill, C. McPheeters, and B. Wyvill, “Data
structure for soft objects,” Visual Computer, no. 2,

pp. 227-234, 1986.

B. Curless and M. Levoy, “Better optical triangula-
tion through spacetime analysis,” in Fifth Interna-
tional Conference on Computer Vision, (Cambridge,
Massachusetts), pp. 987-994, 1995.

P. Hebert, D. Laurendeau, and D. Poussart, “Scene
reconstruction and description: geometric primitive
extraction from multiple view scattered data,” in
Proc. IEFE Conference on Computer Vision and
Pattern Recognition, (New York), pp. 286-293, 1993.

P. Boulanger, G. Roth, and G. Godin, “Applications
of 3-d active vision to rapid product development,”
in Proceedings of the Intelligent Manufacturing Sys-
tems International Conference on Rapid Prototyp-
ing, (Stuttgart, Germany), Feb. 1994.

R. Seidel, “A simple and fast incrmental random-
ized algorithm for triangulating polygons,” Compu-
tational geometry: theory and applications, vol. 1,
pp. 51-64, 1991.

Figure 4: Two models created from image
data (the elephant and dragon), the other
(Mercedes-Benz star) created from cloud
data.

Figure 5: Four colour models (duck, vase, mummy, and totem) produced by vertex colour
mapping and Gouraud shading.

