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Abstract
The ever-changing nature of liquids makes them very

difficult to model and animate. This paper addresses the
simulation of one aspect of liquids, i.e. droplets running
down surfaces. We present a model oriented towards a
visually-satisfying simulation and efficiency.

The efficiency results from the separation between the
shape and the motion of a droplet. The motion accounts
for all changes encountered along the path followed over
a mesh of triangles. It is affected by various properties
modeled as friction, adhesion, roughness, and collisions
between droplets. Streaks are also added along the paths.

We characterize the shape of a droplet by a small set of
properties, such as volume conservation, surface tension,
etc. We model them as constraints to satisfy. The shape
model is mainly based on mass-springs. It is simple and
efficient, and it guarantees that whatever the values of the
unconstrained parameters, all produced shapes satisfy the
characteristic properties, and thus, can represent different
types of droplets.

Rendered animations of various liquids illustrate the
resulting simulation.

Keywords: natural phenomena, drops, particle system,
mass-spring model, textured illumination.

1 Introduction
Nature provides an endless realm of phenomena to
model, animate, and render. Its richness and complex-
ity offer an incredible challenge for any computer artist.
For this reason, several natural phenomena have been
successfully modeled in computer graphics over the past
years. They include among others terrains, plants, waves,
clouds, and smoke. Their contributions to realism are of
great importance and a constant source of inspiration and
motivation.

Several researchers have addressed the simulation of
water motion in computer graphics in the form of waves
[22, 27, 10, 31] and connected fluids [18, 8, 3]. Solving
accurately the fluid dynamics in its environment is a very
complex task as a result of the ever-changing shape and
topology of water.

The work presented in this paper addresses the sim-
ulation of droplets as they flow down a surface. While

much of the work in simulating water has been devoted
to water motion as a connected body, very little looked at
water in the form of droplets. Nishikawa and Abe [24]
study the deformations produced on a falling droplet as
it enters in contact with a surface. They use the Navier-
Stokes equation, and distribute massless markers in the
liquid to determine the water surface position. Although
very realistic in terms of physical simulation, extending
this approach to handle hundreds or thousands of droplets
running onto surfaces would be prohibitively expensive.

Miller and Pearce [23] and Tonnesen [30] study the
attraction and repulsion forces between particles to sim-
ulate various degrees of fluid viscosity and matter state
change such as melting. Their model is more concerned
with the interaction between liquid particles than their be-
havior as they flow on surfaces. Moreover, all their par-
ticles are spherical, which in the case of liquid droplets
lacks some realism.

O’Brien and Hodgins [26] present a general model that
divides each phenomena by treating the liquid either as a
volume, a surface, or a set of particles, each model in-
teracting with the others. They produce simulations of
splashing and waves as objects (forces) collide with the
liquid. The drops of liquid do not interact with each other,
and are simply merged with the liquid volume when they
fall back into it. Finally, they do not handle the flow of
droplets over surfaces.

The work of Dorsey et al. [7] is more closely related
to our goals. They simulate several weathering effects as
water deposits sediments while flowing on surfaces. The
structures of their particle system and their surfaces ap-
pear similar to ours. However because their focus is more
involved with the staining effects over a long period of
time, they do not provide any equation for the motion of
their droplets. Moreover they are not concerned with the
shapes and visual appearances of the droplets themselves.

1.1 Our Simulation System
This paper focuses on the simulation of large liquid
droplets as they flow down a surface. We are mainly in-
terested in a visually-appealing simulation handling up
to thousands of droplets within seconds of computing.
Therefore, although we base our derivations from the



physics, we assume simplifying conditions that allow for
an efficient simulation. In fact an accurate physical sim-
ulation would involve a tremendous toll on processing
as one needs to consider the motion of liquid within a
droplet, the capillarity of its surface, the modeling of
the terrain roughness, and the interaction forces between
each point on the droplet surface and the terrain. This
accuracy goes far beyond the scope of this paper.

We represent a droplet as a particle in a particle sys-
tem and its motion is determined in this scheme. Sec-
tion 2 describes how various droplet parameters and the
terrain can influence its motion. It also shows how the
droplet can modify its environment by interacting with
other droplets and leaving streaks of liquid on the terrain.
We assume that the droplet deformations do not affect its
global motions. Therefore the shape can be derived from
the motion without any feedback. This shape is mod-
eled by dynamically satisfying a set of constraints devel-
oped in Section 3. Finally the rendering of droplets is
presented in Section 4.

2 Motion
The motion of droplets is generated by a particle system
[28] in which each droplet is represented by one particle.
Such a representation offers several advantages in terms
of generality and flexibility in order to simulate a wide
spectrum of behaviors. The motion of a droplet is gov-
erned by the classical mechanics: �F � m�a. A droplet
therefore contains a position �p, a velocity �v, an acceler-
ation �a, and a mass m. The size of a droplet is derived
from its mass and the liquid density.

In our system, a droplet flows over a surface defined as
a mesh of triangles. This general representation (most
surfaces can be approximated by a mesh of triangles)
simplifies the motion equations and collision detection
between droplets. At the beginning of the simulation,
we build a neighborhood graph in which each triangle
is linked to the triangles adjacent to itself. During the
simulation, each triangle knows which droplets are cur-
rently over its surface, and each droplet knows which tri-
angle it lies on. The triangles are usually small enough
so that few droplets lay generally on the same triangle at
any given time.

2.1 Motion on the Mesh
During the simulation, each droplet rolls on the mesh.
Between two time steps (consecutive frames), a droplet
might travel over several triangles. We compute the mo-
tion of the droplet over each of these triangles, to ensure
that the droplet is properly affected by all the deforma-
tions of the surface it traversed. When a droplet goes
from one triangle to another, we use the triangle neigh-
borhood graph to quickly identify the triangle which the

droplet moves to. The passage from one triangle to the
next produces a collision if they form an angle less than
�; this collision is treated as perfectly inelastic.

The motion on bi-parametric surfaces has also been
studied [15, 7]. However the scheme based on project-
ing the motion onto the tangential plane and correct-
ing to ensure the point remains on the surface is expen-
sive and prone to errors. Using more frequent simula-
tion time steps as a function of surface details frequency
and droplet velocity can reduce artifacts but not eliminate
them.

2.2 Motion on a Triangle
Two forces applied on our droplets are gravity �Fg and
friction �Ff . If we suppose that forces on a droplet remain
constant over a triangle, we can derive an equation for the
position of a droplet at any moment. The gravitational
force �Fg does not change as the droplet moves inside a
static triangle because triangles are planar. The friction
due to surface roughness is modeled as a linear viscous
force with a constant negative factor kf . The tangential
force due to this friction is expressed in function of time
t as

�Ff �t� � kf�v�t��

In reality, kf varies on a given surface. However be-
cause our triangles are usually small, we chose to approx-
imate the friction coefficient over a single triangle with an
average friction coefficient.

Therefore, considering the constant resulting force
�Fr � �Fg � �Ff assumption over a triangle, we can de-
rive the equations for velocity and position of a droplet at
any time t:

�v�t� � �
�Fr
kf

�

�
�v�ti� �

�Fr
kf

�
ekf t�m

�p�t� � �p�ti��
�Frt

kf
�m

�
�v�ti� �

�Fr
kf

��
ekf t�m � �

kf

�
�

When a droplet enters a triangle at time ti, we imme-
diately compute when and where it will exit. This cor-
responds to intersecting its trajectory with each side of
the triangle using the Newton-Raphson root finding algo-
rithm.

Table 1 provides the computation time for randomly
generated droplets to traverse a rectangle subdivided in a
mesh of polygons (no rendering). One can observe that
the mesh resolution does not influence much the compu-
tation time for the traversal of a droplet. Moreover as
expected, the computation time increases quite linearly
as a function of the number of droplets.



Number of Number of Droplets
Polygons 10 20 40 60 80 100

2 1.0 2.0 4.1 6.1 8.0 10.6
8 0.9 1.7 3.8 6.2 7.9 10.1
32 0.9 1.6 4.0 6.2 8.1 10.2

128 1.0 2.2 4.1 6.5 8.5 10.2
512 1.0 2.1 4.2 6.4 8.3 10.1

Table 1: Droplets traversing a mesh of polygons (in sec.)

Number of Number of Droplets
Polygons 1000 2000 4000 8000

2 0.63 2.56 12.75 59.37
8 0.21 0.80 3.12 15.71
32 0.05 0.30 1.28 5.84

128 0.05 0.20 0.81 4.18
512 0.01 0.10 0.62 3.10

Table 2: Droplets (no modeling) traversing a mesh of
polygons (in sec.)

Computing the shape of each droplet is more than 100
times more expensive than its traversal. The modeling
phase is factored out in Table 2. Since that as the num-
ber of polygons increases, less droplets lie on the same
polygon, we can observe that the O�n�� factor for inter-
sections between droplets becomes less important. With-
out these intersections, traversal is very inexpensive to
compute (as hinted by the last row of the table), and we
observed a small linear cost as the number of polygons
traversed increases.

2.3 Surface Properties
Many surface properties can affect the behavior of our
droplets. We consider adhesion and roughness. The
droplet flows on the surface because it adheres to it. The
adhesion is a force along the surface normal. It is func-
tion of the contact area between the droplet and the sur-
face, and the adhesion coefficient D� between the liquid
and the surface. A droplet will fall from a surface if its
adhesion force is smaller than the component of its accel-
eration force that is normal to the surface. As illustrated
in Fig. 1 (left), an hemispherical droplet of radius r will
fall off the surface if

�aN �
D��r

�

m
�

We assume the surface roughness will only reduce the
tangential force. This factor is function of the size of the

hd

hb

�F

�F

D��r
�

�Fg

m �aN

kr �F

Figure 1: The effects of adhesion and roughness

bumps relative to the size of the droplet (Fig. 1 (right)):

kr �

�
hb�hd hb � hd
� otherwise

where hd is the height of a droplet, and hb is the height of
a bump. The effect of roughness on force �F applied on a
droplet is simulated by

�F � �F ��� kr� �

2.4 Collisions between Droplets
By considering small triangles, only a few droplets
should lay over a given triangle at any given time. This
greatly reduces the detection of collisions. Moreover, we
will only detect collisions at the time of the frames. This
important reduction of complexity comes at the expense
that we might miss actual collisions between frames.
However it will always be possible to compute more
frames than displayed, therefore reducing the number of
missed collisions.

When two droplets collide, the resulting deformations
happen very fast in reality; within our context, we simply
assume this is instantaneous. The combined droplet has
new mass, position, velocity, and acceleration. The new
mass is simply the sum of the two colliding droplets; the
new position and velocity are computed as a weighted av-
erage of the positions and velocities of the two colliding
droplets. We also have to compute the exit point and time
on the triangle for this new droplet.

2.5 Leaving Liquid Streaks
The path followed by a droplet on a triangle might af-
fect the paths of future droplets crossing this path, for
instance by filling some of the holes due to roughness.
We simulate this effect by reducing the roughness along
this path. Instead of intersecting the path of a droplet
with all the streaks left by previous droplets, we use two
roughness parameters describing the roughness along the
X and the Y axes. When a droplet passes through a tri-
angle, it leaves a streak. To simplify computations, we
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Figure 2: A polygonal streak left by the droplet

consider that streaks on the triangle forms a rectangular
area of the width of the droplet. Its length l is the distance
between the entry and exit points (Fig. 2). We compute
the projected area of the streak on the two axes:

Ax � wj sin �j� lj cos �j

Ay � wj cos �j� lj sin �j

which we use to modify the associated roughness coeffi-
cients krx and kry for the triangle:

krx �

�
krx ���Ax�At� Ax � At

� otherwise

kry �

�
kry ���Ay�At� Ay � At

� otherwise

where At is the area of the current triangle. If a droplet
stays over the same triangle for more than one frame,
we replace this rectangle streak by a list of rectangles
corresponding to the previous and current positions for
the droplet. Therefore the smaller the triangles are, the
more accurate solution becomes. The appearance of these
streaks are discussed in Section 4.

3 Shape
Generally, motion and shape are closely and mutually
correlated and must be simulated globally in a single
model. However, in many cases [14] such as in liquid
droplets, the energy involved in the motion of the drop is
much higher than the energy involved in its deformations.
This means that motion can be simulated regardless of
any shape consideration, but the shape must be simulated
with motion inputs. This would not have been possible,
for example in the case of interacting solid objects, since
their motion depends on this interaction, which, in turn,
depends on their shape.

Thus in this section, given the motion of a droplet, our
aim is to simulate its visual contour and shape as it in-
teracts with the underlying solid surface and with other
force fields.

It seems difficult to explicitly describe the shape of a
droplet, all the more as this shape may be subject to im-
portant variations as the drop moves on the surface. How-
ever we can easily state a certain number of properties

that must always be satisfied by this shape. Next we can
use these properties as constraints enabling us to design a
model in which all these constraints will be automatically
satisfied.

In this section we state and describe these constraints.
Next we present a simple dynamic model representing
the drop’s contour, and add to this model the necessary
dynamic links capable of satisfying these constraints.

3.1 Shape Modeling with Dynamic Constraints
We assume that the shape of a droplet can be understood
as the result of the interaction between two competing
tendencies due to different physical phenomena :

Constraint a: The tendency to have constant volume (a
liquid is incompressible).

Constraint b: The tendency to have the smallest contact
surface with air (capillarity forces).

These tendencies have a geometrical nature, therefore
the shape generation process could be based on geo-
metrical operations [2, 5]. This approach produces a
shape each time all constraints provide a unique solu-
tion. In all other cases (underdetermination or overde-
termination), no shape can be produced. For example the
two above constraints are sufficient to produce a spheri-
cal shape. Strictly speaking any supplementary condition
would produce an overdetermined problem.

The alternative is a dynamic shape generation pro-
cess Constraints can be expressed as competing dynamic
properties that bring the model to a balance position
which either satisfies all constraints or is the best (most
stable) compromise between them. Underdetermination
simply results in a model that has an infinity of balance
shapes all satisfying the constraints. Choosing dynamic
shape generation for liquid droplets enables us to specify
several other constraints in order to achieve more com-
plex shapes. For droplets, we consider two additional
constraints. Constraint c accounts for the interaction of
the droplet with a flat hydrophilic surface, whereas con-
straint d accounts for the action of external forces such as
gravity and any other uniform force field.

Constraint c: The tendency to have the largest contact
surface with the underlying surface.

Constraint d: The tendency to be deformed by external
forces (in this work we limit our concern to uniform
force fields).

We assume these four constraints are sufficient to pro-
duce realistic droplet shapes moving on a surface. There-
fore in the remaining of this paper, we will not seek to



produce a physical model of a droplet but merely to dy-
namically satisfy these four constraints without any fur-
ther physical considerations.

We propose a model and we prove that this model
indeed satisfies these constraints. For the sake of
conciseness, these proofs are not developed in this
paper. For those readers specifically interested in
these developments, a detailed discussion is avail-
able through the site associated with this paper on
www�iro�umontreal�ca�labs�infographie�papers

3.2 Modeling Hypotheses
3.2.1 A Spring-mass Model
Our model is based on point-mass (or particles) which
can cover a wide range of fluid phenomena. Point-mass
models are popular in computer graphics [4, 29, 30, 23,
9, 20, 13] and are also used in physics [11, 6]. They can
account for small deformations as in the case of rigid
objects [25] as well as for high deformations and even
topology changes. We simply use them as a general-
purpose dynamic modeler. Thus point-mass modeling is
a widespread approach. So novelty in this work is not to
be found in the modeler itself, but in the expression of
droplet’s dynamic deformations in terms of this already-
existing widespread paradigm.

We do not explicitly deal with the shape of merging
or separating droplets (i.e. no topology changes), there-
fore each point-mass in our model is permanently con-
nected to a limited and fixed set of other point-masses by
links accounting for the forces exchanged between point-
masses. If we limit our concern locally to a first order
(linear) approximation of the involved forces, it follows
that a great part of our model can simply be expressed as
a mass-spring model. This is not too restrictive since we
know [19, 16] that a great number of non-linear interac-
tions can be modeled by the assembly of linear interac-
tions.

3.2.2 Quasi-static Hypothesis
Balance can be reached after a period of transient mo-
tion. We assume droplets reach a balance shape quickly.
Therefore our sequences are only composed of balance
shapes obtained after some steps of non-displayed simu-
lation. Dealing only with balance shapes has several im-
portant consequences.

¿From a computational point of view, we know that as
long as the external forces exerted on the droplet remain
the same, its shape remains unchanged and therefore can
be reused without further simulation.

Second order mechanical systems are entirely gov-
erned by the well-known relations:

�F � m�a

level 1 
(basis)

level 2

level N

level N+1 
(apex point)

longitudinal
springs

transverse
springs

Guide point
slice M-1

slice M

slice 1

slice 0

Figure 3: The structure of the droplet model

�F �

�
k�l� � l�� z

dl

dt

�
�u�

They respectively express the acceleration �a of a point
of mass m on which force �F is applied, and the force
�F produced by a damped spring of stiffness k, viscosity
z, rest length l� and length l (�u is the unit vector of the
spring).

Balance implies zero velocities and zero accelerations.
According to the above relations this means that the bal-
ance shape (i.e. all our sequences) does not depend on
any mass or any viscosity, but only on the links stiffness
and rest length.

It should be noted that balance shape does not depend
on mass considered as a coefficient of inertia, but it does
depend on the weight of masses. We account for gravity
separately by a uniform force field, and therefore shape
is indeed independent of masses.

The control of viscosity and mass simply enables us to
reach balance as rapidly as possible. Therefore the bal-
ance shape is only derived from the links stiffness and
rest length.

3.2.3 The Structure of the Model
We have not specifically studied the transition shape be-
tween a free droplet and a droplet moving on a surface. It
can be trivially proved that in the absence of underlying
surface, constraints a, b, and d result in a sphere for the
balance droplet shape. However this is not the case when
all four constraints are considered. We assume the curva-
ture of the underlying surface is fairly low in the vicinity
of the droplet so this surface can be locally modeled by a
normal vector and a point (guide point).

We have experimentally observed that our model satis-
fies the four constraints for different discretizations of the
droplet surface. However, for the discretization shown on
Fig. 3, this can be analytically proved. In the remaining
of this paper we will always refer to this discretization.

Our model is characterized by M radial slices, N lev-
els, and the apex point AN��. Thus the model is com-



posed of NM � � point-masses. Point Ai�j is the point-
mass of level i � ��� N � and slice j � ���M �. Points A��j

are in contact with the underlying surface and are called
the basis points.

In order to obtain a smooth final shape for the droplet,
this network of points forms the control points of a B-
spline patch. This dissociates the geometrical smooth-
ness, which may require many points, from the number of
mechanical degrees of freedom, which generally requires
much fewer points. We obtain fine results even with as
low values as M � 	 and N � 
. Most of the images in
this paper were in fact computed with these values.

3.3 The Dynamic Resolution of the Constraints
The basis points are attached to the underlying surface by
very stiff springs with a zero rest length. These springs al-
ways stay perpendicular to the surface. Therefore the ba-
sis points can freely move on this surface but can hardly
get away from it.

We describe next our model and discuss the conditions
for which the constraints are met.

3.3.1 Satisfying Constraints b, c, and d
In order to realize constraint c, all basis points are linked
to the guide point by springs which tend to increase the
area of the basis far more than the nominal radius of the
droplet. These springs are characterized by a very large
rest length l� and by a stiffness controling the deforma-
bility for the droplet shape. These springs constraint only
the basis points.

In order to realize constraint b, we link the point-
masses of our model in a network of springs. More pre-
cisely longitudinal springs of stiffness kl and rest length
l�l are arranged so that

��j � ���M �� ��i � ��� N � ��� Ai�j is linked to Ai���j

��j � ���M �� AN�j is linked to AN��

and transverse springs of stiffness kt and rest length l�t
so that

��i � ��� N �� ��j � ���M � ��� Ai�j is linked to Ai�j��

��i � ��� N �� Ai�M is linked to Ai��.

In order for the droplet surface to be as small as possi-
ble (constraint b), we assign zero rest lengths to all lon-
gitudinal springs.

The realization of constraint d is trivial.

The Homogeneity of the Surface
This set of springs and masses is the discrete counter-
part of a continuous physical surface with homogeneous
density and homogeneous tension. However, in the dis-
crete surface, the masses are not homogeneously dis-
tributed. The number of masses in the vicinity of the apex

is higher than at the basis, and the transverse lengths be-
tween masses are smaller. If all of the masses were equal
and if all transverse stiffnesses were equal, then the apex
would be a region of high density and high stiffness. In
order to have a globally homogeneous discrete surface,
we may assign different values to masses situated on dif-
ferent levels. For the same reason, we will have to as-
sign to the transverse springs of level i respectively a rest
length l�

i
t and a stiffness kit of:

l�
i
t � l�

�
t

�N � �� i�

N

kit � k�t
�N � �� i�

N

where l�
�
t and k�t are respectively the rest length and the

stiffness of the basis transverse springs. We assume the
basis transverse springs are very stiff.

The Resulting Shape
We can prove that if:

1. the longitudinal springs have zero rest length

2. the transverse basis springs are quasi-rigid

3. the rest lengths of the transverse springs are defined
by l�

i
t � l�

�
t
�N���i�

N

4. all other forces applied to the model have the same
value, at least on the masses of each level,

then the balance shape of the points on each level i can
be obtained from the balance shape of the basis points by
a simple translation and a scaling by a factor of �N ���
i��N . This implies that at rest:

� all the levels are planar (since the basis level is nec-
essarily planar)

� all the levels are parallel to the basis level (i.e. to the
underlying surface)

� the shape of all the levels is similar to the shape of
the basis level

� each edge of each level is parallel to the homologous
edges on other levels.

Such a resulting shape is displayed in Fig. 4. This proof
is derived from the expression of the balance condition
for different masses.



Figure 4: A qualitative representation of the droplet mod-
el’s shape as a result of satisfying constraints b, c, and d.
All levels have the same shape as the basis level.

3.3.2 Constraint a
In this work, we do not deal with the volume of the fi-
nal spline-interpolated shape, but instead with the vol-
ume of the mechanical model (Fig. 4). Furthermore the
elaboration of a general-purpose true-volume preserving
dynamic link is beyond the scope of the present work.
However we can prove that if the four stated conditions
are satisfied, then the volume of the mechanical model
can be precisely computed as:

Vtot �
�

	N�
S

N��X
i��

	ihi (1)

where S is the area of the basis level, hi is the distance
between the ith level and the basis level, and the 	i are
constant parameters depending only on the value of i and
N .

We have observed that the area S remains practically
constant during the deformations. In this case, the vol-
ume of the droplet remains constant if and only if the
weighted sum in Eq. 1 remains constant. To preserve the
weighted sum of heights at a given value, we introduce a
specific dynamic link more complex than a simple spring.
Let us call it the solco (as in sum-of-length-constant) con-
nection.

The Solco Connection
The solco connection consists of a set of links connect-
ing point-masses. Each solco is characterized by L links.
Each link i connects two point-masses �Ai� Bi�. It is also
characterized by a stiffness ks, a viscosity zs, and a rest
sum-of-lengths sol�.

At each time step, the solco computes the value sol
from the weighted sum of the lengths of all pairs �Ai� Bi�
of segments as

sol �

LX
i��

	ik
����
AiBik�

The force �FAi�Bi
� ��FBi�Ai

applied by Ai on Bi is
expressed by:

�FAi�Bi
�

�
ks�sol� � sol�� zs

d�sol�

dt

� ����
AiBi

k
����
AiBik

One of the elements (either Ai or Bi) can be a surface,
provided that it is a fixed object. For instance if Ai is a
point and Bi a surface, the distance between Ai and Bi

will be the distance between Ai and the closest point on
Bi. The applied force will always be perpendicular to the
surface.

The Realization of Constraint a
We connect the point-masses of all levels i to the under-
lying surface by one solco connection. The weights of
the solco connection will all be equal for the masses of
each level. The weight associated with level i is the same
as the weight of hi in Eq. 1.

Note that the solco connection applies identical forces
to all the point-masses of each level. So the four condi-
tions of the previous section are still satisfied.

This guarantees that as soon as the weighted sum of
heights is smaller than the specified rest value (sol�), all
solco links exert repulsive forces to increase the volume
of the droplet, and when the weighted sum of heights is
greater than sol� the links exert attractive forces to reduce
the volume.

Thus in practice the weighted sum of heights at rest
equals the specified value.

3.4 Deformations
The shape produced by the above model represents the
average balance shape of a droplet placed in a force field
and interacting with an underlying surface. However,
due to other physical conditions, such as the spatial vari-
ation of the surface properties, the actual shape of the
drops may be slightly different. In comparison with the
global shape of the drop, this is a small-scale deforma-
tion. This is why we do not model it on the large-scale
mechanical model, but on the final spline-interpolated
shape model. We account for the above deformations
by randomly displacing the spline control points. In the
real world, this deformation depends on the importance
of capillarity forces in comparison with the internal vol-
ume forces. For light drops, capillarity forces are domi-
nant and this deformation can be large. For heavier drops,
volume forces are dominant and the shape tends towards
the average shape.

On the other hand, the very light drops have low ve-
locity and tend to undergo smaller deformations in the
course of time. A visually satisfactory compromise be-
tween these two tendencies consists of modeling the am-
plitude of this random variation as an increasing function
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Figure 5: Two types of necessary shapes

Figure 6: Droplet shapes for different orientations of the
underlying surface. The segments are extracted from the
spline patches.

of velocity (for low velocities) and as a decreasing func-
tion of velocity (for higher velocities). This amplitude is
zero for droplets at rest and also for more rapidly moving
(i.e. heavier) droplets.

3.5 Results
One of the great interests of this shape model is that
through the control of the relative importance of con-
straints a, b and c, and more particularly the value of sol�,
it is possible to inject more or less liquid in the droplets
and obtain heavier or lighter droplets. But the main point
of constraint modeling is that as long as the four condi-
tions mentioned above are satisfied, any change in a drop
shape model can only lead to another drop shape model.

Now let us describe the particular realization that pro-
duced our images.

The minimal value for M allowing independent defor-
mations in all three dimensions is M � 	. The minimal
value forN is 1. However, if we desire to have both types
of shapes represented on Fig. 5, N � � is not sufficient
as it requires a higher order surface.

The images of Fig. 6 were obtained with the minimal
values: N � 
 and M � 	. Each balance position cal-
culation requires 292 simulation steps computed in 0.108
seconds on an SGI Indy R5000.

4 Rendering
The surface of most liquids is highly specular. This re-
sults in sharp highlights and reflections of the scene on
its surface. The highlights simply correspond to a large
value of the roughness coefficient n in Blinn’s specular
reflection model �N � H�n [1]. Assuming droplets are
very small with respect to the scene, a simple and effi-
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Figure 7: Applying an illumination texture at the base of
a droplet

Figure 8: Illumination over and inside a droplet

cient environment map [12] has proven to lead to satisfy-
ing results when mirror reflection must be considered.

The concentration of light due to the refraction in trans-
parent liquids is more difficult to handle properly. Trac-
ing rays from the light [17] offers an interesting avenue in
the specific case of direct illumination of a single droplet.
However the computations involved would prevent us
from achieving reasonable rendering times. Because es-
timating the distribution of refracted illumination for any
shape is extremely difficult, it becomes possible to con-
sider even a very rough approximation of the distribution,
as long as it exhibits a consistent behavior.

We computed a texture with a Monte Carlo ray tracer
to capture the illumination at the base of a half-sphere for
a set of incidence light directions � from the base sur-
face normal. We orient the U axis of the texture with the
projected incoming light radial direction 
. The textured
circle associated with a light direction is transformed to
fit the contour of a droplet base, as illustrated in Fig. 7.
The projected apex point AN�� defines the new origin.
Intermediate incidence angles are computed by interpo-
lating between two illumination textures. Although inex-
act, the consistency and presence of illumination inside
the droplet provide a more complete visual representation
for transparent droplets at a reasonable cost. A droplet il-
luminated from three different light directions appears in
Fig. 8.

The path followed by a droplet might affect the visual
aspect of the surface. Kass and Miller [18] simply darken
the region under the droplet. Specularity and controled
surface normals along the edges of streaks also provide a
better rendering of a streak.



5 Animated Sequences
Various animated sequences have been computed and are
available through the site associated with this paper on
www�iro�umontreal�ca�labs�infographie�papers

Droplets of Different Masses
Several droplets of varying masses (ratio from 1 to
4) flow down a slanted polygon. Some of these
droplets merge, and change velocity. Streaks are not
drawn but the changes of roughness along their paths
are taken into account.

Droplets of Different Viscosities
Droplets flow down three slanted rectangles. Vis-
cosity is set to 1, 10, and 100 for the left, center, and
right rectangles, respectively. Notice the general dif-
ferences of velocity.

Different Adhesions
Regularly spaced droplets of the same mass flow
down a sphere. Notice on the animated segments
how increasing the adhesion forces between 0 to 10
determines at which angle the droplets detach from
the surface.

Different Roughnesses
Surface roughness is increased from the left to the
right rectangles such that some of the small droplets
in the right barely move. Notice in the red frame
what happens. The top droplet suddenly accelerates
when it reaches the less rough surface due to the
streak (invisible) left behind by a previous droplet.
The large droplet quickly reaches the smaller one,
merges with it, but its velocity then appears to de-
crease due to the fact that the streak stopped there.

A Tear and More
A red tear rolls down a mask made of 2000 triangles
and leaves the surface when reaching below the chin.
The streak left behind displays the path followed.

More droplets roll down the mask. When they reach
discontinuities of adjacency, such as eyes and lips,
the droplet falls in free space. We did not detect
collisions between a falling drop and the mask.

Different Shapes for a Droplet
The force applied on a droplet goes from perpendic-
ular, to left, and to right. The resulting shapes are
displayed from the side and the top views.

6 Conclusion
The model presented in this paper offers several advan-
tages. By separating the motion from the shape, we can
simulate each phenomenon at a desired level of precision.

Figure 9: A droplet and its streak

The motion of a droplet is affected by surface rough-
ness, adhesion forces, and friction. We introduce mod-
els to approximate each of these properties. While col-
lisions between moving droplets could be handled ex-
actly instead of at each computed frame, we considered
the added computations and complexity were not essen-
tial as the resulting animations were already satisfying.
However we could easily detect collisions at more inter-
mediate frames than displayed, or introduce a threshold
velocity below which the complete collisions should be
computed. The streaks left behind droplets add much in-
formation about the motion and are visually important.

The droplets are currently displayed using simple
shading and textures in OpenGL or RenderMan. This is
quite acceptable for many droplet shapes. However the
refraction inside the droplet is not currently handled in
these rendering algorithms.

Our shape model produces various types of droplet
shapes, all satisfying the characteristic properties. A fur-
ther challenge would be to satisfy them during topol-
ogy changes. This could be realized by replacing the
springs by Lennard-Jones type interactions. Moreover,
future work would include the elaboration of a deter-
ministic model for small-scale deformations. This model
would be based on the properties of the underlying sur-
face. While this model is acceptable for the motion and
shape of independent droplets, much still remains to be
done on the deformations produced during the merging of
droplets. Hydrodynamics within the droplet must then be
considered and the computations involved will certainly
increase.
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[6] D. D’Humiéres, P. Lallemand, and U. Frisch. Lattice gas
models for 3d hydrodynamics. Europhys. Letters, 2:291–
297, 1986.

[7] J. Dorsey, H.K. Pedersen, and P. Hanrahan. Flow and
changes in appearance. In SIGGRAPH ’96 Conference
Proceedings, pages 411–420, Aug. 1996.

[8] N. Foster and D. Metaxas. Realistic animation of liquids.
In Proceedings of Graphics Interface ’96, pages 204–212,
Aug. 1996.

[9] N. Foster and D. Metaxas. Modeling the motion of a hot,
turbulent gas. In SIGGRAPH ’97 Conference Proceed-
ings, pages 181–188, Aug. 1997.

[10] A. Fournier and W.T. Reeves. A simple model of ocean
waves. In SIGGRAPH ’86 Conference Proceedings,
pages 75–84, Aug. 1986.

[11] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas au-
tomata for the navier-stokes equation. Phys. Rev. Lett.,
56:1505–1508, 1986.

[12] N. Greene. Applications of world projections. In Pro-
ceedings of Graphics Interface ’86, pages 108–114, May
1986.

[13] A. Habibi, A. Luciani, and A. Vapillon. A physically-
based model for the simulation of reactive turbulent ob-
jects. In Winter School of Computer Graphics 1996,
Feb. 1996.
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