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Abstract

In 2D, Intelligent Scissors is an efficient interactive
tool for image segmentation. By interactive use of a
dynamic-programming graph-searching algorithm, a re-
gion of interest in the image can be accurately obtained.
In this paper, we introduce the use of Intelligent Scis-
sors for contour detection on a volumetric data surface.
It is fast enough to be used in an interactive virtual envi-
ronment, in which the user can intuitively select the con-
tours in volumetric data in an accurate and robust manner.
Moreover, we extend our work to the volume data manip-
ulation, cutting off the interesting part of the volume by
providing a contour on its surface. The cutting surface is
computed by a fast dynamic programming algorithm. By
using this tool, many new volumetric data models can be
created from an existing one in an effective way.

Keywords: Volume Visualization, Interactive Volume Seg-
mentation

Introduction

Interactive volumetric data manipulation is an important
focus in recent Visualization and Graphics interface re-
search. Galyean and Hughes[3] developed a desk-top
Polhemus-based system for manipulating a volumetric
model interactively. Serra et al.[11] proposed a general
system for free-form creation of 3D objects with given
volume data. Wang and Kaufman[14] proposed interac-
tive volume sculpting techniques to carve beautiful mod-
els from a textured volumetric block. However, the ex-
isting volume sculpting tools rarely provide smooth, in-
tuitive and accurate cutting.

In 1995, Mortensen and Barrett[7] proposed an inter-
active tool for 2D image segmentation, called Intelligent
Scissors, by which users can easily and accurately outline
the region of interest (ROI) in an image. We borrow these
ideas and design a new, intuitive and accurate 3D volume
cutting methodology.

To cut off the volume of interest, the user first draws
a closed contour on the volume surface as the bound-
ary. Then, a cutting surface will be generated by a fast
dynamic-programming computation. The user-defined

boundary is similar to a wire loop with an arbitrary shape.
When this is taken out of soapy water, a film spanning
the loop with minimum area is formed. The shape of the
cutting surface which aims to separate two volumes is
similar, but it is driven to voxels with high gradient mag-
nitude.

In medical data visualization, interactive volume cut-
ting can provide various views of the internal structures
of the human body. In volume data editing, an accurate
volume data cutting can also benefit the artists to design
more complicated volume model by cutting and pasting
existing volume data. These applications explain the mo-
tivation of our work.

This paper discusses how to detach a three dimen-
sional ROI from a given volume intuitively, correctly and
efficiently. The next section addresses some basic is-
sues concerning contour detection on a volume surface,
and introduces the use of Intelligent Scissors on the vol-
ume model surface. Section Volume Cutting discusses
the computation of the cutting surface with dynamic pro-
gramming techniques, as well as some topological prob-
lems occurring when arbitrary shapes of volume and con-
tour are permitted. We illustrate its use in Section Imple-
mentation and Results, and give conclusions in Section
Conclusions.

Contour Selection

There are two straightforward approaches to generaliz-
ing the Intelligent Scissors technique (described below)
to volumetric data. The first is to apply the original 2D
version on the screen buffer to detect the contour. The
second is to consider the volume data set as a large 3D
graph and then search for the shortest path (contour seg-
ment) between two nodes (voxels) with Intelligent Scis-
SOrS.

Both methods have their disadvantages. For the first,
since the cost function is evaluated by the information
(such as depth and intensity) in the screen buffer, its val-
ues depend strongly on the direction of view. The starting
point will be lost if the viewpoint is changed during the
use of Intelligent Scissors to define a segment. For the



second method, although the cost function is view inde-
pendent, the computational time is extremely large. It is
not suitable for interactive application.

Therefore, we only deal with the surface voxels in vol-
umetric data. We model these voxels as a graph and ap-
ply a graph searching algorithm to find a global optimal
boundary from a seed point. This ‘Intelligent Scissors’
technique originated in the field of image processing [4].
We apply it to 3D iso-contour detection, and implement
it in the Virtual WorkBench[9, 10], a virtual environment
with 3D display and input (see Figure 5). With this inter-
face, we can mark a particular surface voxel as the start
point, and different paths can be displayed while the 3D
stylus moves along the surface. This helps the user select
the most suitable iso-contour interactively.

Intelligent Scissors

In 2D image segmentation, "Intelligent Scissors’ has been
proved to be an efficient method. In the context of vol-
ume visualization, we modify the algorithm so that it can
be applied on a graph generated from the isosurface of
volumetric data. The points in the mesh contain not only
their positions but also the interpolated gradients, which
will be used to evaluate the cost function, discussed be-
low. Following the idea of Intelligent Scissors, we calcu-
late global optimal paths by Dijkstra’s shortest path algo-
rithm.

To use Dijkstra’s algorithm, we have to define local
costs. In image processing, these depend on the 2D gra-
dient at the pixel positions. In [12], edge detection mea-
sures the strength indicator GG of neighbor pixels,

G =+ (1)

where a pixel is preferable if its (& is large. Thus the local
cost between pixels « and v can be formulated as

cost(u, v) = max(G) — % (Gu)+Gv) @
To find a contour fitting the surface, however, geometric
information is more important than intensity. Therefore,
we create the local cost between vertices u and v accord-
ing to their gradient magnitudes and the dot product of
their gradient vectors. The resulting cost function is

cost(u, v) =
||pu_va(wg*fg(u’v)—i_w”*f”(u’v)) 3)
folu,v) = 1 — Sl “)
fo(u,v) = =00l 5)

where py,, py, Vy, Ny are the position vectors and normal
vectors at v and v respectively, and w, and w,, are the

weighting factors controlling the influence of f; and f,,.
The gradient vector at a vertex is evaluated by trilinear in-
terpolation between gradients at nearby voxels. By using
this formula, the Dijkstra algorithm would tend to find a
path which has large gradient change.

Dijkstra’s algorithm

We use the Dijkstra algorithm [2] to do the searching.
This algorithm mainly does 2D dynamic programming to
find all paths from all points to the seed point s that are
globally optimal; i.e., such that the sum of costs along
each path is minimal. The search need not finished a full
pass, but can be stopped when the search reaches the po-
sition selected by the 3D stylus. This can save much time
since unnecessary paths would not be calculated. The
user rarely moves the stylus away from s faster than the
wave of Dijkstra results is computed, so the earliest re-
sults are exactly those needed early. If the seed point
is changed, the searching must be started again. Time
can be saved here since not all the points need to be re-
calculated. For example, if u is the seed point and v is the
new seed point, all points passed through the route from
u to v need not be re-calculated. If p — v — wu is the
shortest path from a point p to u, then p — v must be the
shortest path from p to v.

Dijkstra’s algorithm (Table 1) uses dynamic program-
ming to update the cost of each point step by step. For
each point p, a pointer points to the neighbor through
which passes the shortest path from p to the seed point
s. Thus a path from any selected point to s can be es-
tablished quickly. Note that the cost function c(u, v) can
be preprocessed and the only changed function is B(u),
which indicates the path from u to s.

Volume Cutting

As the user defines a closed contour on the volume sur-
face, the ROI can be selected by estimating the shape of
the external surface and the cutting surface. All voxels
belonging to the selected ROI are bounded by these two
surfaces. Figure 1 shows how to select it using contours.

The external surface is the part of the whole volume
surface, which can be estimated by any mesh generation
algorithm [8] and surrounds the interested volume when
combined with the cutting surface. The shape of this cut-
ting surface is influenced by the shape of the specified
contour (boundary), the gradient of the voxels near this
surface, and its smoothness.

For surface modeling, a deformable mesh [1, 6] can
be used to fit the surface. However, the shape of the
given contour cannot provide enough information about
the topology and the connectivity of this mesh. To gen-
erate the junctions in the mesh, the given contour will
be projected on a discrete grid surface. In this projection,



Definitions:
5 Seed point.
L List of active nodes.
B(u) Back pointer from (u) indicates
the potential optimal path.
P(u) TRUE if node u is made permanent.
T(u) Total cost from u to s.
c(u,v) Local cost of edge u—v.
min(L) Get the node with minimum total cost
from L and remove it.
Algorithm:

P(u) < FALSE for all u
T(s) + 0, T(u) < oo foru # s
L «+ {all nodes}
while L # 0 do
q < min(L)
P(q) « TRUE
for each edge g—v s.t. P(v)=FALSE do
if T(v) > T(g) + c(g, v) then
T(v) = T(g) + c(g, v)
B(v) « g
end if
end for
end while

Table 1: Dijkstra’s algorithm for contour detection.
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Volume Volume
External
/ Surface
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Contour
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Figure 1: The selected volume is bounded by two sur-
faces (external and cutting surfaces). Their common edge
is defined by the user.
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Figure 2: (a) A contour is projected on a discrete grid
plane. (b) The junctions of the surface mesh is generated.

each junction can be bijectively mapped to an unique grid
within the interior region of the projected contour (Fig-
ure 2). To increase sampling detail, the projected surface
is rotated to an optimal orientation such that the number
of junctions in the mesh is maximum. When the con-
tour cannot have an one-to-one projection to the projected
surface, we can divide it recursively into several smaller
contours until all junctions in the cutting surface can be
generated.

Cost function for the cutting surface

Two vital factors, the continuity between junctions and
the voxel gradient near them, are considered for defining
the cost function of the mesh. The first factor makes the
surface smooth and flat. The second factor drives the sur-
face to fit the iso-surface in the volume. Its function is
similar to the image force used with an active contour [5]
to fit the edge in a 2D image. The cost function C'(z, y, 2)
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Figure 3: (a) A projected contour. (b) The interior region.
(c) L(x,y) will be assigned the value O when (x,y) is an
edge pixel. (d) The resulting function L (z, y). The region
is separated into discrete contours by different numbers.

for a voxel with the intensity /(x, y, z) can be defined by
C(l‘,y,Z) = —Oz|VI(x,y,z)|—|—ﬁS(x,y,z), (6)

where « and 3 are the weighting parameters for the iso-
surface fitting factor and the surface continuity respec-
tively, V is the gradient operator, and S(z,y, z), dis-
cussed in next Section ’Continuity function’, measures
the continuity of the voxel at (z,y, z) with its neighbors
on the mesh. Let M be the set of voxels involved in the
cutting surface. Then the cost for a cutting surface C'x is
defined as follows:
Cm = Z Cl(z,y,2) @)

(z,y,2)EM

In general, the continuity factor S(x, y, z) can be defined
as the average value of the distances from itself to all of
its neighbors. However, this definition is not efficient
enough when seeking the minimum total cost, and can
also make the resulting mesh too flat. We suggest a new
continuity function, to speed up the computation.

Continuity function S(z, y, z)

All pixels within a closed loop on the grid surface can be
classified by their shortest distances (measured in ‘pixel
hops’) to the boundary. In other words, this closed region
can be divided into many contours. As in Figure 3, these
contours are considered as pixel chains on the discrete
grid surface. In our algorithm, the continuity function

| step || instruction |

1. ¢+ 0,Vz,y, L(z,y) + oo.
2. V(z, y) within the projected
contour, [ (z y) «+ 1.
3. For all edge pixels (z, y),
L(z,y) « ¢
I(z,y) « 0
. If all /(z,y) = O then exit.
5. c 4+ c+1,goto 3.

Table 2: The algorithm to calculate the map of L(x, y).

S(z,y, z) is computed by measuring the 3D distance be-
tween neighbors’ contours, rather than neighbor voxels.
The integer function L(x,, y,) indicates the shortest dis-
tance from the projected point (z, y,) to the boundary of
the projected interior region. The map of L(zp, y,) can
be evaluated by the simple algorithm shown in Table 2.

Then, the set of voxels A, , .) involved in the conti-
nuity computation can be found by the equations

Ale,y,s) =
Nwy,s) VBLie, y,)-1) NG ®)

N2y =
{ (x/,y/,z/) | ||(a:;,,y1’,) - (xp’yp)” < 6} (9)
Bk:{(x’y’z) |L($p’yp):k} (10)

where (xp,y,) and (x,,y,) are the projections of
(z,y,2) and (2’4, z') respectively, and G is the voxel
set which has been guaranteed to be involved in the sur-
face. The parameter ¢ controls the connectedness of two
neighbor voxels on the projected surface. It is always a
real number selected from 1.0 to 1.5. For example, if
¢ = 1.0, two neighbor voxels will have 4 connected-
ness on the projected surface. Since the continuity factor
of the voxel at (z,y, z) is only affected by the points in
A(e,y,z) »S(%,y, z) can be defined as

Vrea, o 17— @y,
Se9,2) = A 0]
Y,z

(1)

Finding the cutting surface

The mesh defining the cutting surface can be com-
puted by minimizing the cost function C'x4 (equation 7).
This process can be performed efficiently by dynamic-
programming techniques. Our algorithm (Table 3) has the
following properties:

1. The junction locations are computed from the sur-
face’s boundary to its most interior points.



| step || instruction |

| step || instruction

1. G+ CNnBy
/I C is the set of voxels touching the given contour.
// and G will be used to find A by equ. 8.
k1
Vi, 7, V[, 7] < null
/I Vi, 7] is the array of 3D vectors which
// defines the shape of resulting cutting surface.
Vi, 7 ,clt, 7] ¢ oo
2. For each (z,y, z) €C
clop, yp] <0
Vizp, yp] < (2, y,2)
// where (zp, yp) is the projected point

/ of (z,y, z) on the discrete grid surface.

end for
3. D« Bk
if D = © then exit.
4, For each (z,y,z) €D
Compute A, , ) by equ.8.
Mimp
Z Cl2'y', 2"
oy =) 4 E Aoy

4,2l
if memp < c[Tp, yp] then

clwp, yp] < Mimp
/I Here, %y, yp are rounded off.
Vizp, yp] < (2, y,2)
end if
end for
5. G« Uw Vi, 5] — {null}
ke—k+1
Goto step 3.

Table 3: The algorithm to compute the cutting surface.

2. By the dynamic programming technique, our mini-
mization is a one-pass process.

3. In 3D space, an ‘interior region’ cannot be clearly
defined by a closed contour alone. Hence, a pro-
jected surface is used to clarify this definition.

4. The minimization of the cost function C x4 makes
the resulting surface smooth, flat and close to the
isosurface.

5. Our surface fitting algorithm, similarly to active de-
formable models, works with a cost minimization
process.

After this algorithm finishes, the array V[, j] contains the
information about the shape of mesh. All the junctions
involved in the mesh are stored in G.

1. Set J to be the set of junctions in the mesh
representing the surface of the whole volume.

2. J — J — H ,where H is the node set
representing the given contour.

3. Randomly select a node v in J which is on the
external surface covered by the segments of

interest.

. Find the set of nodes C,, which is connected to v.
5. IfC, = J then
return false

/I The cut is invalid
else

return true /I The cut is valid

Table 4: This algorithm checks if a given contour can cut
one volume into two sub-volumes.

Topological problems for the volume cutting

In general, if arbitrary volumes and contour shapes are
considered, many unexpected volume cuts will occur. For
example, the torus in the Figure4a cannot be separated
into two parts by the contour loop shown. Since any cut-
ting surface defined by this type of contour will go out-
side the volume, the cutting is invalid (shown in Figure
4b).

Another kind of problem is that mesh junctions can-
not be evenly generated by a simple planar surface. Fig-
ure 4c,d shows a C-shaped contour for which it is difficult
to produce a good projection on a single plane.

Handling all of these situations would lead to ex-
tremely complicated topological problems. The most di-
rect solution in practice is to ask the user for a well-
conditioned contour when a bad case has occurred.

Assumptions for the well-conditional contour used in

our algorithm

Assumption 1 The user-defined contour C' must sepa-
rate the surface of the original volume into two parts
and completely detach the external surface of the
ROI. Otherwise, this volume cannot be separated by
any surface spanned by C'.

Assumption 2 In the projection, there should exist a sin-
gle closed contour, without any self-intersection.

Assumption 3 Every junction on the resulting cutting
surface should have a unique mapping on the pro-
jected surfaces.

We introduce the algorithm in Table 4 to check whether
the given contour satisfies Assumption 1.

Implementation and Results
We have implemented the algorithm on the Virtual Work-
Bench [10, 9], a general purpose reach-in 3D interface



Invalid volume cutting occurs
since the cutting surface appears
outside the volume.

Given contour

Given contour

Torus

Given contour

Projected surface
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Figure 4: Figure a,b show a case of invalid cutting. The
torus cannot be divided by this loop, as the cutting sur-
face stays outside of the volume. Figure c shows a case
of volume cutting with a C-shaped contour. Figure d il-
lustrates that three projected planes are used in order to
make the junctions on the mesh distributed evenly.

that supports stereo display with shutter glasses or mir-
rors, and 3D input with a 6DOF stylus. We choose this
virtual environment because we found that a 2D display
of volumetric data is seldom enough. Another main ad-
vantage of the Virtual WorkBench is that choosing a point
from the mesh in 3D space, rather than via a 2D display
and a mouse, can help us determine whether the contour
detected is suitable. Figure 5 illustrates how user selects
the surface contour in the Virtual Environment applica-
tion. By using this 3D interface, we can easily select the
seed point on the volume surface, with a visible 3D sty-
lus. A 3D snap can be applied to the point of selection
such that only the mesh point with maximum gradient
magnitude would be selected. The size of snap can be
defined by the user such that a "better’ edge point can be
selected. Figure6 shows the results. We apply our al-
gorithm on a 128 x128 x64 CT(Computed Tomography)
data of a human head. The program runs on a Silicon
Graphics Onyx Reality Engine and the rendering is done
by 3D texture mapping [13]. In the Figure 6, we use our
algorithm to cut away the nose and part of the face from
the head. The contour of the nose is created by using
three seed points selected by the user; i.e., three segments
are generated by the algorithm. In the second case, six
control points are used. We can see the interior structure
of the head after the corresponding part of the face is re-
moved.

Conclusions

In summary, we have introduced a means to select a con-
tour on a volume data surface in a virtual environment.
The Intelligent Scissors technique provides an accurate
and robust interactive contour detection.

We have also proposed a cutting surface estimation al-
gorithm, by which a region of interest in the volume can
be determined by one closed contour on the surface. Dy-
namic programming reduces the computational complex-

1ty.
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Figure 5: The above figures show how the contour are se-
lected by our tool. (a) By using a 3D stylus, the user can
select seed points on the volume surface (indicated by the
red points). And then the segment (colored in pink) be-
tween two seed points will be estimated by the Intelligent
Scissors techniques. (b),(c) The user draws the contour
by selecting the seed points one by one.

(a)

(b) (©)

(d) (e)

® (@

Figure 6: (a) The original volume. (b) A contour of the
nose is defined by user. (c) The volume without the nose.
(d) The nose is highlighted. (e) A closed contour of the
front face. (f) The ROI cut away. (g) The volume of
interest selected by the contour.



