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Abstract
This paper discusses a graph based user interface for

representing the results of the volume visualization pro-
cess. As images are rendered, they are connected to
other images in a graph based on their rendering param-
eters. The user can take advantage of the information in
this graph to understand how certain rendering parameter
changes affect a dataset, making the visualization pro-
cess more efficient. Because the graph contains more in-
formation than is contained in an unstructured history of
images, the image graph is also helpful for collaborative
visualization and animation.

1 Introduction
Direct volume rendering has received considerable atten-
tion because it is effective for visualizing features in the
data that are either very fine or difficult to define analyt-
ically. Several volume rendering algorithms have been
introduced including the ray casting [7], projection [3],
splatting [15] and shear warp [6] methods. Various op-
timization and acceleration techniques for volume ren-
dering have also been developed including encoding ob-
ject space coherence [8], encoding image space coher-
ence [17], hardware assisted [13, 2] and parallel [10, 5]
methods. To take advantage of these improvements in
visualization algorithms, we need an effective user in-
terface for volume visualization. Because volume data
exploration often involves a trial and error process of pa-
rameter specification, an important part of a user interface
is a structured representation of the rendering results. We
have implemented an image graph which provides such
a representation. This paper gives a summary of the vol-
ume visualization process and discusses the fundamental
problem of parameter specification. The paper focuses on
our graph approach to this parameter specification prob-
lem as it applies to volume rendering, and explains the
benefits of our approach for data exploration, collabora-
tive visualization, and animation.

1.1 Background
We have implemented a visualization system for volu-
metric data called DiVision. It serves as a testbed for our

visualization research in the areas of user interfaces and
collaborative visualization. This system allows visualiza-
tion across the Internet. Several other systems have ad-
dressed the problem of remote visualization. The VizWiz
system [12] performs some types of visualization over
the Internet, including isosurface rendering and cutting
planes, but the system does not support direct volume
rendering. The PermWeb system [16] uses a client server
approach to volume rendering, but this system does not
address the specification of rendering parameters such as
color and opacity transfer functions. DiVision consists of
an applet written in the Java language which runs in any
web browser which supports Java 1.1, a render ”server”
process which manages communication with active web
clients, and a volume rendering process, currently imple-
mented using a renderer based on the ray-casting algo-
rithm and another based on the shear warp algorithm.

2 The Volume Rendering Process
In a typical volume rendering application, the user spec-
ifies some rendering parameters, renders an image, and
repeats the process with different parameters based on the
results from previous parameters. In our system, the user
can select a view and define color and opacity transfer
functions before rendering an image of a dataset. A view
is described by a zoom parameter and a rotation parame-
ter. These parameters are described briefly here.

Color Map - In volume visualization, the color trans-
fer function specifies a mapping from values in the volu-
metric dataset to color values used when rendering an im-
age of the dataset. Manipulating the color transfer func-
tion changes the color of specific ranges of values in the
dataset. This manipulation is useful for making certain
features of the dataset more prominent or less prominent
during the process of data exploration. However, aes-
thetic considerations may also play a role in colormap
selection.

Opacity Map - The opacity transfer function is used
by the renderer to determine the opacity (i.e. the impor-
tance) of a certain voxel of the dataset according to the
values of the data adjacent to or inside of that voxel. Thus



the opacity function maps values in the dataset to values
between 0 (completely transparent, i.e. not important)
and 1 (completely opaque, i.e. very important).

Zoom - The problem of specifying a zoom parameter
is not unique to volume visualization. An interface may
allow the user to specify a certain magnification factor,
or a region of interest. This region of interest may be
specified in the 2D coordinates of the rendered image or
in the 3D coordinates of the dataset to be rendered.

Rotation - The issue of specifying 3D rotation is im-
portant in a variety of problem domains as well. Clearly,
an interface must allow manipulation of the dataset’s ro-
tation to give the user a variety of perspectives on the
data.
There are other parameters which can be included in

our system such as filtering functions, sampling frequen-
cies, interpolation functions, and lighting. This paper,
however, only addresses transfer functions and view pa-
rameters which are appropriate to illustrate and justify the
graph-based approach we have proposed.

3 The Parameter Specification Problem
A variety of volume visualization systems have been de-
veloped which include the ability to graphically specify
rendering parameters. While we need to develop a good
interface for rendering parameter specification, the selec-
tion of the parameters is only part of the problem. The re-
mainder of the problem is that even if the user can easily
specify a given parameter, the user may not understand
exactly how that parameter will affect the resulting im-
age. If the user can specify the rendering parameters he
or she wants in an intuitive manner, this does not guar-
antee good images. Because a user may not be able to
predict the rendered image output, volume visualization
is an inherently iterative process. One system [4] uses
stochastic search techniques in concert with user defined
fitness functions to help the user pick good transfer func-
tions. However under most current systems, this iteration
is a process of trial and error. The user simply tries com-
binations of rendering parameters, and stops if he finds
a combination which produces a useful image. This ren-
dering process can be time consuming, depending on the
algorithm and hardware being used.
The Design Galleries system [11] treats volume ren-

dering as the process of exploring a multidimensional
space. The dimensions of the space are the rendering pa-
rameters. The image the user is looking for exists in this
space, but the user does not know the appropriate combi-
nation of rendering parameters to produce that image. In
a preprocessing phase, the system renders images based
on parameters in different regions of the search space.
When the preprocessing is complete, the user can view a
3D representation of the design space and can look for the

desired image among the group of rendered images. This
is an interesting approach because it recognizes that vol-
ume rendering should be treated as a process of searching
a design space rather than a process of trial and error.
Our approach avoids preprocessing in favor of adding

newly rendered images to an image graph. The graph
keeps track of the relationships between images to make
the search of the design space more efficient and effec-
tive. This efficiency is important regardless of the speed
of the volume rendering process. If the rendering is a
time consuming process, it is clear that we should reduce
the number of times it needs to be done to arrive at a
given result. But even if rendering happens very quickly,
the user’s search for the appropriate rendering parame-
ters will still take time. Independent of the issue of ren-
dering time, a method to represent the data exploration
process is useful because it aids in the process of review-
ing and recording the interesting structures found in the
dataset. A graph which shows the relationships between
the images of a dataset provides the user with more infor-
mation than just a final image or group of images of the
dataset. While current systems do not provide a struc-
tured representation of the rendering results, some sys-
tems have explored structured visual representations of
the image production process. The SI system [9] extends
the spreadsheet paradigm by incorporating images, data
and widgets into spreadsheets. This extension allows the
user to manipulate data according to formulae in the same
way that numbers are manipulated in a traditional spread-
sheet. The Khoros system provides a visual programming
environment called Cantata [18] which allows the user
to construct directed graphs which represent the flow of
data through the system. It is important to stress that our
approach to volume visualization differs from standard
flowchart based data analysis in that most flow chart sys-
tems use a graph to control the analysis of data, while
our system uses a graph to help the user understand the
results of the process.

4 The Image Graph
Instead of using a history list of rendered images, we add
each newly rendered image to a graph which represents
the relationships of all the images which the user has ren-
dered so far. We represent the images as a graph to aid
in the process of finding a satisfactory image within the
design space. The process of adjusting rendering param-
eters while rendering images of a dataset is a search pro-
cess. The target of the search is an image which tells
the user something interesting about the dataset, and with
our current system the search space itself is the four di-
mensional space in which each image is represented by a
color map, an opacity map, a zoom, and a rotation. The
goal of the image graph is to make searching for a de-



A change in  rotation A change in the opacity map

A change in zoom A change in the color map

Figure 1: Edge representations for different rendering pa-
rameters.

sirable image more effective by showing how changes in
parameters are affecting the output for a given dataset.

4.1 How the Graph Works
Each newly rendered image is associated with a 4-tuple of
rendering parameters: color, opacity, zoom, rotation. A
notion of equality is defined for each of these rendering
parameters. Two nodes on a graph are considered to be
equal if all of their rendering parameters are equal. Two
nodes are considered to be similar if all but one of their
rendering parameters are equal. After each image is ren-
dered, it is added to the graph. Then the node is attached
to similar nodes in the graph. The similar nodes are con-
nected with an edge that represents how they are related.
Because similar images can differ in one of four aspects,
there are four types of edges that can exist between nodes
as shown in Figure 1. An edge represents the change in
rendering parameters between the two nodes it connects.
When a new node is added to the graph, at most one new
edge of each type is drawn to prevent the graph from be-
coming cluttered.
If a user changes the values of two or more rendering

parameters and then renders a new image, a node will
be added to the graph which is not similar to any existing
node. In the rare case that a new node does not have more
than one rendering parameter in common with a preexist-
ing node, the node is added to the graph without creating
any new edges. However, if there is a node in the graph
which has exactly two rendering parameters in common
with an existing node, the system joins these nodes by
creating two nodes which are similar to each of the nodes
to be joined. For example, if a user renders one image,
and then changes the color and opacity transfer functions,
then renders a new image, the system would add two in-
termediate nodes to the graph. As shown in Figure 2,
one of these nodes would have the color mapping of the

Figure 2: A small graph of some images of a foot data.
The image in the top left corner is the initial image. The
dataset is rotated to produce the second image. The third
image is produced by zooming in on the second one. The
final image comes from a change in both the color and
opacity maps. The system displays this change by esti-
mating the visual effects of both the color and opacity
map changes, and rendering separate thumbnails of each.
The red mark in the corner of these images indicates that
they are thumbnails. The user can click on a thumbnail
to render a full size image with the rendering parameters
of that graph node. Note that the intermediate images are
rendered at low resolution to minimize rendering time.

first user node on the graph and the opacity mapping of
the second node on the graph. The other of these two in-
termediate nodes would have the opacity mapping of the
first node and the color mapping of the second. These
two automatically added nodes establish the relationship
between the two previously rendered images. To display
these intermediate nodes on the graph, the system gener-
ates a thumbnail image for each of these nodes. These im-
ages are generated using the ray-tracer algorithm which
performs well for very small images.

This process of automatically generating graph nodes
with thumbnail images of intermediate steps in the ren-
dering process is especially useful when a series of
changes in rendering parameters results in an image
which is not what the user expected. In this case, the user
can look at the intermediate images and determine which
of the changes in rendering parameters is responsible for
the undesirable aspects of the resulting image. Figure 3
shows an example.

A user can view a full size representation of any im-
age by clicking on the image’s icon in the graph. Nodes
which do not have a corresponding full size image are
marked with a red triangle in the top left corner. The user



Figure 3: Here the cause of an unwanted rendering re-
sult is found using the intermediate nodes in the graph.
The problem with the lower right image is the opacity
mapping. The intermediate image with the same opacity
mapping also conveys no useful information. However,
the intermediate image with a different colormap than the
top image still shows the feet.

can render full size versions of these thumbnail images
by clicking on them. These full size images are not ren-
dered automatically because the intermediate nodes are
mainly intended to show the relationships between two
other nodes. In the case that the user can not get the infor-
mation needed out of the thumbnail image, he can explic-
itly request that the full size image be rendered. Avoiding
the production of full size images of intermediate nodes
saves time, preserving the interactivity of the user’s ses-
sion.

Another feature the graph provides is the ability to
combine the attributes of two existing nodes to produce a
new node. During the process of searching for the render-
ing parameters which will produce a useful image, a user
may find several images which have some qualities of the
desired image, but are not perfect. In this case, the user
can drag one node on top of another node on the graph to
produce an image which shares the rendering parameters
of the two parent nodes. Figure 4 presents an example.
A dialog box as shown in Figure 5 lets the user specify
which rendering parameters of each parent image which
will be used for the child image. The new image is then
rendered and added to the graph, showing the relation-
ship between the rendering parameters of the child and
its parents.

1

2 3

Figure 4: A portion of a graph representing the explo-
ration of the foot dataset. The user combines the color
and opacity maps of Node 1 in the top right corner with
the zoom and rotation of Node 2 in the bottom left corner
to produce Node 3 the image in the bottom right corner.

Figure 5: The interface used to combine the rendering
parameters of existing graph nodes to create new nodes.

4.2 Why Use the Graph Approach?
The use of a graph to represent the exploration of the
dataset provides several improvements over a simple list-
ing approach. By a ”simple listing approach,” we mean
a strategy where each image that is rendered is stored in
a list in chronological order, and images can be reviewed
by selecting them from this list.

4.2.1 Search pattern
Considering that the user’s task is essentially a search for
desirable images within a space defined by the rendering
parameters, we need an interface which effectively repre-
sents the user’s search pattern. The graph representation
is good at this because the topology of the graph is de-
pendent on the type of modifications the user makes to
the rendering parameters. For example, if after render-
ing an image using the initial default parameters, the user
wants to fine tune the rotation of the dataset to best dis-
play a certain small structure in the data, the user might
render a series of images with differing rotations to search
for the best rotation. This process would be represented



Figure 6: A sequence of images produced from a CFD
dataset. The images are listed in order of creation from
the top left to the bottom right.

Figure 7: A graph representation of the same images pro-
duced from the CFD dataset. The graph makes it clear
that the user was experimenting with a variety of color
maps. After the user had created a few maps, he pro-
duced images by changing the rotation of the node with
the greenish color mapping. Note that these nodes are
close to each other in the graph even though they were
not created in sequence.

on the graph by a group of images surrounding the initial
image, with each of the surrounding images connected to
the original image with a curved line, used to represent
a change in rotation. Once the user had found the cor-
rect rotation, he might continue his exploration by exper-
imenting with different color and opacity values. What-
ever images he rendered after finding the correct rotation
would be attached to the image with the desired rota-
tion. The graph would allow the user to quickly locate
images of interest by looking att he relationship between
images. A serial list of images does not provide this sort
of information. Figure 6 shows an example listing us-
ing a computational fluid dynamics (CFD) dataset and
Figure 7 demonstrates a better representation using the
graph-based approach.
The graph allows the user to easily switch back and

forth between different points in the image search space.
A user could explore different rotations to make a struc-
ture visible as described above, and later try using dif-

Figure 8: The change in rendering parameters is not al-
ways apparent from the images themselves. The three
nodes in this graph vary only in their opacity maps, yet
the images differ greatly in color. The change in opac-
ity maps exposes different portions of the data, each of
which are mapped to a different color.

ferent opacity mappings to make the same structure visi-
ble independent of rotation. The user could switch back
and forth between these approaches, and the graph would
keep the nodes relating to the two approaches separate
from each other.

4.2.2 Image relationships
Edges on the graph vary in appearance according to the
type of relationship they represent. The reason for this
distinction is to depict the changes made during the data
exploration to get from one image on the graph to an-
other. It is especially important to know the relationships
between the images that have been rendered in case the
types of the changes are not readily apparent from the im-
ages. This can happen when a color or opacity mapping
is not effective for a given dataset. For example, if a lot of
contrasting colors are assigned to a range of data values
which are also assigned low opacity values, a change in
the color map will not necessarily affect a change in the
colors of the resultant image. Figure 8 shows an example.

4.2.3 Ordering information
To convey the order in which the images on the graph
were generated, each image on the graph has a mark in
the corner which represents its relative age. The color of
the marks range from black (oldest) to white (newest).
Ideally we would use a graph layout algorithm which
tried to apply the constraint that newer nodes on the graph
were towards the right, while older nodes were located



towards the left. We provide ”forward” and ”back” but-
tons to select nodes in the graph relative to the current
node according to the order of creation. Drawing ordered
graphs has been investigated elsewhere [14, 1].

Figure 9 displays a more complete data exploration
process using the graph-based approach. The initial im-
age is in the top left corner of the figure. The images
grow newer towards the right side of the graph. The
node displaying a mix of blue and red vortices shows
the dataset with extreme values emphasized. Low values
have a blue-green color, and high values are orange-red.
We make two opacity map changes to this image to pro-
duce an image of the high values and an image of the low
values. Next we zoom in on both of these images. The
graph shows that the two zoomed images differ only in
terms of their opacity map. Figure 10 displays a desirable
visualization result for the CFD dataset. Both negative
and positive vortices are captured in a single visualiza-
tion.

4.2.4 Support for animation and collaboration

In addition, DiVision provides the ability to produce ani-
mations from images of the dataset. The user selects the
series of images to use for the production of the anima-
tion, and the system performs interpolation between them
to produce an animation. This interpolation is done in the
space of rotation, color, opacity and zoom. Animation
works well with the image graph because the user can
understand the interpolation process better with the aid
of the graph.

The system also provides features for collaborative
visualization which allow users to share, understand,
and build upon each others results by sharing annotated
graphs. Using DiVision, the user can annotate images,
both by drawing on the actual images and by writing
comments about the images. These comments are stored
in the visualization graph along with the nodes to which
they correspond. As well, these graphs can be saved to
the local file system, if the web browser gives the applet
access to it. The annotated graphs can then be exchanged
among users of the system.

The exchange of image graphs among users is more
useful than the exchange of just image data. If a group of
images is used, the user has no clear idea of the relation-
ship between them. If users want to work together to ex-
plore a dataset, it is important to minimize the amount of
a user’s work which is lost when that work is communi-
cated to another user. By expressing the data exploration
process in terms of a graph as opposed to a list of images,
the system can communicate more information to other
users.

4.3 Graph Scalability
Currently, the graph occupies a fixed amount of screen
real estate. As the number of nodes in the graph in-
creases, the graph may become cluttered. To handle this,
we allow the user to collapse nodes on the graph. The
user can specify a group of nodes to collapse, and a node
to represent these nodes on the graph. The user can ex-
pand the representative node later if he wishes to explore
the collapsed nodes. With this approach, nodes on the
graph which have proven to be less useful can be hid-
den. For example, if a user was looking for an opacity
map which would reveal a certain structure in the dataset,
he might produce several images with less useful opac-
ity maps. After he was satisfied with the opacity map,
he could collapse the nodes with less useful images into
the node with the good opacity map, or he could simply
delete the preliminary nodes from the graph if he was cer-
tainly not interested in looking at them later on.
Another concern related to scalability is the number of

edges present in the graph. If nodes have a lot of con-
nections to each other, it may be difficult to represent the
graph clearly in a small amount of screen space. One so-
lution to this problem is to minimize the number of edges
connected to the average node on the graph. To this end,
we only draw one edge of each type for each node in the
graph when that node is created.

5 Conclusions
The graph approach to representing the volume visualiza-
tion process aids the user by providing a structured repre-
sentation of the results of the process. This representation
aids in collaboration and animation by illustrating the re-
lationships between rendered images. The image graph is
especially useful for understanding how certain types of
rendering parameter changes affect a given dataset, and
preserving information learned about the dataset which
can not be expressed in a single image or group of im-
ages.

6 Future Work
We would like to use a graph layout algorithm which can
provide a notion of the age of graph nodes. Currently, the
age of a node is represented by the color of a triangle in a
corner of the node’s icon. We would like to try to improve
on this approach with a graph layout algorithm which es-
tablishes a left to right flow of nodes in the graph. With
certain graph topologies it would be difficult to enforce
this constraint, so a graph algorithm which could con-
sider the left to right chronological constraint along with
others would be needed.
Another area for possible future work involves ensur-

ing the scalability of the image graph to large numbers
of nodes. While the ability to collapse and remove nodes



serves this purpose, it requires user intervention. An ap-
proach involving a scrollable graph larger than the dis-
play area would be interesting to explore. The system
could provide the user with a full view of the graph and
a larger view of the area surrounding the current node in
the graph to provide scalability without user intervention.
Finally we plan to perform a more comprehensive user
study to evaluate the effectiveness of the graph approach.
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Figure 9: The graph constructed during the exploration of the CFD dataset.

Figure 10: The graph-based approach helps derive the desirable visualization which captures both the negative (blue)
and positive (red) vortices.


