A Modelling Method and User Interface for Creating Plants

Oliver Deussen
Department of Computer Science
Institute of Simulation and Graphics
Otto-von-Guericke University of Magdeburg
D-39016 Magdeburg, Germany
email: deussen@isg.cs.uni-magdeburg.de

Abstract

We present a modelling method and graphical user
interface for the creation of natural branching structures
such as plants. Structural and geometric information
is encapsulated in objects that are combined to form
a description of the model. The description is repre-
sented graphically as an icon tree and can be edited
interactively. Global and partial constraint techniques
are integrated on the basis of tropisms and allow the
modelling of specific shapes. We show examples to il-
lustrate the design process and evaluate the user interface.

Keywords: Plants, Structural Modelling, Geometri-
cal Modelling, Rule-based Systems

1 Motivation

The design of natural objects such as trees, bushes or
flowers is a challenging task in two respects. One is the
sometimes enormous structural complexity, the other is
the large amount of geometrical properties that must be
taken into consideration.

Both tasks require their own optimized modelling
techniques. To combine adequate modelling methods for
geometrical and structural properties in a single system,
we describe models by an object (or component) hier-
archy. Components' contain both geometrical and struc-
tural data together with corresponding methods.

To define the structure of a model, a structure tree is
generated by combining icons (graphical representations
of components). The tree represents creation rules and
defines a context-free rule system.

The geometric properties are handled as parameters
of the components. Every object is able to create geom-
etry. A basic parameter set together with manipulation
methods is common to all components.

We first give an overview of recent work on plant
generation. Next, we introduce our way of modelling and
the corresponding graphical user interface.

'We use the term “component” because the system is not real object
oriented with respect to strict definitions.

Bernd Lintermann
Department of Computer Science
Institute of Dialog and Operation Systems
University of Karlsruhe
D-76128 Karlsruhe, Germany
email: linter@informatik.uni-karlsruhe.de

The creation of a dandelion (ref. Figure 1) will serve
as an example for using the method including geometri-
cal and structural modelling. Finally, practical aspects are
discussed and experience with trained and novice users
are documented.

Figure 1: Dandelion and corresponding structure tree.

A very short description of our modelling method
can be found in [10] and some geometric aspects includ-
ing animation are discussed in [9]. The present article
deals mainly with the user interface and the modelling
method itself.

2 Recent Work

Various publications have appeared in the last few years
concerning the problem of plant generation. In general,
two approaches can be distinguished. First, formal tech-
niques have been developed for mastering the structural
complexity of branching structures. Second, more model-
oriented approaches have been introduced which concen-
trate on the analysis and generation of special plants and
their geometry.

Among the formal methods, rule-based approaches
and especially L-systems [8] have been extensively stud-
ied. L-systems are string rewriting systems similar to
Chomsky grammars. A sequence of letters is derived
from a starting word, called the axiom, by parallel ap-
plication of string rewriting rules. In a second step the

generated string serves as a command sequence for a tur-
tle graphics interpreter that generates geometric data.

This method is explained in [14]. Extensions such
as context-sensitive and parametric grammars as well as
stochastic application of rewriting rules are presented.
These techniques allow the simulation of physiological
mechanisms regulating the growth process such as hor-
mone secretion. Special properties of plants, e.g. photo-
and gravitropism, can be modelled [11]. Another exten-
sion to L-systems, called dL-Systems [13], define addi-
tional differential equations to introduce continuity to the
so far discrete approach. Most of the work concerning
L-Systems is based on textual representation and manip-
ulation and geometric and structural aspects are handled
by the same overall method.

Other models deal only with trees: De Reffye et al.
[3] developed a procedural model based on birth and
death of growing buds. A dynamic process generates the
geometric data. Holton proposed a vascular model [6]. A
strand is assigned to any path from the root of a tree to
its leaves. The number of strands in a fork determines the
fork angle, length and taper of branches.

A generic tree model is presented by Weber and Penn
[17]. The (textual) variation of a given parameter set
enables even a non-biologist to generate several natural
looking trees. The generation of more general objects by
parameter variation is described in [16].

Generic tree models are also used in AMAP [1], a
system for the generation of landscapes which offers a li-
brary of algorithms for generating several plants. Here,
parts of the problem can be interactively manipulated
with graphical user interfaces. This is essential for mod-
elling purposes that require a huge number of parameter
chanches, as stated by Oppenheimer [12].

TreeMaker ([7]), a software for the generation of
trees, offers also a graphical user interface. A tree can
be generated interactively by changing structural param-
eters. Several graphical actions like cutting a stem are
possible. The system is limited to trees with a specific
structure.

3 The modelling method

Our intention was to find a general description of natu-
ral branching objects. A set of components was created
containing geometric as well as structural information.
The components are graphically represented by icons.
These icons are combined in a structure tree describing
the model (c.f. Figure 1).

The user selects icons out of a toolbox (c.f. section
3.1) and combines them by hanging them on a root icon.
The process is shown in Figure 2. By double clicking an
icon, the parameter set of the corresponding component
is displayed and can be edited.

\
(a) (b) ©
Figure 2: Graphically interactive modelling: (a) editing
window with a simple structure tree after selecting a new
component; (b) the component is added to the structure
tree by moving the icon upon the desired parent icon

(branching combination); (c) resulting structure tree and
geometrical result.

The generation of the geometric data according to the
structure tree is done as follows: The component of the
camera icon defines the view and creates the correspond-
ing components for all child icons. The components are
forced to generate their geometrical output and to cre-
ate subsequent components. This is done until the whole
structure tree is traversed.

In contrast to other geometry-describing data struc-
tures like PHIGS+ and Inventor ([2, 15]) we use proce-
dural modelling and describe creation rules for compo-
nents which also include recursion and algorithmic cre-
ation of components. The latter is done by specialized
components and will be described below.

3.1 Component types

All components, as mentioned above, offer a basic func-
tionality. They can produce geometric primitives and de-
fine material properties like color and texture, the recur-
sion depth and transformation parameters for the compo-
nent itself and all geometric output.

Some components multiply others algorithmically,
some can be used for defining global and partial con-
straints. Specialized components encapsulate complex
operations or generate special shapes. The components
can be classified as follows:

1. Generation of geometry

Simple: A component that produces a simple
geometry (cube, sphere, cylinder etc.).

Revo: Produces a surface of revolution. Def-
inition is done by editing a spline which de-
scribes the outline.

Horn: A Sweep component that places other

components on a user-defined curve. It is
used for stems, twists, etc.

Leaf: Is used for the construction of natural
leaves. The leaf is defined by its outline, sev-
eral curvatures (see Figure 7) and its mate-
rial. Textures can be used to define the inner
structure.

2. Iteration and arrangement of components

Tree: Basic component for trees, creates the
geometry of a stem and multiplies subse-
quent components as branches. Parameters
are the distribution of branches, their scale,
angle etc.

Hydra: Multiplies subsequent components
on a circle with uniform angles and direction
perpendicular to the direction of the parent
component.

Wreath: Multiplies subsequent components
°° | similar to hydra, but with direction parallel
to the direction of the parent component.

PhiBall: Multiplies subsequent components
on a section of a sphere according to the
golden section (details see [9])

3. Introduction of constraints

. World: Introduces light and gravitational
— | fields to subsequent Tree components.

4. Transformation of sub-hierarchies

FFD: Enables free form deformations of the
geometry produced by subsequent compo-
nents and is also used to switch previous
FFDs off. Three definition methods can be
used.

HyperPatch: Enables free form deformations
of the geometry produced by subsequent

components and is also used to switch previ-
ous FFDs off. The deformation is modelled
by moving control points of a 3-D patch.

Practical experience showed us that this set suffi-
ciently produces a broad variety of plant models (see be-
low). In the future it is intended to add some components
realizing other creation algorithms.

3.2 Combining Components

Recursive creation and other creation mechanisms are se-
lected by several ways in combining components. First, a
component can be a child of another which means that if

the parent is created it produces its geometry, creates one
child and forces the child to generate its geometry relative
to its own. This is the normal way of combination and is
encoded by moving one icon upon another using the left
mouse button (c.f. Figure 3(a)).

Another possibility is to generate a component as a
branch or rib of another component. This was done in
Figure 2 to generate the twists of the tree. This kind of
combination can be selected if special components like
the Tree or Horn component are to be combined.

= =
hd Y
(@) (b)

Figure 3: Methods in combining icons: a) child/ branch/
rib combination; b) recursive combination; ¢) recursive
combination with leaf link.

If a component is a child of a multiplying compo-
nent like Hydra, Wreath or PhiBall, the link is an algo-
rithmical link. In this case the combination represents as
many components as have been multiplied. The parame-
ters for these components are changed by special param-
eters of the multiplying component or by functions (c.f.
Section 3 .4) that use random values or the iteration num-
ber, which is also supplied by the multiplying component.

3.2.1 Recursive combination

A recursive combination is created if an icon is selected
byusing the middle mouse button and moved onto one
of its child icons. In this case another icon representing
the same component is drawn and the path between the
two icons is displayed by a double line to indicate the re-
cursion (Fig. 3(b)). If the user selects one of these icons,
all other icons representing the same component are also
highlighted. This enables us to represent the graphical de-
scription, which is a directed graph, visually by a tree.

One of the basic parameters of each component is the
recursion depth. By selecting an appropriate value the re-
cursion can be modelled. After the last recursive creation
it is possible to specify another component which is cre-
ated as leaf (leaf in the sense of the structural description).
This is graphically encoded by moving an icon (using the
right mouse button) upon one of the icons of a recursive
defined component. The combination is represented visu-
ally as a dashed line (Fig. 3(c)).

As mentioned above, the structure tree defines a rule

system. A parent-child dependency can be seen as a rule
which is applied after the parents creation. Because no
other rules or components influence the application of the
rule the system is context-free. Besides serving us for rep-
resenting our models, the method may be used for defin-
ing arbitrary context-free rule systems and especially L-
Systems.

3.3 An example

The modelling process can be explained best by giving a
short example. We shall explain the creation of a dande-
lion which gives a good overview on the functionality of
the system.

At first a horn component is selected. It will serve as
one hair of the tiny umbrellas of the dandelions blossom.
A slight curvature is established by the transformation pa-
rameters of the horn (Fig. 4(a)).

|
(a))

Figure 4: Creation of a dandelion: (a) one hair; (b) the
head of an umbrella.

Next a Hydra component is used to multiply the
Horn. The Horn is hung under the Hydra (by moving it
upon the Hydra icon) and afterwards Horn and Hydra are
hung under the Camera. The transformation parameters
of the Hydra are used to obtain the orientation of the hair
as can be seen in Figures 4(b) and 5(a).

() (b)

Figure 5: (a) The whole umbrella. (b) The head is made
by arranging umbrellas on a sphere according to the
golden section.

Now we create the stem of the umbrella. Again a
Horn component is used for this (the resulting structure
tree is shown in Figure 5(a)). Next a PhiBall component

is used for multiplying the umbrellas on a sphere. Every-
thing is hung under the PhiBall.

=]
B | .
: i
\y
(a) (b)

Figure 6: (a) Modelling the stem; (b) adding the leaves.

In Figure 5(b) a little arrow between the PhiBall com-
ponent and the rest of the structure tree can be seen. This
arrow indicates that the geometry produced by the subtree
is calculated once and later only referenced for displaying
by the PhiBall. This is much faster than the normal way
of geometry generation where each component created
by the PhiBall calculates its own geometry. In that case
the geometry can vary from component to component.
This is not necessary here and by this the direct geometry
generation is enabled for the umbrella.

Next a Horn component is used for the main stem.
The curvature is introduced again by the basic parame-
ters of the Horn. A spline can be used for modelling the
thickness of the stem along the main axis.

\/f

Figure 7: Modelling leaves is done by introduction of ax-
ial and lateral curvature and editing the outline.

Now we create the leaves and use the Leaf compo-
nent for creating the geometry. Again a spline is used to
generate the jagged outline of the leaves. The curvature is
modelled in a similar way (Figure 7).

A Hydra component is used to multiply the leaves
and both Hydra and the main stem are hung on the Cam-
eraicon. The resulting structure tree is shown in Fig. 6(b).

3.4 Functional modelling

In the upper example one may argue that the leaves of
a real dandelion never look all the same — and in Figure

6(b) they really do not. There is a general way to intro-
duce randomness at many places of the system. Wherever
a parameter intervall is to be defined (e.g. the rotation
along the main axis of a Horn, the curvature of a leaf) a
function can be applied before the system uses a parame-
ter of that interval.

Figure 8: Agave with leaf curvature in dependency to the
iteration number and a random function.

The modeller offers standard mathematical functions
like sine, cosine, etc., but also a random function. Param-
eters like recursion depth or iteration number can be used
inside these functions. The user can define arbitrary func-
tions for each parameter interval.

To demonstrate the effect an agave is shown in Fig-
ure 8. The more vertical leaves are less curved than the
rest. This was done by using the iteration number which
was set by the PhiBall component during multiplying. By
adding some noise a natural outline can be achieved.

3.5 Introduction of tropisms

Often a whole model or parts of it are influenced by
global constraints like gravitation or light direction. To
introduce such parameters a World component is used.

The fields that are defined here have an influence on
all subsequent Tree components. These components have
special parameters specifying how sensitive - along the
main axis of the stem - the tree is to gravitational (gravit-
ropism) and light fields (phototropism).

Three examples of tropisms in different applications
can be seen in Figure 9. Tropisms can play the role of
constraints as can be seen in Figure 9(b). By specify-
ing the regions where growth has to take place, the plant
achieves a specific shape.

For the moment the fields have to be defined func-
tionally, but in the future it is intended to use a kind of
voxel model as done in [4], where the user selects regions
of preferential growth.

(b)

Figure 9: Horizontal tropisms simulate the influence of
wind (a) and force the wine to grow along a wall (b). A
circular tropism is used for modelling an ivy around a
stick (c).

3.6 Free form deformation

Another way to change the geometry of the entire model
or just of parts of it is to use free form deformations. Two
component types are designed for that purpose. The FFD
component allows the user to define the deformation sep-
arately for each axis, whereas the 3-D Patch component
uses a 3-D cube where points are to be moved.

(b)

Figure 10: Selective free form deformation applied to a
pine: (a) undeformed model, (b) model affected by a FFD
of the twists, the needles remain unchanged.

The user selects one or more points and moves them
parallel to the viewing plane. The points are control
points of a 3-D Bézier function which defines the desired
deformation.

In Figure 11(a) the three dimensional representation
of the 3-D Patch can be seen. Whereas the FFD com-
ponent is useful for deformations that are to be defined
exactly, the 3-D patch is used for more intuitive deforma-
tions.

Often it is required to deform only parts of the model.
For example the twists of a tree should be deformed, but
not the leaves or needles. This can be done by placing an-
other FFD or 3-D Patch component in the subtree affected

by a free form deformation. This component is used as a
separator for the deformations defined before.

(a))

Figure 11: (a) User interface of the 3-D Patch component;
(b) Structure tree of the pine.

An example of partial free form deformation can be
seen in Figure 10(a). The twists of the pine are deformed,
but the needles remain unchanged. In Figure 11(b) the
structure tree is shown with all deformed components
marked.

3.7 Modelling of exceptions

Sometimes one may change properties of single compo-
nents out of a set of multiplied ones. For example the user
might to delete some of the seeds of a sunflower or break
one twist of a tree.

The general way of modelling such effects is to de-
fine components that model exceptions. Each multiplying
component holds a list of flags which indicate if the com-
ponent shall generate geometry for a certain iteration or
not. The flag is switched on for the iteration which is the
exception and switched off for all other iterations. This is
done vice versa for the component that defines the normal
geometry.

Another possibility is to create two identical compo-
nents which differ only in the distribution of successors.
The distribution of one component generates the normal
geometry, the other distribution modells the exeption. An
example of this feature can be seen in Figure 9(a) where
the dead twists of the pine were modelled that way.

3.8 Reducing the displayed complexity

After showing some modelling techniques the last part of
the paper deals with practical aspects. Very important for
the efficiency of the system is the amount of geometry to
be handled during modelling. As shown in Section 3.3 it

is possible to reduce the computational cost for generat-
ing geometry. But often the number of displayed trian-
gles is more critical. For example the dandelion of Figure
1 has about 147,000 triangles if displayed with full com-
plexity.

Table 1: Model complexity and display time on an SGI
Indigo 2 Extreme (134 MHz) in sec.

Figure Triangles Generation Display
1 2743/147991 0.22 343
8(a) 19510/26590 0.78 1.23
9(a) 36561/36561 533 0.78
9(b) 37075/154003 481 3.83
10 39624/39624 5.09 0.86
14 22753/41713 1.55 091

Table 1 shows the maximum time consumed by
the system for generating the internal data structure.
The right column gives the time needed for display-
ing the data. The geometrical complexity is indicated
by the number of generated/displayed triangles. Depend-
ing on the structural model complexity, between 6,000
and 50,000 triangles per second can be generated by an
Indigo 2 Extreme (134 MHz).

The values given in Table 1 are maximum time limits
for generation and display. The user usually edits only
parts of a model with low complexity. This can be done
by disconnecting other stuff from the camera.

Another method is “hiding” components. If a compo-
nent is hided, it generates no geometrical data but creates
other components in the normal way. The combination of
both techniques allows to handle medium-sized models
on high-end PCs using LINUX with a soft implementa-
tion of Open GL.

4 Evaluation of the interface

Modelling technique and the interface were tested by ex-
perienced and novice users. To evaluate the behavior of
unexperienced users, eighteen subjects had to model an
object.

After an introduction of ten minutes one group (10
persons) had thirty minutes of time to model the head of
a sunflower, the other group was instructed to model a
complete tulip. In this case the modelling time was 45
minutes. The first group tested mostly the iteration com-
ponents while the second group was confronted mainly
with geometric modelling problems. During modelling
the subjects were allowed to ask questions to the supervi-
sor. Both groups where given pictures of real sunflowers
and tulips. Some of the results are shown in Figure 12.

The subjects were students of computer science,
most of whom had never worked with an interactive ge-
ometry modeller before. After the test the subjects were
asked some questions about the modelling process. Ta-
ble 2 shows the results (Results are displayed with mean
values and 90% confidential interval assuming Gaussian
distribution).

Table 2: Rating results of unexperienced users. (1=bad
sp. low, 5=excellent rsp. high).

1 2 3 4 5
Intuitivity of modelling process oA
Intuitivity of components =OH
Intuitivity of parameters =0
Clarity of components =0
Clarity of parameters 00—
Clarity of structure tree FOH
Editing of structure tree —=OH
Editing of parameters —0—
Predictability of parameter changes 00—
Goal-oriented modelling HOH

The subjects reported components and structure tree
to be intuitive, clear and easy to edit. None of them had
problems in connecting and arranging of components
within the structure tree.

Figure 12: Results of unexperienced users. One group had
to model the head of a sunflower, the other was instructed
to create a tulip.

The huge parameter space caused problems as soon
as the subjects had to familiarize with it. The influence
of parameters like different rotations where reported to
be difficult to understand. For example it was sometimes
not clear to the subjects whether they should rotate the
whole iteration component or subsequently leave compo-
nents relatively to it. The problems with understanding
some of the parameters were balanced mostly by the di-
rect feedback of the system which enables the user to try
out unknown parameters efficiently.

4.1 Experienced Users

Experienced users who are familiar with the parameter
set are able to model even complex objects in a short time.
Table 3 shows the modelling times of a trained user for
some of the models that were presented in this paper.

Table 3: Modelling times of a trained user for some of the
models.

Figure Timeinh Annotation
1 0.5
9(a) 1.75
9(b) 2.5
9(c) 1.5 field definition 0.25h
10(a) 1.75

Structure trees can also be recycled. This makes
modelling more efficient. For example, the structure tree
of a typical pine can easily be used for creating another
pine. By this a variety of trees of the same species can
be modelled in short time. Typically, tropisms and FFD
components are used to quickly change the shapes of
trees.

Problems that were reported by experienced users
concern mostly the influence and combination of several
tree parameters. Though complex trees can be modelled
(as shown in Figure 9 and 13) the overall creation process
is complicated.

5 Conclusions and future work

We presented a modelling method and graphical user in-
terface for generating natural branching objects such as
plants, bushes and trees. A set of components describ-
ing geometry as well as structure is combined to form a
structure tree. The user is able to model the geometry by
standard interaction techniques like editing splines or us-
ing free form deformations.

Structural modelling is done by the combination of
components and by specialized components which multi-
ply others algorithmically. Global and partial constraints
are integrated on the basis of tropisms and can be used to

elaborate specific shapes of plants. This also allows plants
to interact with an environment.

The system was tested by experienced and novice
users. Some work needs to be done to clarify and change
parameters which are yet not intuitive. Future work will
also focus on animating models, which is now partially
integrated on the basis of key-framing techniques. Level-
of-detail mechanisms have to be developed to reduce the
enormous geometrical complexity especially of the tree
models.

The software can be obtained as a shareware [5].

6 Acknowledgements

The authors like to thank Alfred Schmitt of the Univer-
sity of Karlsruhe and Jeffrey Shaw of the Center for Me-
dia Technology Karlsruhe for their support in doing this
work. Many thanks to Thomas Strothotte of the Univer-
sity of Magdeburg for giving several useful hints in im-
proving the article and also many thanks to Sylvia Zabel
for pointing out numerous spelling errors.

References

[1] CIRAD/GERDAT. Amap presentation. http://www.
cirad fr/amap/amap.html.

[2] PHIGS+ Committee. Phigs+ functional description,
revision 3.0. Computer Graphics, 22(3):125-218,
1988.

[3] P.de Reffye, C. Edelin, J. Francon, M. Jaeger, and
C. Puech. Plant models faithful to botanical struc-
ture and development. In J. Dill, editor, Com-
puter Graphics (SIGGRAPH ’88 Proceedings), vol-
ume 22, pages 151-158, August 1988.

[4] N. Green. Voxel space automata: Modelling with
stochastic growth processes in voxel space. Com-
puter Graphics,23(3):175-184, 1989.

[5] Greenworks. Home page of the xfrog modelling
software. http://www.greenworks.de.

[6] M. Holton. Strands, gravity and botanical tree im-
agery. Computer Graphics Forum, 13(1):57-67,
1994.

[7] Onyx Computing Inc.
http://www. onyxtree.com.

Onyx tree professional.

[8] A.Lindenmayer. Mathematical models for cellular
interactions in development. Journal of Theoretical
Biology, 1&11:280-315, 1968.

[9] B. Lintermann and O. Deussen. Interactive mod-
elling and animation of natural branching struc-
tures. In Ronan Boulic and Gerad Hegron, edi-
tors, Computer Animation and Simulation 96, pages
139-151. Springer-Verlag, Berlin, 1996.

[10] B. Lintermann and O. Deussen. Interactive mod-
elling of branching structures. In SIGGRAPH ’96
Visual Proceedings, page 148. ACM SIGGRAPH,
ACM Press, 1996.

[11] R. Méch and P. Prusinkiewicz. Visual models
of plants interacting with their environment. In
H. Rushmeier, editor, Computer Graphics (SIG-
GRAPH ’96 Proceedings), pages 397-410. ACM
SIGGRAPH, ACM Press, 1996.

[12] P. E. Oppenheimer. Real time design and anima-
tion of fractal plants and trees. In D.C. Evans
and R.J. Athay, editors, Computer Graphics (SIG-
GRAPH ’86 Proceedings), volume 20, pages 55-64,
August 1986.

[13] P. Prusinkiewicz, M. S. Hammel, and E. Mjol-
sness. Animation of plant development. Comput-
ers Graphics (SIGGRAPH ’93 Proceedings), pages
351-360, 1993.

[14] P. Prusinkiewicz and A. Lindenmayer. The Algo-
rithmic Beauty of Plants. Springer-Verlag, New
York, 1990.

[15] P. S. Strauss and R. Carey. An object-oriented
3d graphics toolkit. In Computer Graphics (SIG-
GRAPH ’92 Proceedings), pages 341-347. ACM
SIGGRAPH, ACM Press, 1992.

[16] S.Todd and W. Latham. Evolutionary Art and Com-
puters. Academic Press, London, 1992.

[17] J. Weber and J. Penn. Creation and rendering of
realistic trees. In Computer Graphics (SIGGRAPH
'95 Proceedings), pages 119-128, August 1995.

Appendix A: Some More Examples

To demonstrate the modelling capability of our approach,
some more results are shown. Figure 13 shows a sample
picture out of an animation that is to be created for the
media artist Bill Viola. The tree is rendered in a special
way to simulate the painting style of famous old Dutch
painters.

() (b)

Figure 15: Structure trees for the models of Figure 13 and
Figure 14.

Figure 13: Tree shaded in the style of famous old Dutch
painters.

In Figure 14 a fruit fly is shown to demonstrate
that even non-vegetable objects can be created. In Figure
15(b) the corresponding structure tree is shown.

Figure 14: A non-vegetable object: the fruit fly. Figure 16: 3-D modelling of the pineapples segments as
well as textures can be used to enhance realism.
Figure 16 shows a pineapple where the segments of
the fruit were modelled as special 3-D surfaces and af-
terwards a texture was mapped upon them. The head of
the pineapple was modelled similar to the agave shown in
Figure 8.

