
W avelet-Based 3D Compression Scheme 
for Very Large Volume Data

Insung Ihm and Sanghun Park 
Department of Computer Science 

Sogang University 
Seoul, Korea

{ihm,hun}Qgraphlab. sogang. ac .kr

Abstract
Visualizing very large volume data has been recog­

nized as a task requiring great effort in a variety of sci­
ence and engineering fields. In particular, such data usu­
ally places considerable demands on run-time memory 
space. This paper describes an effective 3D compres­
sion scheme for very large volume data that exploits the 
power of wavelet theory. In designing our compression 
method, we have compromised between two important 
factors: high compression ratio and fast run-time random 
access. Our experimental results on the Visual Human 
data sets show that our method achieves fairly good com­
pression ratios. In addition, it minimizes the overhead 
caused during run-time reconstruction of voxel values. 
This 3D compression scheme will be useful in developing 
many interactive visualization systems for huge volume 
data, and will make visualization technology accessible 
to a much wider range of users, as it can be based on 
personal computers or low-end workstations with limited 
memory.

Keywords: very large volume data, wavelets, 3D com­
pression, fast random access, visible human data, inter­
active visualization

Introduction
Volume visualization is one of the most actively re­
searched topics of scientific visualization. It deals with 
scalar and vector data, called volume data, defined on 
three- (or higher-) dimensional grids. In various fields 
such as computational fluid dynamics, earth, space and 
environmental science, and medical science, volume 
data are often so huge, ranging from several hundred 
megabytes to several dozen gigabytes, that they need spe­
cial treatment for effective manipulation [10, 14, 13].

A few years ago, the National Library of Medici­
ne (NLM) created computed tomography (CT), magnetic 
resonance imaging (MRI), and color cryosection images 
of male and female human cadavers in an effort to pro­
vide a complete digital atlas of the human body [12]. The

“Visible Man” data set consists of axial scans of the en­
tire body taken at 1 mm intervals at a resolution of 512 
pixels by 512 pixels, where the whole data set has 1871 
cross-sections. The “Visible Woman” data set consists 
of cross-sectional images taken at one-third the interval 
of the male. The data sets amount to 15 Gbytes and 40 
Gbytes, respectively.

Visualizing such very large volume data needs differ­
ent approaches to those used in previous work. Most vol­
ume rendering techniques, for example, assume, implic­
itly or explicitly, that the whole volume data is loaded in 
the main memory during rendering. In spite of the rapid 
fall of memory costs, it is still not common to equip a 
general purpose workstation or personal computer with, 
say, several giga bytes of main memory. Compression of 
huge volume data is a natural solution to this problem. 
Our motivation for this research was to develop a 3D 
compression method that enables users to load a whole 
compressed Visible Human data set into a main memory 
of moderate sizes, say 64 to 128 mega bytes, and to visu­
alize them interactively as if the original data were in the 
memory.

One of the most important requirements in developing 
such a compression method is that it must allow quick 
random access to an individual voxel of compressed data. 
The general concern of most lossy compression tech­
niques is to achieve the best compression rate with min­
imal distortion in the reconstructed images, and com­
pression techniques often impose some constraints on 
random access ability [6, 16], For instance, when data 
are compressed by variable-bitrate or differential encod­
ing schemes, such as the Huffman or arithmetic coders 
used in the JPEG (Joint Photographic Experts Group) or 
MPEG (Moving Pictures Experts Group), or the adaptive 
differential pulse code modulation coder, it is hard to de­
code efficiently individual data items that are accessed 
in a random fashion. When volume data are handled 
for interactive visualization, the access patterns change in 
somewhat complicated ways. Hence, those compression 
schemes are not suitable for our purpose.



In [11], a compression scheme based on vector quan­
tization was proposed. Vectors in this method consist of 
the density values and the precomputed normal fields of 
voxels in the partitioning subblocks. They were quan­
tized into a codebook and each subblock was represented 
by an appropriate index. Ray casting with parallel pro­
jection was accelerated by shading only the vectors in 
the codebook, and composing the partial images in the 
correct order. Since voxel decoding is just a simple ac­
cess of the codebook, it provides fast random access to 
voxel values. In this study, a compression ratio of five, 
rather moderate, for 1283 volume data with some blocki- 
ness and contouring in the rendered image was reported. 
The Laplacian pyramid technique for 2D images was ex­
tended to volume data in [5]. They constructed a simple 
hierarchical structure, called the Laplacian pyramid, us­
ing a Gaussian low-pass filter, and encoding it by uniform 
quantization. Voxel values are reconstructed on the fly by 
traversing the pyramid from bottom to top. To reduce the 
huge reconstruction overhead, they suggest a cache data 
structure.

In [20], experimental results, comparing several 2D 
lossy compression techniques, were described, where the 
method based on wavelet transform was reported to be 
best. The wavelet-based method that they applied to each 
2D slice was a typical transform coder that had three ba­
sic components: a wavelet transform, a vector quantiza­
tion, and a Huffman or run-length encoder. Their method 
focused on efficient storage and transmission, rather than 
on run-time manipulation, and failed to exploit the con­
siderable degree of redundancy that exists between adja­
cent 2D slices. The idea of using a three-dimensional 
wavelet to approximate three-dimensional volume data 
sets was introduced in [8, 9]. The 2D wavelet transform 
was extended to three dimensions, and was also applied 
to delete insignificant wavelet coefficients. While he pre­
sented the potential of 3D wavelet transforms for volume 
visualization, the author did not mention whether the en­
coding technique actually reduced storage space. In [1], 
a 3D subband transformation on image sequences is per­
formed, then the transformed information is encoded us­
ing the zero-tree coding technique, which was originally 
introduced in [18], and was improved in [15].

In this article, we introduce a new compression scheme 
that can be used effectively in manipulating and visual­
izing very large volume data. Our compression scheme 
was designed in the hope that users on a computer with 
a limited memory could feel as if they have loaded the 
whole huge volume data into a large memory. Most of 
the previously developed compression techniques trade 
off random access ability for higher compression ratios. 
In designing our method, we have compromised between

these two important goals so that the method achieves 
fairly good compression ratios as well as minimizing the 
overhead caused during random access to voxel values. 
The method is based on the 3D wavelet transform, and 
hence provides a multi-resolution representation of vol­
ume data.

The rest of the paper is organized as follows: In the 
Haar Wavelets and Compression section, we begin by 
introducing the basic theory of wavelet transforms, and 
wavelet-based compression. In the following four sec­
tions 3D Wavelet Transforms, Encoding Wavelets Coeffi­
cients, Reconstructing Voxel Values, and Analysis o f Per­
formance, we provide a detailed description of our com­
pression scheme for very large volume data. Experimen­
tal results on the Visible Human data set, are reported 
in Section Experiments,Compression Quality, and Voxel 
Reconstruction Time. Finally, we present conclusions and 
directions for further research in Section Conclusions and 
Future Work.

Haar Wavelets and Compression
Wavelets are a mathematical tool for representing func­
tions hierarchically, and have recently had a great impact 
in several areas of computer graphics (For an introduction 
and discussion of applications, refer to [2], [3], [4], [17], 
and [19].). They provide a toolkit for decomposing func­
tions in multi-resolution form, which can be very usefully 
applied to a variety of functional data found in computer 
graphics applications, such as images, geometric models, 
global illumination models, animation and volume data.

The simplest example of wavelets is the Haar wavelet. 
Consider a sequence X n =  {x ntj, 0 <  i < 2"} of 
samples of a function, where the size of X n is assumed 
to be a power of two, for convenience. When each 
adjacent pair of samples is averaged, a new sequence 
X n~l =  { xn- i , i , 0  < i < 2n_1} is obtained, where 
x n_i,i =  . This new sequence, which is
half the original size, can be regarded as another repre­
sentation of X n with a coarser resolution. Since some in­
formation has been lost in this down-sampling, we need 
to keep extra information that is necessary for going back 
to the original sequence, and that can be expressed in 
the sequence y n_1 =  {y„ _ 1 ¿ ,0  <  i <  2 n—1}, where 
2/ 7i—i,i =  Xt1|2*~2 • The process of decomposing 
2n samples into 2 n_1 averages and 2 n _1 differences, 
called the detail coefficients, is considered as applying 2 - 
channel subband filters, the smoothing, or scaling filter, 
and the detail, or wavelet filter, respectively. It is eas­
ily seen that the original samples can be reconstructed by 
reversing the operations: x n,2i =  arn—i,f +  2 / 7 7 - 1 ,i< and
7̂7,27+1 = •Xfl— 1,7 — 2/t7—1, i -

We can apply the same decomposition to the coarser



samples repeatedly, until we get X ° =  {¡r0,o}
with one sample. As a result of this wavelet transform, 
or wavelet decomposition, we obtain a new sequence of 
2 " numbers, made of the overall average xo,o and a se­
quence of the detail coefficients, Y °, Y 1, • • •, Y n_1. The 
original data can be reconstructed to any resolution by 
repeatedly adding and subtracting the detail coefficients 
from the lower-resolution versions. The new sequence 
of data is, hence, a multi-resolution representation of the 
original samples.

The Haar wavelet is simple and computationally cheap 
because it can be implemented by a few additions, sub­
tractions, and shift operations. Hence it is very effective 
in applications that require fast decomposition and recon­
struction. However, it does not perform as well in terms 
of quality as other popular wavelets, such as Daubechies’ 
wavelets.

Note that the detail coefficients are sample-to-sample 
differences. Hence, they tend to be small in magnitude, 
especially when the sampled data are from smooth sig­
nals. Since recursive application of the smoothing filter 
makes the samples smoother, a large fraction of the de­
tail coefficients will often be very small in magnitude. 
The basic idea of wavelet compression is that deleting 
these small coefficients, that is, replacing them by zeros, 
introduces only small errors in reconstructing the origi­
nal samples. It is straightforward to prove that when the 
wavelet basis is orthonormal, the best way to pick some 
number of wavelet coefficients and make the resulting 
error as small as possible, measured in the L2 norm, is 
simply to select the coefficients with the largest absolute 
values. By replacing the deleted coefficients by zeros, the 
original information can be approximated by a smaller set 
of samples.

3D Wavelet Transforms
The one-dimensional wavelet transforms discussed in the 
previous section can be extended naturally into a three- 
dimensional space. Muraki [8, 9] presented the idea of 
using a three-dimensional wavelet to approximate three- 
dimensional volume data sets. In his work, he built a 3D 
orthonormal wavelet basis using all possible tensor prod­
ucts of one-dimensional basis functions. The wavelet 
transform was applied to volume data to compute wavelet 
coefficients. The insignificant coefficients were removed, 
then an approximation of the original data was recon­
structed using only the remaining coefficients. This pro­
cedure is typical in wavelet compression. However, he 
did not mention by how much storage space was reduced.

Notice that there are two problems to be addressed: 
one is how to reduce the number of coefficients needed 
to approximate volume data, and the other is how to en­
code and store the necessary information in a smaller

Figure 1: Unit Block and Decomposed Unit Block

number of bits. In our framework, we first partition a 
given 3D volumetric data set into subblocks, called unit 
blocks, whose size is 16 x 16 x 16. For each unit block, 
a three-dimensional wavelet transform is repeatedly ap­
plied twice. We use a simple transform based on the Haar 
wavelets whose eight-band filter bank can be expressed 
as:

cllt =  ( C1 +  C2 +  C3 +  C4 +  C5 +  Cq +  Cj +  C g ) /8

Cllh =  (C l +  C2 +  C3 +  C4 — C5 — Ce — Ct — c g) / 8

ciu =  ( c i  +  c 2 -  c 3 -  c 4 +  c 5 +  c 6 -  c 7 -  c g) / 8

cihh =  ( c i  +  c 2 -  c 3 -  c 4 -  c 5 -  c 6 +  c 7 +  c g) / 8

Chit =  ( c i  -  c2 +  c3 -  c4 +  c5 -  c6 +  c7 -  c 8) / 8

Chlh  =  (Cl — c2 +  C3 — C4 — C5 +  C6 — C7 -f C g )/8

Chhl =  (Cl — C2 — C3 +  C4 +  C5 — C6 — C7 +  C g )/8

Chhh  =  (Ci — C2 — C3 +  C4 — C5 +  C6 +  C7 — C g )/8 ,

where c,-, 1 <  i <  8, on the right side are eight coeffi­
cients in each 2 x 2 x 2 subregion of a unit block, cm 
represents their average, and the remaining coefficients 
on the left side are the detail values corresponding to the 
filtering sequences (for example, Chih is obtained by ap­
plying the high-pass filter, the low-pass filter, then the 
high-pass filter.) This decomposition transform arises 
from the separable application of filters in three dimen­
sions. Two applications of the 3D wavelet transforms are 
enough, considering that a smaller number of transforms 
results in faster reconstruction, and that most of the data 
§ | (=  1 — p-) is already decomposed into wavelet co­
efficients. The decomposition process converts each unit 
block into a decomposed version that can be stored in an 
array with the same number of elements, using a proper 
ordering of the coefficients (See Figure 1.).

The information in a unit block can be expressed as a 
weighted sum of wavelet basis functions whose weights 
are stored in its decomposed unit block. The theory be­
hind wavelet compression, as mentioned, shows that the 
best way to pick some number of wavelet coefficients, 
making the resulting error, measured in the L 2 norm, as



small as possible, is simply to select the coefficients with 
the largest absolute values. In other words, we keep only 
the coefficients greater than some appropriate threshold 
value, and replace the remaining coefficients by zeros. 
Then the original information can be approximated by a 
smaller number of non-zero wavelet coefficients.

Encoding Wavelets Coefficients
Now, we describe how we solve the second problem, that 
of encoding and storing the necessary information in a 
smaller number of bits. A typical wavelet compression 
algorithm has three basic components: transform, quan­
tization, and encoding. The transform stage separates 
the input data into different bands of frequencies using 
wavelet filters. The wavelet coefficients are then quan­
tized to restrict the values of the coefficients to a limited 
number of possibilities. Note that usually all of the in­
formation loss occurs in this stage. Then the encoding 
stage takes the string of symbols coming from the quan­
tizer, and attempts to represent the data stream as effi­
ciently as possible without loss. Popular variable length 
coders, such as Huffman or arithmetic coders, work well. 
However, such techniques are not appropriate for the sit­
uation where an individual data item must be quickly re­
constructed in an arbitrary sequence.

In addition to the quantized wavelet coefficients, infor­
mation about the positions of the significant coefficients 
that have survived the truncation of insignificant coeffi­
cients, must be encoded. In Shapiro [18], it is shown that 
determining the positions of the few retained coefficients 
consumes a significant portion of the bit budget at low 
rates, and is likely to become an increasing fraction of 
the total cost as the rate decreases. Run-length encod­
ing is very attractive, considering the fact that most of the 
coefficients are usually zeros, although the technique is 
not well suited to random access of individual data items. 
Another technique, called zerotree encoding [18], greatly 
improves the performance of a wavelet encoder, but is 
much slower.

When an encoding scheme is designed, we take into 
consideration the tradeoff between compression rate, 
speed, and quality. To design an encoding technique ap­
propriate for our goal, we have compromised between 
a good compression ratio and fast random access. As 
emphasized before, when compressed volume data are 
loaded in the main memory for processing, it is important 
to be able to quickly reconstruct the value of an individ­
ual element, and the access patterns change in somewhat 
complicated ways.

Figure 2 illustrates how the surviving wavelet coeffi­
cients and positional information are encoded. (We ex­
plain our scheme in terms of the format of the Visible 
Human data sets. The basic idea can be applied easily to

a decomposed unit block

cell tag table cell information
8 9

0

16
17
18
19
20

626}

24

Figure 2: Wavelets Encoding Scheme

other formats.) Consider a decomposed unit block of size 
16 x 16 x 16, which is a level-two multi-resolution repre­
sentation of the corresponding original unit block. Note 
that a large portion (say, more than 90%) of coefficients, 
less than a threshold r , have already been replaced by ze­
ros. Considering the usual spatial coherence in the data, 
it is quite possible that the zero coefficients exist in thick 
clusters. We subdivide the decomposed unit block into 
43 (= 64) subblocks, called cells, where each cell repre­
sents a 4 x 4 x 4 subregion.

The cells in the decomposed unit block are enumerated 
one-by-one in front-to-back, top-to-bottom, and left-to- 
right order, tagging with zero the cells whose coefficients 
are all zero, and with positive integers in increasing or­
der, the cells that contain at least one non-zero coefficient. 
When each tag is represented in 1 byte, 64 bytes of stor­
age is necessary for the cell tag table.

During decomposition, we use enough precision, say 
four bytes per voxel, to calculate the average and detail 
coefficients without round-off errors. Since the original 
voxel values, stored in 12  bits, range from 0 to 2 12 -  1 , 
the averages fall between 0 and 2 12 — 1 , and the details be­
tween - 2 ~l and 2 2- 1 . The cells with a non-zero tag, 
that is, having at least one non-zero coefficient, are classi­
fied into two groups: the first group contains the cells all



I l l

of whose coefficients are in the intervals [—(r+128), — t ] 

or [t , r  +  127], and the second one contains the remain­
ing cells. We quantize, offset by r, each non-zero coef­
ficient o f the cells in the first group in a signed character 
(one byte), rounding the fractional part. Note that the 
maximum round-off error is 0.5. We then represent each 
non-zero coefficient of the cells in the second group in a 
signed short integer (two bytes). Since the integral part 
of the coefficient can be stored in 12  bits, we use the re­
maining 4 bits for the fractional part, again rounding the 
less significant portion. In this case, the maximum round­
off error is ^ . The information on which group a cell is 
included in can be encoded in the most significant bit of 
its tag. (Notice that this bit is free because positive in­
tegers less than or equal to 64 can be represented in the 
remaining bits.)

These two groups of non-zero coefficients are put in 
two arrays, called one-byte stream and two-byte stream, 
respectively. To store the coefficients, the 64 coefficients 
in a cell with a non-zero tag are enumerated, putting only 
the non-zero coefficients in the corresponding stream. 
For retrieval, the positions of non-zero coefficients in the 
corresponding stream must be encoded. We allocate an 
additional chunk of memory, called cell information, for 
each cell that consists of a 4 x 4 x 4 one-bit flag block and 
offset information. This block of one-bit flags requires 8 
bytes and contains a significance map, or the binary infor­
mation as to which of the coefficients in the cell are non­
zero. The offset information offset, stored in two bytes, 
contains the address, in the corresponding stream, of the 
first non-zero coefficients of a cell in the ordering.

Figure 2 illustrates an example of this encoding. Con­
sider the cell numbered 9. It is the 17th one (counting 
from zero) in the cell ordering. From the tag 00001001 
for this cell, we see that its cell information is in the 8th 
block (counting from zero). In addition, the most signif­
icant bit 0 tells that the coefficients are found in the two- 
byte stream. (In our implementation, 0 means the two- 
byte stream and 1 means the one-byte stream.) Assume 
that we are retrieving the coefficient in boldface. There 
are 10  flags set on before the coefficient, meaning that it 
is the 11th non-zero coefficient in the cell. Hence the ad­
dress in the two-byte stream can be obtained by adding 
10 to the offset: 10 +  14 =  24.

Reconstructing Voxel Values
The process of extracting a voxel value from wavelet- 
compressed data consists of two stages of computation: 
all the wavelet coefficients necessary for reconstruction 
are first retrieved from encoded unit blocks, then, the re­
construction formula is applied to the coefficients. Since 
the wavelet transforms are applied twice for decomposi­
tion, each 4 x 4 x 4  subregion of a unit block can be

64 voxel values

Figure 3: Octree Representation for a 4 x 4 x 4 Subregion

considered as represented by an octree in Figure 3. The 
average coefficient c° of the root node is the average of 
all the voxel values in the subregion, and the seven detail 
coefficients dj (i =  1,2, ■ • ■, 7) provide the necessary in­
formation that can, with the average, reconstruct the av­
erages of the eight 2 x 2 x 2  subregions, represented by 
the nodes on level 1. In turn, each set of the seven detail 
coefficients dji (j  =  1 ,2, ■ • ■, 8 , i =  1 ,2 , ■ • - , 7) of the 
level 1 nodes are used to reconstruct the eight voxel val­
ues of the corresponding subregion. To extract the value 
of a specific voxel, it is necessary to traverse the octree 
from the root down to the corresponding leaf, applying 
the reconstruction transforms twice.

The reconstruction process is the reverse of decompo­
sition. For the Haar wavelets we use, the reconstruction 
formulae are:
ci =  cm +  cuh +  cihi +  cmh +  Chit +  Chih +  Chhi +  Chhh
¿2 =  Cm +  Ciih +  Clhl +  Clhh -  Chll -  Chlh -  Chhl -  Chhh
¿3 =  Cm +  Ciih -  Clhl -  Clhh +  Chll +  Chlh -  Chhl -  Chhh
Ci =  Clll +  Cllh — Clhl -  Clhh -  Chll -  Chlh +  Chhl +  Chhh
¿5 =  Cm — Cllh +  Clhl — Clhh +  Chll — Chlh +  Chhl — Chhh
¿6 =  Cm — Cllh +  Clhl — Clhh -  Chll +  Chlh -  Chhl +  Chhh
¿7 =  Cm — Cllh -  Clhl +  Clhh +  Chll -  Chlh — Chhl +  Chhh
C8 =  Cm -  Cuh ~ Clhl +  Clhh ~ Chll +  Chlh +  Chhl ~  Chhh

The algorithm in Figure 4 describes how a wavelet co­
efficient is retrieved from a 16 x 16 x 16 encoded unit 
block. To decode a coefficient with index (i , j , k ), we 
access the cell tag table for the tag of the cell that con­
tains the coefficient. If it is zero, the coefficient is simply 
null ([case 1]). Otherwise, we look at its cell information 
for further processing. Let ( ' )  be the relative in­
dex of the coefficient (i , j , k ) in the cell. If the bit-flag 
for the index (i ' , j ' , k ') is 0 , then the coefficient is zero 
([case 2]). If not, the coefficient is non-zero, and it is 
in the data stream indicated by the most significant bit 
of the tag ([case 3]). To access the coefficient value, we

Graphics Interface ’98



In p u t: a 16 x  16 x  16 encoded u n it  b lo ck  and
an in d ex  (i , j , k )

Output: th e  decoded va lu e  o f th e
c o e f f i c i e n t  w ith  index (i , j , k )

•  Find th e  c e l l  C th a t  c o n ta in s  th e  index
(*>;,*)•
•  I f  th e  ta g  fo r  C i s  0 , re tu rn  0 . [case 1]
•  Compute th e  r e l a t i v e  index ( ' )  in  C.
•  I f  th e  b i t - f l a g  fo r  ( ' )  i s  0 , re tu rn  
0 . [case 2 ]
•  Count th e  number o f p reced in g  non-zero  
c o e f f i c i e n t s  by ta b le  a c c e s s .
•  Add th e  d isp la cem en t t o  th e  o f f s e t  to  
compute th e  c o r r e c t  a d d ress .
•  A ccess th e  a p p ro p r ia te  d a ta  stream , and 
re tu rn  th e  v a lu e . [case 3]

Figure 4: Wavelets Decoding Algorithm

need to compute its address in the data stream. It can be 
computed by adding its displacement value to the offset 
value. The displacement is the number of the non-zero 
coefficients with flag 1 that precede it in the enumeration. 
To count the number efficiently, we use a precomputed 
indexing table T(*) with 2 16 =  65536 entries. Given a 
word made of two bytes, corresponding to 16 bit flags, 
the table returns the number of 1 bits in the word. Hence, 
the correct number can be counted by accessing the table 
only a few times (Note that the correct number of zeros 
must be padded in the word, from the position k') 
in the last access).

Analysis o f Performance
We now analyze the costs that must be paid to access 
a voxel value in a compressed unit block. To recon­
struct the value, an octree is traversed, applying the 
proper reconstruction formulae twice. Since seven ad- 
dition/subtraction operations need to be carried out per 
formula, evaluation of 14 additions/subtractions are nec­
essary. Furthermore, 15 wavelet coefficients (8  on level 0, 
and 7 on level 1 ) must be decoded from the encoded unit 
block. When a wavelet coefficient is decoded, there are 
three cases (See the decoding algorithm again.). When 
the tag for the subblock that contains the coefficient is 
zero, or its one-bit flag is 0 , that is, when the coefficient 
is zero ([case 1] and [case 2]), the cost is trivial. When its 
flag is 1 , indicating that the coefficient is non-zero ([case 
3]), a few table accesses, 2.5 on the average, and a few 
additions are necessary to compute the correct address 
in the proper stream. In our implementation, we usually 
have a proportion of non-zero coefficients after wavelet

compression of 3 to 10 per cent, implying 90 to 97 per 
cent of decoding belongs in ([case 1] and [case 2]). From 
this analysis, we see that retrieving a wavelet coefficient 
in an encoded unit block involves little cost.

In many applications, voxel access patterns show some 
degree o f locality. (Recall how voxels o f volume data are 
visited in the ray casting or splatting algorithms.) To en­
hance efficiency, each 4 x 4 x 4  subregion of a unit block 
can be regarded as a reconstruction unit. In this case, 
the whole octree is traversed for 64 voxel values, eval­
uating the 8 reconstruction formulae 9 times. Although 
there appears to be 56 (= 7 ■ 8 ) addition/subtraction opera­
tions in each application of the 8 formulae, a simple opti­
mization technique for removing redundant computations 
shows that 24 operations are enough. Since the number 
of necessary additions/subtractions is 9 • 24, 3 |  (=  t̂ )  
operations must be evaluated on average per voxel. Also, 
since each wavelet coefficient in the 4 x 4 x 4 subre­
gion is decoded once, the average number of necessary 
decoding operations is one per voxel. Hence, the costs for 
retrieving a voxel value are one decoding operation and 
3 1 additions/subtractions. Some other operations such 
as bit-wise operations and address computations must be 
carried out, but the total cost is quite cheap considering 
the benefits we get from data compression.

Before turning to the next section, we report a quanti­
tative analysis of the compression ratios. Each unit block 
of size 16 x 16 x 16 takes 16 x 16 x  16 x  2  bytes before 
compression. To store the threshold value and the tag ta­
ble, 2 +  64 bytes of memory is necessary (See Figure 2 
again.). For each cell that contains at least one non-zero 
coefficient, auxiliary memory is allocated where 8 bytes 
(4 -4 -4 bits) are used for the significance map, and 2 bytes 
for the offset.

Let a  be the proportion of cells with non-zero tags 
that contain at least one non-zero coefficient, that is, 
#0f  non~™11 cells, then (8  +  2) • 64 • a  bytes are required 
to store the cell information.

The non-zero coefficients used after wavelet com­
pression are partitioned into the one-byte stream and 
the two-byte stream. Let [3 be the ratio of the 
number of coefficients in the one-byte stream to the 
total number of non-zero coefficients used, that is, 
MofalLn-zero coefficients used ■ Furthermore, assume that 

the rate of non-zero wavelet coefficients we use for com­
pression is 7 . Then the compression rate p  is:

-  =  {2 +  64 +  (8  +  2) ■ 64 • a  +

16 • 16 - 16 ■ 7  • (/3 +  2(1 -  /3 )}/(16  - 1 6 - 1 6 - 2 )
33 5 • a  „  (3.

+  — + 7 - ( l - | )4096 ' 64 
0.008057 +  0.078125 a  +  7  • (1 — 0.5 • /?)



Notice that the first and the second terms in  ̂ are the 
costs that must be paid to store the necessary cell tag ta­
ble, threshold, and cell information. In our scheme, this 
information allows low-cost random access. It could be 
further compressed using the encoding techniques such 
as the zerotree, but that only places constraints on ran­
dom access to the compressed data.

Experiments
Our new compression scheme has been implemented on 
an SGI Octane workstation with a 175Mhz R10000CPU. 
We have generated a test volume data set from the origi­
nal CT data o f the Visible Man. The pixel size and slice 
spacing of the fresh CT data vary along the vertical axis, 
where the slices are grouped into nine sections. For a 
performance test, we took the slices corresponding to the 
upper body, and rebuilt a 512 x 512 x 512 volume data set. 
Two bytes are used for each voxel in which 12 bits are ac­
tually used, and the whole data set takes up 256 Mbytes. 
The test data may not be considered very large enough. 
However, the basic unit in our compression scheme is the 
16 x 16 x 16 unit block. Hence, experiments with larger 
volume data would produce similar results.

Compression Quality
Statistics for the compression of the test volume data are 
summarized in the table of Figure 5. As explained in Sec­
tion Encoding Wavelets Coefficients, a proper threshold 
value r  needs to be specified to truncate smaller wavelet 
coefficients. In our framework, we specify, instead, a de­
sired ratio 7  of nonzero wavelet coefficients to be used, 
then corresponding threshold values are automatically 
computed. The ideal way to compute r  for given 7  is 
to sort first all the wavelet coefficients, and then find the 
(7  the total number of voxels)-th largest coefficient. This 
is not practical when, as in our case, the volume data set 
is very large.

Recall that we use 16 x 16 x 16 subblocks as unit 
blocks. When the resolution of the volume data set is, for 
example, 512 x 512 x 512, the data consist of 32768 (= 
323) unit blocks. We first apply wavelet transforms to 
each unit block i, and compute the ratio r* of nonzero 
wavelet coefficients to the whole number 4096 (= 163) 
of coefficients. This ratio is a good approximate mea­
sure that indicates how rapidly the voxel values change in 
the unit block. The total number of nonzero coefficients 
to be used for the whole data is adaptively distributed to 
unit blocks according to their complexity. It is reasonable 
that more nonzero coefficients are assigned to unit blocks 
with higher ratios.

When the data size is 512 x 512 x 512 ,5123 7  nonzero 
coefficients are to be distributed to 32768 unit blocks. For

the unit block i, we allocate n, =  ■ 5123 ■ 7  coef­

ficients, where the weight is the relative measure

of data complexity. Now, the nj-th largest wavelet coef­
ficient becomes the threshold value of the corresponding 
unit block, and coefficients smaller than the threshold are 
replaced by zeros. We find that this adaptive decision 
on thresholds diminishes the “blockiness” effect that of­
ten occurs when a single threshold value is applied to the 
whole wavelet image. Notice that the actual ratio 7 , as 
shown in the table, is not always the same as the desired 
ratio 7 . This is because unit blocks often contain more 
than one wavelet coefficient having the same value as the 
threshold, a  and ¡3 in the table show the averages of the 
corresponding values over the whole unit blocks.

We tested with the five desired ratios 7  =
0 .03 ,0 .05,0 .07,0 .10,0 .15, and achieved the compres­
sion rates 8.5 to 28.2. Figure 7 (a) and (b) show sample 
slices from the uncompressed data, and one compressed 
data set with 7  =  0.03. We observe that our compres­
sion technique reconstructs slices very faithfully. Fig­
ure 7 (c), (d), (e) and (f) illustrate ray-cast images for the 
classification of skin. When the ratio is 0.10 or 0.15, it is 
hard to distinguish between the volume-rendered images 
of the uncompressed and compressed volume data. When 
the ratio is 0.03, the rendered image is visibly different, 
but most features are still preserved.

To look at distortion or difference between the origi­
nal and reconstructed voxel values, we measured two ob­
jective fidelity criteria. The mean-square signal-to-noise 
ratio SNR (dB) is a measure of the size of the error rel­
ative to the signal, and the mean-square peak-signal-to- 
noise ratio PSNR (dB) measures the size of the error rel­
ative to the peak value of the signal. We also examined 
the fidelity of the reconstructed normal vectors. The nor­
mal vector plays an important role in volume visualiza­
tion, and is often approximated at each voxel using the 
popular central-difference formula. The normal vector 
is one of the most important factors that determine the 
quality of volume-rendered images. It is also used in cor­
rectly classifying materials in volume data. We measured 
the average angular deviations from the actual normal for 
both classifications of bone and skin. The statistics show 
our compression technique produced very favorable com­
pression performances.

Note that there are larger errors in normal vectors for 
the bone case. We speculate that the material surrounding 
the body, that we could not eliminate by classification, 
introduced additional errors. Considering the fact that the 
process of approximating differentials using the central 
difference is ill-conditioned, we think the experimental 
results are satisfactory.



7  : Desired Ratio of the Wavelet Coef’s Used
3% 5% 7% 10 % 15%

Compression
Performance

Compressed 
Data Size (Mb)

9.08 13.25 17.01 22.17 29.99

Compression
Ratio

28.2: 1 19.3 : 1 15.1 : 1 1 1 .6 : 1 8.5 : 1

a 0.1107 0.1859 0.2474 0.3219 0.4148
P 0.6488 0.7226 0.7647 0.8052 0.8470
7 0.0278 0.0457 0.0632 0.0894 0.1330

Errors in 
Voxel Values

SNR (dB) 24.9 27.9 30.2 33.4 37.7
PSNR (dB) 43.0 46.0 48.3 51.6 55.8

Errors in 
Normals

Skin (deg) 16.7 12.6 9.8 7.0 4.6
Bone (deg) 27.1 . 20.8 16.4 11 .6 7.0

Figure 5: Experimental Results on Compression Quality

Voxel Reconstruction Time
Two situations were considered to evaluate overheads 
for reconstructing voxel values from compressed volume 
data (See Figure 6 .)- First, the timings for pure random 
access were taken by repeatedly fetching voxel values 
with randomly generated indices (i, j ,  k). To measure the 
reconstruction overheads, we first accessed randomly se­
lected voxels from the uncompressed volume data in a 
simple 512 x 512 x 512 array one million times. Then 
the same measurement was taken for each compressed 
data. The “Pure Random” timings show that fetching 
voxel values takes roughly four times as long for the com­
pressed data.

Frequently, voxels of volume data are accessed with 
some regular pattern. For example, the splatting algo­
rithm traverses voxels slice by slice in front-to-back or­
der along the viewing direction. This kind of access pat­
tern can often be simulated by enumerating the 4 x 4 x 4 
cells and then traversing voxels within cells both in front- 
to-back order. The indices of cells in the volume data 
were repeatedly generated, and all the 64 (= 43) voxels 
were accessed simultaneously. Recall that our encod­
ing scheme offers more efficient reconstruction when the 
voxels are decoded cell by cell. First, we compared the 
timing performance for the case in which all the cells in 
the 51 2 x 5 1 2 x 5 1 2  volume data were reconstructed in the 
front-to-back order. We also measured the timings for re­
constructing only the cells in the unit blocks that contain 
at least one voxel, classified as skin. To do this, a simple 
spatial partitioning data structure was used in which the 
min-max pair for each 16 x 16 x 16 unit block is stored. 
All the unit blocks were scanned in the front-to-back or­
der, reconstructing only the cells in the unit blocks whose 
min-max intervals intersect with that of the classification 
for skin. There were 11,000 unit blocks (163-11,000 vox­
els) reconstructed for this classification. We observe that

it took about 1.6  times longer for the compressed data. 
The timings in “Cell-Wise (Skin)” show that the perfor­
mance differences are about 3.4 to 6.3 seconds between 
the uncompressed and compressed data. They are ignor­
able in many CPU-intensive applications such as, for ex­
ample, volume rendering which usually takes more than 
a hundred seconds.

Conclusions and Future Work
We have described an effective 3D compression scheme 
for very large volume data that exploits the power of 
wavelet theory. Our experimental results on the Visual 
Human data sets show that our scheme achieves fairly 
good compression ratios and also provides fairly fast ran­
dom access to individual voxels. It can be very use­
ful in many applications where users want to load the 
whole huge volume data into a main memory and visu­
alize the data interactively. We believe that our compres­
sion method makes it more feasible to visualize very large 
volume data on popular personal computers or low-end 
workstations, making visualization technology accessible 
to a much wider range of users.

Some topics deserve further investigation. The Haar 
wavelet filter is computationally efficient, but it is infe­
rior, as a filter, to other popular wavelet filters used in im­
age compression. We are currently experimenting with 
several orthogonal Daubechies’ wavelets. The trade-offs 
of accuracy and efficiency between several filters need 
to be analyzed. When our compression scheme is imple­
mented with various visualization algorithms, it would be 
desirable to have an efficient cache data structure which 
temporarily holds decoded voxels. Considering the local­
ity or coherency of voxel access, it could save a great deal 
of redundant computation. Finally, we are applying our 
compression scheme to the development of an interactive 
virtual navigation system for the human body. This sys-



Uncompressed 7  : Desired Ratio of the Wavelet Coef’s Used

3% 5% 7% 10 % 15%
Pure Random 2.18 7.75 8.20 8.62 9.15 9.84

Cell-Wise
All 19.95 30.31 31.58 32.52 33.62 35.05

Skin 6.70 10.13 10.75 11.32 12 .10 13.02

Figure 6 : Experimental Results on Voxel Reconstruction Time

tern, based on direct volume rendering, will complement 
the polygon-based navigation systems, for example, [7].

Acknowledgements
The authors wish to thank Mr. Gee-Bum Koo for his ef­
forts to prepare our experiments. This work was sup­
ported in part by grants from Minstry of Science and 
Technology of Korea, and Korea Science and Engineer­
ing Foundation (KOSEF: 981-0926-138-1).

References
[1] Y. Chen and W. Pearlman. Three-dimensional sub­

band coding of video using the zero-tree method. In 
Proceedings o f SPIE - Visual Communications and 
Image Processing '96, pages 1302-1312, Orlando, 
March 1996.

[2] C. K. Chui. An Introduction to Wavelets. Academic 
Press Inc., 1992.

[3] I. Daubechies. Ten Lectures on Wavelets. SIAM, 
1992.

[4] A. Fournier, editor. Wavelets and Their Applications 
in Computer Graphics. ACM SIGGRAPH, 1995. 
ACM SIGGRAPH '95 Course Notes.

[5] M. H. Ghavamnia and X. D. Yang. Direct render­
ing of Laplacian pyramid compressed volume data. 
In Proceedings o f Visualization '95, pages 192-199, 
Atlanta, October 1995.

[6] R. C. Gonzalez and R. E. Woods. Digital Image 
Processing. Addison-Wesley Pub. Comp., 1993.

[7] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and 
Taosong He. Virtual voyage: interactive naviga­
tion in the human colon. In Proceedings o f ACM 
SIGGRAPH ’97, pages 27-34, Los Angeles, August 
1997.

[8] S. Muraki. Approximation and rendering of vol­
ume data using wavelet transforms. In Proceedings 
o f Visualization ’92, pages 21-28, Boston, October 
1992.

[9] S. Muraki. Volume data and wavelet trans­
forms. IEEE Computer Graphics and Applications, 
13(4):50-56,1993.

[10] G. M. Nielson and B. Shriver, editors. Visualization 
in Scientific Computing. IEEE Computer Society 
Press, 1990.

[11] P. Ning and L. Hesselink. Fast volume rendering of 
compressed data. In Proceedings o f Visualization 
'93, pages 11-18, San Jose, October 1993.

[12] NLM. http  : / / w w w .n lm .n ih .gov/research /v i­
sib le/visib leJ iu m a n .h tm l, 1997.

[13] T. M. Rhyne, editor. Visualizing and examining 
large scientific data sets: a focus on the physical 
and natural sciences. ACM SIGGRAPH, 1994. 
ACM SIGGRAPH ’94 Course Notes.

[14] L. Rosenblum et al., editor. Scientific Visualization: 
Advances and Challenges. IEEE Computer Society 
Press, 1994.

[15] A. Said and W. Pearlman. Image compression using 
the spatial-orientation tree. In Proceedings o f IEEE 
Inti. Symp. on Circuits and Systems, pages 279-282, 
Chicago, May 1993.

[16] K. Sayood. Introduction to Data Compression. 
Morgan Kaufmann Publishers, 1996.

[17] P. Schroder and W. Sweldens, editors. Wavelets 
in Computer Graphics. ACM SIGGRAPH, 1996. 
ACM SIGGRAPH ’96 Course Notes.

[18] J. M. Shapiro. Embedded image coding using ze- 
rotrees of wavelet coefficients. IEEE Transactions 
on Signal Processing, 41(12):3445-3462, Decem­
ber 1993.

[19] E. Stollnitz, T. DeRose, and D. Salesin. Wavelets 
for Computer Graphics: Theory and Applications. 
Morgan Kaufmann Publishers, 1996.

[20] G. R. Thoma and L. R. Long. Compressing and 
transmitting Visible Human images. IEEE Multi- 
media, 4(2):36—45, 1997.

http://www.nlm.nih.gov/research/visible/visibleJiuman.html
http://www.nlm.nih.gov/research/visible/visibleJiuman.html


(e) 7  =  0.05 (f) 7  =  0.03

Figure 7: A Reconstructed Slice and Ray-cast Images

Graphics Interface ’98


