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Abstract

This paper applies trajectory�based optimization
techniques to the synthesis of quadruped motions�
The animator speci�es hard constraints� consisting
of footprint locations and their timings� and soft con�
straints that encode both physically�plausible beha�
vior and the notion of comfortable positions� By deal�
ing �rst and foremost with the spline trajectories rep�
resenting the gross motion of the quadruped� the res�
ulting optimization problem can be solved e�ciently
and robustly� Results include walking� jumping� and
galloping quadrupeds�

R�esum�e

Nous pr�esentons une technique pour la synth�ese
des mouvements de quadrup�edes par optimisation
de trajectoires� Les animateurs utilisent des con�
traintes rigides pour la position dans l	espace et le
temps des traces de pieds� et les contraintes douces
pour les lois physiques et la notion de positions
confortables� La technique s	occupe principalement
de la synth�ese d	une trajectoire pour le centre de
gravit�e� ce qui produit un algorithme e�cace et ro�
buste� Nos r�esultats comprennent des quadrup�edes
qui marchent� sautent� et galopent�

Keywords� physically�based animation� kinematics�
motion modeling� optimization� legged locomotion�

� Introduction

Tools which automate the creation of animated legged
locomotion have long been proposed and a few are
now available commercially� However� the problem of
legged locomotion is ill�posed� As a result� existing
methods employ varying degrees of animator control
over the motion and may or may not take the physics
of motion into consideration� The method presented
here builds on a combination of several existing tech�
niques and ideas in order to yield a novel and 
exible
motion synthesis tool for animating quadruped mo�
tion�
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Our system represents motions using a set of tra�
jectories which describe the state of the quadruped
over time� These trajectories are then optimized to
satisfy a variety of constraints� The constraints in�
clude footprint positions� physics� and stylistic con�
siderations� While the use of a trajectory�based rep�
resentation of the problem is shared with previous
work on spacetime constraints����� other aspects of
our approach di�er in order to successfully apply this
problem representation to complex �gures such as
quadrupeds� Most notably� we restrict ourselves to
optimizing the motion trajectories of two key mass
points� as opposed to optimizing the motion traject�
ories of all the degrees of freedom� This optim�
ized pair of motion trajectories then de�nes the basic
structure of the motion� around which the remaining
details are �lled in�

The use a simpli�edmodel has several advantages�
First� optimizing the family of trajectories which de�
scribe the complete detailed motion of a quadruped
is a daunting task and has thus far been infeasible�
Our system avoids some of the di�culties by virtue of
the simpli�ed model� We also a�ord more freedom
in the design of the optimization functional by not
requiring expressions for the �rst and second partial
derivatives� thereby obviating the need to generate
these complex expressions� Second� local minima are
less likely to occur with a smaller optimization prob�
lem� Our optimization procedure optimizes the gross
motion alone� relying on other techniques to produce
the detailed motion� Third� the criteria which govern
the realism of the gross motion and �ne motion de�
tails are potentially very di�erent� To take a leaping
dog as an example� the basic laws of physics are of
primary importance in constraining the gross motion
of the center of mass� while other factors such as the
kinematics of the hind legs are of key importance in
the synthesis of joint motion within the legs�

An animator provides two types of input to our
system� The �rst is the speci�cation of the quadruped
footprint locations and their timing� These act as
hard constraints in the optimization process and their



use is motivated in part by earlier work on extract�
ing gait information from dinosaur footprints�
�� The
second type of input consists of stylistic hints which
we call comfort constraints� These are treated as soft
constraints in our system� as are the laws of physics�
Taken together� the hard and soft constraints govern
the shape of the gross motion of the quadruped� The
results we present explore speci�c examples of how
these types of constraints can be used to reconstruct
a desired quadruped motion�

A feature of our method is the capability to stretch
the laws of physics if necessary� This is accom�
plished by treating both physics and comfort as soft
constraints� thus allowing for compromise solutions
which can balance style requirements and physical
plausibility�
The remainder of this paper is divided into six sec�

tions� We �rst review previous work in Section �� An
animator begins to create a motion by specifying the
required footprints� the details of which are presen�
ted in Section �� The �rst step in creating a motion
�tting the desired footprints uses trajectory optimiz�
ation to satisfy the desired constraints� This is de�
scribed in Section �� The second step in creating a
motion is motion reconstruction� which is explained
in Section �� Our results are given in Section �� Fi�
nally� we present our conclusions in Section ��

� Related Work

One logical way of animating the motion of a quad�
ruped is to use a physically�based simulation� The
animation problem then becomes one of controlling
the simulated quadruped to make it perform the de�
sired motion� Control is a di�cult problem� however�
because simulated muscles provide a very indirect
means of controlling the �nal motion� Nevertheless�
a growing body of work is built around the use of
fully�dynamic forward simulations and appropriately�
designed control schemes� Representative examples
of this approach as applied to animating quadrupeds
include the work of Raibert and Hodgins�
��� van de
Panne�
��� and Kokkevis et al����� Developing con�
trol models which allow for more animator control
remains problematic with this type of approach�

Another body of work has approached quadruped
animation using re�ned sets of prescribed kinematic
behaviors which are used to directly synthesize the
motion� The work of Girard��� �� has successfully
used this approach and has been extended into a
commercial product�
��� Most notably� this product
makes use of footprints as part of the motion spe�
ci�cation� Our work is similar in spirit and was
partly motivated by the success of Girard	s early

work� However� we choose to synthesize the key as�
pects of the motions through optimization instead of
sets of rules and forward simulation� We optimize
the motion on a global scale� thereby allowing for ex�
tensive anticipation and follow�through motion� and
allowing the laws of physics to be stretched� Other
interesting algorithms for kinematic and hybrid kin�
ematic�dynamic work have been explored��� �� �� ���
although these techniques are not shown to be gen�
eralizable to quadrupeds�

The concept of trajectory optimization for anima�
tion can best be traced back to the spacetime con�
straints work of Witkin and Kass�
��� This area
has subsequently been explored in greater depth by
Cohen���� Liu and Cohen�

�� Rose et al��
�� and oth�
ers� Our work focusses on how to make a trajectory
optimization approach practical for the problem of
quadruped animation� Trajectory optimization is a
general way of framing motion synthesis problems�
but there are a great number of choices that need to
be made in order to make it workable for a partic�
ular problem� Distinctive features of our work in�
clude the separation of the gross character motion
from the motion detail� our use of footprint and com�
fort constraints� and the useful compromises that can
be reached as a results of treating physics and style
considerations as soft constraints� Lastly� the imple�
mentation of the physics constraints is quite di�erent
from those previously used in trajectory optimization
methods�

The quadruped work in this paper builds on previ�
ous work using footprint�based techniques for biped
animation�
��� The quadruped model is considerably
more complex than the previous biped model in all re�
spects� footprint speci�cation� gait types� trajectory
optimization incorporating a model of a 
exible back�
and a more di�cult motion reconstruction prob�
lem� Given that few animation techniques have been
shown to apply to both bipeds and quadrupeds�� the
extension of this previous biped work to quadrupeds
has been an informative challenge�
���

� Footprints

We begin the description of our system by describing
the principal input provided by an animator� which
consists of footprint position and timing information�

��� Footprint Model

A footprint is a six�tuple � i� x� z� �� t�� t� �� where i
represents the foot �i � f
� �� �� �g for a quadruped��

���� ��� are notable exceptions�
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Figure 
� User interface for manual footprint entry�

x and z indicate the position of the foot on the ter�
rain� � indicates the orientation on the terrain� and t�
and t� are the time of contact and time of departure�
respectively� of the foot with the ground� The height�
y� and the resting pitch of the foot on the terrain are
implicitly speci�ed by the terrain surface�

��� Direct Positioning of Footprints

Our user interface is illustrated in Figure 
� The
complete environment is seen from a plan view� An
indication of which quadruped leg is to be associated
with the current footprint is given in the lower right
corner of the screen� In the upper right corner� a
sample template suggests a reasonable position for
the new footprint� given the current choice of gait�

Screen clutter is a potential problem with using
footprints� as the hind footprints tend to overlap the
front ones� We minimize this through the use of col�
our coding� as well as making the most recent foot�
prints stand out using bold lines� A cross in the
centre of the screen provides a reference scale� The
dimensions of the cross correspond to the length of
the animal� Finally� a timing diagram is located at
the bottom of the screen which can be used to directly
alter the timing information at any time�

��� Timing and Gaits

The timing associated with a footprint is depend�
ant on the desired gait and can be created in sev�
eral ways� An animator can choose to exercise full
control by specifying the timing information directly�
An alternative solution we provide is to let the system
guide the user based upon a choice among three the

gaits which our system currently supports� the walk�
trot� and gallop� The sequencing and timing of the
leg stance phases are then controlled automatically
in accordance with the desired gait� The animator
retains responsibility for specifying the position and
orientation of the feet�

��� Footprints Along a Path

Higher level motion descriptions can be used to gen�
erate the footprint data if further automation is de�
sired� A simple and e�ective abstraction uses splines
to model the path of the animal and an automatic pro�
cess to generate a reasonable set of footprints along
the path� An example of this is shown in Figure ��
where the footprints of a quadruped are placed along
a curve de�ned by Catmull�Rom spline segments�

Right Back Foot
Left Back Foot

Right Front Foot
Left Front Foot

Figure �� Footprint generation along a curved path�

��� Autonomous Motion

Completely autonomous motion is useful in interact�
ive games and virtual worlds where the environment
is unpredictable� Our animation system has an in�
teractive mode of operation where new footprints are
generated on the 
y� As each footprint is placed� the
motion of the quadruped is synthesized at interactive
rates� Our automated footprint procedure currently
implements a random wandering behavior� Incorpor�
ating goals and obstacle avoidance is an obvious next
step� A selling feature of footprint constraints is thus
their utility in building high level motion planners
with little e�ort�

� Trajectory Optimization

This section explains the �rst step in our motion syn�
thesis algorithm� trajectory optimization� Traject�
ory optimization allows us to e�ciently generate the
underlying motion of a simpli�ed approximation of
the quadruped	s body over the footprints� We re�
construct the rest of the motion afterwards using the
methods described in Section ��



��� Overview

Trajectory optimization determines the overall mo�
tion of the quadruped	s body� It is assumed that the
motion of the head� the swing phase of the legs� and
the swing of the tail are visually important� but that
these have a minimal e�ect on the gross motion of
the animal�

The optimization process is based upon minimiz�
ing the integral of an optimization functional over
the duration of the trajectory� This integral is ap�
proximated numerically as a sum using evenly�spaced
sample points in time over the motion trajectory�
Given a point in time on the motion trajectory� the
functional evaluates the �delity of the physics and the
compliance with the style constraints� The former
involves computing the current accelerations of mass
points� which in our case can be analytically evalu�
ated from the spline�based trajectories� The accel�
erations are then used to compute the extent of any
violations of the basic laws of physics� The gross po�
sition of the quadruped� combined with the known
footprint supports provide the basis for evaluating
the style constraints� With this intuition� we now
describe the process in more detail�

��� Quadruped Model

In Figure � we show the full skeletal quadruped model
used for display purposes� indicating all the joints
and skeletal links in the model� Aside from the single
degree�of�freedom �d�o�f�� joints in the legs �exclud�
ing the hips�� all the joints are assumed to have three
d�o�f� This model has all the degrees of freedom ne�
cessary for a reasonably sophisticated animation� but
we consider it too complex to animate directly using
optimization techniques�

Figure �� Initial Model of Quadruped�

����� Approximate Quadruped Model

Our simpli�ed model consists of two point masses�
connected by a spring which serves to model the in�

ternal forces of the back� This model is shown in
Figure �� The position of the stance feet also play an
important role� as shall be described shortly�

spring

center of mass

2
pp
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x

Figure �� The simpli�ed physical model�

��� Trajectory Representation

The trajectories of the two point masses are rep�
resented using C� piecewise�continuous spline curves
in order to yield smooth motions for the respective
masses� The assumption used to justify the smooth�
ness is that the legs are assumed to be e�ective
at intermediating between the body motion and the
ground� The number of spline segments used in mod�
eling the trajectory is an important choice to make�
Too few spline segments results in the motion be�
ing overly constrained and smooth� Too many spline
segments can slow the optimization process unneces�
sarily and lead to an increased number of undesire�
able local minima� In practise� the use of one or two
spline segments per stride� is a reasonable choice� It
should be noted that our representation does not use
a separate curve to o�er an independant parameter�
ization of the trajectory speed� as is common in some
keyframe systems�

��� Optimization Functional

The optimization enforces the soft constraints�
namely the physics and style� We denote the optim�
ization functional as E�V ��

E�V � �

TZ

�

�Ephysics�V � �Ecomfort�V �� dt��
�

where V � fV�� V�� � � � � Vng represents the trajector�
ies of P� and P�� n is the number of spline segments�

�A stride is de�ned as a complete gait cycle�



Vi is the set of free parameters for curve segment
i� and T is the duration of the animation� Ephysics

incorporates the physics constraints� Ecomfort keeps
the animal from contorting into awkward positions
by penalizing trajectories which violate stylistic con�
straints�

��� Physics Energy

Ephysics is composed of three terms� one for each of
p� and p�� and one for the center of mass� We as�
sume that the hind legs support the back half of the
body� p�� the front legs support the front half of the
body� p�� and that all of the legs support the cen�
ter of mass� The position� velocity� and acceleration
of the center of mass are known at any point in the
optimization process as they are computed directly
from the spline trajectories for the two point masses�
The key to evaluating the physical plausibility of the
motion at a particular point in time lies in determ�
ining whether the current acceleration achieved by a
point mass is indeed plausible� based upon the cur�
rent con�guration of the points of support�

FFs
spine

Fs

Fg
gravity

FL
leg force

F F= + +Fg L

Figure �� Forces acting on a point mass�

In Figure � we show all of the forces active on one
of the point masses in our model� Even though the
magnitude of the leg forces are not known� we shall
make use of constraints on their line of action in order
to evaluate the plausibility of the physics� Using the
forces shown in this diagram� the general procedure
to determine the physics energy term for a mass point
is�


� compute the acceleration a from the trajectory

�� compute the leg force� FL

�� determine the feasible and infeasible components
of FL

�� calculate a penalty contribution for the infeasible
components

In step �� the total force applied on the point mass�
F� is determined as ma� The force of gravity and the
spring force� Fs are also known� For the center of
mass Fs � �� For p� the spring force is

Fs � ks�l � lo�
�p��t�� p��t��

jj�p��t�� p��t��jj
����

where ks is a spring constant� l is the distance
between the two points� and l� is the rest length of
the spring� The spring force for p� is equal to that
of p�� but in the opposite direction�

p

p
1

2
x

Figure �� Example of plausible leg force regions on
point masses�

The leg force� FL� remains the only unknown and
can thus be solved for� However� a stance leg can�
not simply exert an arbitrary force� Given a point
mass and the position of its associated points of sup�
port� we can determine a range of feasible directions
for leg forces� An example is shown in Figure �� In
this �gure� the cat has three legs on the ground� which
support the center of mass� Both of the hind feet sup�
port p�� while only one leg supports p�� This means
that the regions of plausibility for the leg forces are
bounded by three planes for x� embedded in a plane
and bounded by two lines for p�� and restricted to a
line for p�� We can rewrite FL as FL � FLp � FLn�
where FLp is the component of the leg force that can
be accounted for by our physical model� and FLn is
the implausible force� We minimize the non�physical
forces using a physics penalty term proportional to
jjFLnjj

��

For a quadruped� there are �ve possible cases that
we must treat in order to calculate the physics pen�
alty term for a particular leg force� These cases are
single� double� triple� and quadruple support� as well
as 
ight� All �ve cases are relevant for the center of
mass� For points p� and p�� only the �rst three cases



�
ight� single�support� and double�support� are relev�
ant because the forces coming from the other half of
the body are already represented by the spring force�
indicated in Figure �� For 
ight phases� the applied
leg force should be zero and thus any computed leg
force is considered to be infeasible and its squared
magnitude is contributed towards the physics pen�
alty�
As a speci�c example� we illustrate the case for

double support� shown in Figure �� Because each
leg can apply a force in the direction from the foot
towards the point mass� the plausible region during
double support consists of the wedge�shaped region
bounded by the extensions of vectors L� and L�� The
component of the leg force not in the plane� FLn� � is
added to the optimization functional� We also pen�
alize trajectories which have leg force components�
FLn� � which are on the plane� but outside of the feas�
ible region� The implausible leg force components on
point p are thus penalized as follows�

��� Ep � kp��jjFL �N jj�

�max���FL �N� �
� �max���FL �N� �

���

where Ni is the vector on the plane normal to Li that
points outside of the region of plausibility� N is the
normal to the plane� and kp� is a weighting factor for
the double support penalty�
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Figure �� Double support�

The complete physics energy functional is then cal�
culated as

Ephysics � KxEx �Kp�Ep� �Kp�Ep��

where Kx� Kp� and Kp� are used to weigh the pen�
alties of x � p� � and p� respectively�

��	 Comfort Energy

The physics energy guides the trajectory optim�
ization to generate physically plausible motions�

However� additional stylistic constraints are required
to ensure that the motion is visually pleasing� To
address this we employ a comfort term in the optim�
ization� This term is partially motivated by previous
work�
��� although the de�nition of our comfort term
is rather di�erent� The comfort model that we use is
simplistic for the time being� although its de�nition
is open to more sophisticated uses� It encourages the
legs to always maintain a comfortable length during
their support phases� We use a simple set of vir�
tual legs to evaluate this� as shown in Figure �� A
second component of the comfort model encourages
the body to avoid collisions with the ground� as will
be explained shortly�
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Figure �� Comfort model�

��	�� Leg Length Penalty

The comfort constraints on the leg lengths keep the
legs from becoming overly compressed or extended
throughout the motion� We encourage this soft con�
straint with the term Elc� which is calculated as

Elc�Gf � h� l� � Klc�jjGf � hjj � l������

where Gf is the foot position� Klc is a constant used
to weigh the comfort constraint� and h is the hinge
that the leg attaches to� Each leg has its own leg
length� l� to accomodate the creation of various walks�
including limping or lopsided ones� The penalty for
each leg is summed and is referred to as Eleg �

��	�� Body Collision Penalty

During ambitious ballistic motions� the body of the
quadruped can potentially penetrate the ground� We
therefore provide an additional term to discourage
this behaviour� Our collision calculations are simple�
but they are su�cient to eliminate most unwanted
body collisions with the ground� We encourage each
mass point to maintain a clearance distance ri above
the ground or an obstacle� If this is not the case� then
we add a collision avoidance term� Ecoll � Kbi�piy �



ri�y�� to the comfort model� where Kbi is a constant
that weighs the strength of the collision term� piy is
the height of the point mass� pi � and y is the height
of the terrain below pi �

The complete comfort energy functional is �nally
computed as

Ecomfort � Eleg � Ecoll�

��
 Optimization Procedure

The energy functional used in the optimization is a
numerical approximation of Equation 
�

E�V � �
n��X
i��

kX
j��

�Ephysics�Vi�tj�� �Ecomfort�Vi�tj���

where n is the number of spline segments� k is the
number of evaluations points per spline segment�
tj � j

k
� and V � fV�� V�� � � � � Vng� where Vi is the

set of free parameters for curve segment i� A greedy�
deterministic algorithm is used to optimize the tra�
jectories� A multi�scale approach is used to obtain
fast convergence� We begin by initializing the tra�
jectories to pass directly over the average position
of the supporting footprints for each spline segment�
Our implementation positions the center of mass at
the average body height over the footprints� and then
positions the p� and p� trajectories by assuming that
the spine is parallel to the mean direction of the foot�
prints� Then� using a coarse�to��ne approach� we
perform �xed�step�size alterations to each of the free
parameters in turn and reevaluate the functional for
each such alteration� We retain changes which lead
to lower values of the functional� When parameters
can no longer be altered� or when the maximum iter�
ation count is surpassed� the scale of the attempted
alterations is halved and we optimize further� Be�
cause our splines exhibit local control� the evaluation
of the optimization functional can be restricted to the
locally a�ected areas�

� Motion Reconstruction

The motion reconstruction stage involves building the
motion of the complete skeleton from the point mass
trajectories synthesized thus far� This process is
broken up into steps that can be handled easily� We
advocate using a hybrid application of kinematics�
dynamics� and optimization techniques which best
utilizes the strengths of each method� The choice
of method depends on the animator	s preference� the
quality of animation desired� and the desired frame
rate�
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Figure �� An example of motion reconstruction�

The reconstruction approach used in our proto�
type implementation is shown in Figure �� where the
numbers represent the ordering of the reconstruction
steps� and the directed graph represents the depend�
encies between the steps� In this example� the re�
construction begins with an optimization procedure
which determines the trajectories of each foot during
its 
ight phase� The optimization provides a bal�
ance between keeping the foot at a reasonable dis�
tance from the body� minimizing added torque� and
avoiding collisions of the foot� The technique used is
the same as that employed for the earlier body tra�
jectory optimization� although in this case only one
spline segment is required for the trajectory of the
foot from one footprint to the next�
��� Note that
stylistic considerations are implicit in this step�

Next� we use inverse kinematics to determine the
arch of the spine and to de�ne the internal joint angles
of the legs� More care is taken in the kinematics of
the legs than that of the body because the legs are
on the exterior of the body and are more visible� For
greater realism and speed we employ an example�
based inverse kinematics system �described in �
����
so that the inverse kinematics results closely match
the joint angles of a pre�de�ned set of keyframes�

Procedural kinematics is used to pivot the head
towards the direction of motion� while the tail is an�
imated with passive dynamics� The use of di�erent



animation techniques for the head and tail is jus�
ti�ed because the tail generally swings around and
expresses the e�ects of passive dynamics� while the
head usually leads the motion rather than following
it� Finally� passive secondary dynamics is applied to
the hairs which cover the complete animal�

	 Results and Discussion

Our experiments have provided promising results�
The trajectory optimization and motion reconstruc�
tion have proved e�ective at generating a variety of
motions� as shown in Figure 
�� The footprints and
optimized point�mass trajectories for a gallop are
shown in �a�� A frame from the corresponding an�
imation is shown in �b��

Jumping on�to and o��of a ramp� as shown in �c�
and �d� is an example which e�ectively illustrates
both the physics and comfort constraints in action�
The physics ensures for near�parabolic trajectories
for the body during the jumps� The spline curves
used to model the trajectories ensure smooth accel�
eration and deceleration for the mass points� ensur�
ing for anticipation and follow�through� The comfort
term in the functional ensures reasonable con�gura�
tions for the animal throughout the motion�

Figure 
��e� shows an image from an animation il�
lustrating autonomous planning and generation of the
footprints� This type of autonomous motion plans a
few steps� optimizes� displays the result� and then
plans again� This happens at interactive rates� al�
though the optimization needs to be overlapped with
the motion playback to achieve an acceptably smooth
real�time animation� Lastly� Figure 
��f� is included
to show that we expect the technique to be generaliz�
able to skating and sliding motions� although we have
currently only implemented this for bipeds�

One potential pitfall of our technique is the pres�
ence of local minima in the optimization� This be�
comes problematic as the optimization problem is
made more complex through additional mass points
or additional spline segments� Coping with a larger
number of free parameters requires more extensive
searches in order to avoid local minima�
Further experimentation is needed to be able to de�

termine the stylistic constraints which are necessary
to tune the generated gaits to match speci�c gaits of
speci�c animals� The physics constraints could also
be embellished to take into account the magnitude of
the leg forces and their stability�

In its present form� our system can be easily per�
suaded to produce unnatural motions in addition to
the well�behaved cases described earlier� The mo�
tions produced are sensitive to the timing assigned to

footprints� and thus bad input here will produce bad
output� We see the need for more work on a front�
end tool which generates appropriate timing inform�
ation� footprint positions� and stylistic parameters as
a function of more general motion descriptions� e�g��
�Make this camel model do a slow camel walk along
this path��


 Conclusions

The hybrid animation technique we have presented
is unique in several ways� The use of comfort con�
straints in the context of a global motion trajectory
yields a useful tool for shaping a motion� in con�
junction with basic physics constraints� Footprints
provide a convenient and readily understandable in�
put technique which allows the animation tool to do
an e�ective job of amplifying an animator	s inten�
tion into a complete motion� The ability to stretch
physics is useful in that it allows for compromises
between physics and stylistic constraints� The results
show that a footprint�based system using trajectory
optimization is capable of creating many varieties of
quadruped locomotion�
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