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Abstract
The field of Human-Computer Interaction (HCI), 

whose goal is to make computers support human 
activity in much more satisfying ways than they 
currently do, has three main uses for cognitive 
modeling. A cognitive model can substitute for a 
human user to predict how users will perform on a 
system before it is implemented or even prototyped. A 
system can generate a cognitive model of the user 
currently interacting with the system in order to modify 
the interaction to better serve that user. Finally, 
cognitive models can substitute directly for people so 
groups of individuals can be simulated in situations that 
require many participants, e.g., for training or 
entertainment. This paper presents some instances of 
such models and the implications for GI design.

Le domaine de l'Interaction Homme-Machine, dont le 
but est d'améliorer le soutien que portent les ordinateurs 
aux activités humaines, peut utiliser la modélisation 
cognitive de trois manières différentes. Un modèle 
cognitif peut se substituer à un utilisateur humain pour 
prévoir comment les utilisateurs agiront avec un 
système avant qu'il ne soit implémenté ou même 
prototypé. Un système peut générer un modèle cognitif 
d'un utilisateur en train d'interagir avec le système afin 
de modifier l'interaction au bénéfice de cet utilisateur. 
Enfin, des modèles cognitifs peuvent se substituer 
directement à des utilisateurs, de sorte que des groupes 
d'individus peuvent être simulés dans des situations qui 
nécessitent beaucoup de participants, par exemple 
l’apprentissage ou les loisirs. Cet article présente des 
exemples de tels modèles et leur conséquences sur la 
conception d'interfaces graphiques.
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Introduction
A cognitive model is a computer program that 

behaves like a human being. It may emulate the 
perceptual, cognitive and/or motor processes people go 
through to complete a task. It may take the same 
amount of time that people take to perform a task. It 
may make the same type of errors people make. It may 
take the same amount of time and require the same type 
of experience to learn to perform a task. It may do the 
same inefficient fumbling for a solution to a difficult 
problem. In all, the point is to have the computer 
behave like a human, not simply to get the job done 
with the least effort or in the least time.

Cognitive models are used in psychological research 
in several ways. They serve as a vehicle for 
understanding human behavior; if you can program a 
computer to behave the same way, you have 
demonstrated a level o f understanding more rigorous 
than the typical box-and-arrow diagrams that are also 
models of a sort. If your model is successful at 
producing human-like behavior under certain 
assumptions, you can hypothesize that different 
behavior will emerge under different assumptions, 
change those assumptions in the model and see how it 
behaves. Explorations with models in this way can 
then be used to design experimental conditions that are 
likely to show measurable effects. So, cognitive 
models are useful tools for psychologists, but why 
should graphic interface designers care about cognitive 
models?

1 An earlier version of this talk was presented at the European Workshop on Cognitive Modelling. (14th- 16th 
November 1996, Technical University of Berlin, Berlin Germany.)
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Cognitive models for human-computer interaction 
(HCI), as opposed to those for psychological science, 
have a different goal. In general, they are used to make 
interfaces “better” for users. There are at least three 
different uses for cognitive models in service of this 
general goal.

•  Predicting human behavior on proposed interactive 
systems,

•  Modeling the user as a guide for adaptive 
interaction, and,

•  Substituting models for other participants in group 
interactions.

Predicting Human Behavior on Proposed 
Interactive Systems2

The overall motivation for HCI cognitive modeling 
efforts is to provide engineering models of human 
performance. In the ideal, such models produce a priori 
quantitative predictions of performance at an earlier 
stage in the development process than prototyping and 
user testing. That is, they predict execution time, 
learning time, errors, and identify those parts of an 
interface that lead to these predictions, thereby focusing 
the designer on what to fix. They allow analysis at 
different levels o f approximation so predictions 
appropriate to the design situation can be obtained with 
minimum effort. They are straight-forward enough for 
computer designers to use without extensive training in 
psychology, and these models are integrated enough to 
cover total tasks. Although HCI research has not yet 
reached this ideal, GOMS [4] is currently the most 
mature of engineering models, has many of these 
properties, and can be truly useful in real-world system 
development.

GOMS is a method for describing a task and the 
user's knowledge of how to perform the task in terms of 
Goals, Operators, Methods, and Selection rules. Goals 
are simply the user's goals, as defined in layman's 
language. What does he or she want to accomplish by 
using the software? In the next day, the next few 
minutes, the next few seconds?

Operators are the actions that the software allows the 
user to take. With the original command-line interfaces, 
an operator was a command and its parameters, typed on 
a keyboard. Today, with graphic user interfaces, 
operators are just as likely to be menu selections, 
button presses, or direct-manipulation actions. In the 
future, operators will be gestures, spoken commands, or

2 The following section draws heavily from my 
previous writing in [7] and [8]. Extensive references to 
GOMS research and validation can be found in those 
works.

even eye movements. Operators can actually be defined 
at many different levels of abstraction but most GOMS 
models define them at a concrete level, like button 
presses and menu selections.

Methods are well-learned sequences of subgoals and 
operators that can accomplish a goal. The classic 
example describes deleting a paragraph in a text editor. 
Using a mouse, place the cursor at the beginning of the 
paragraph, hold the mouse button down, drag to the aid 
of the paragraph, release, highlighting the paragraph, 
then hit the delete key. This complete sequence of 
actions is one "method." Another (less efficient) 
method: place the cursor at the end of the paragraph and 
hit the delete key until the paragraph is gone.

If there is more than one method to accomplish the 
same goal, then selection rules, the last component of 
the GOMS model, are required. Selection rules are the 
personal rules that users follow in deciding what method 
to use in a particular circumstance. For instance, in the 
paragraph-deletion example, if the paragraph is more 
than five characters long, then I will typically drag to 
highlight and hit the delete key. If the deletion is five 
characters or less, then I will place the cursor at the aid 
and delete back. Thus, my personal selection rule 
depends on how long the paragraph is. Another user 
may have a different selection rule that depends on a 
different length of paragraph or even depends on other 
features of the task situation.

GOMS analysis applies to situations in which users 
will be expected to perform tasks that they have already 
mastered. In the psychology literature this is called 
having a cognitive skill, i.e., users are not problem 
solving, not hunting around for what they need to do 
next. They know what to do and all they have to do is 
act. There are many different types of cognitive skill in 
human-computer interaction. For instance, there are 
many single-user applications where the user tells the 
system what to do, then the system does it and tells the 
user what it has done. This is a user-paced, passive 
system and GOMS has been shown to work very well 
in this type of situation. GOMS has been applied to 
applications such as text and graphics editors, page 
layout, spreadsheets, information browsers, operating 
systems, ergonomic design systems, CAD systems, 
map digitizers, flight-management computers in 
commercial airplanes, oscilloscopes, programmable 
television sets, and WWW pages.

GOMS has also been shown to be valid in single- 
user, active systems, where the system changes in 
unexpected ways or other people participate in the 
accomplishing the task. There are GOMS models, for 
instance, of radar monitoring and of video games, where



the system throws new situations at the user at a 
maniacal pace, and GOMS models of telephone 
operators interacting with customers. The knowledge 
gathered by a GOMS analysis is sufficient to predict 
what a person will do in these seemingly unpredictable 
situations.

GOMS can be used both quantitatively and 
qualitatively. Quantitatively, it gives good predictions 
of performance time and learning time. So it can be 
used to help in a purchasing decision or to see if a 
proposed design meets quantitative performance 
requirements.

Qualitatively, GOMS can be used to design training 
programs, help systems, and even the system itself. 
Since a GOMS model is a careful description of the 
knowledge needed to perform a given task and it 
describes the content of task-oriented documentation. 
You need only tell the new user what the goals are, 
what different methods could be used to achieve them, 
and when to use each method (selection rules). This 
approach has been shown to be an efficient way to 
organize help systems, tutorials, and training programs 
as well as user documentation. GOMS models can also 
be used qualitatively to literally redesign a system. 
When GOMS discovers a frequent goal supported by a 
very inefficient method, then the design can be changed 
to include a more efficient method. If GOMS shows 
that there are goals not supported by any method at all, 
then new methods can be added. GOMS may also reveal 
where similar goals are supported by inconsistent 
methods, a situation in which users are likely to have 
problems remembering what to do, and show how to 
make the methods consistent.

In the last decade, HCI researchers have very carefully 
tested and re-tested the predictions of GOMS models, 
and reported these results in refereed conferences and 
journals, so designers can trust the method. Many 
studies give rigorous laboratory verification of the 
predictions made from GOMS models on a large 
number of products. There have been several studies that 
use real-world data to verify performance-time 
predictions o f GOMS models. There has also been work 
with realistic training situations that show the value of 
GOMS-inspired training programs and help systems.3

3 There has been much less work with the prediction 
of errors, so I recommend that designers without formal 
psychological education not use GOMS models to 
predict errors until the validation research matures.

Example: Project Ernestine4
In 1988, the telephone company serving New York 

and New England (NYNEX) considered replacing the 
workstations then used by toll and assistance operators, 
who handle calls such as collect calls, and person-to- 
person calls, with a new workstation claimed to be 
superior by the manufacturer. A major factor in making 
the purchase decision was how quickly the expected 
decrease in average work time per call would offset the 
capital cost of making the purchase. Since an average 
decrease of one second in work time per call would save 
an estimated $3 million per year, the decision was 
economically significant.

To evaluate the new workstations, NYNEX conducted 
a large-scale field trial. At the same time, a research 
group at NYNEX worked with me to use GOMS 
models in an effort to predict the outcome of the field 
trial. First, models were constructed for the current 
workstation for a set o f benchmark tasks. They then 
modified these models to reflect the differences in design 
between the two workstations, which included different 
keyboard and screen layout, keying procedures, and 
system response time. This modeling effort took about 
two person-months, but this time included making 
extensions to the GOMS modeling technique to handle 
this type of task and teaching NYNEX personnel how 
to use GOMS. The models produced quantitative 
predictions of expert call-handling time for each 
benchmark task on both workstations, which when 
combined with the frequency of each call type, predicted 
that the new workstation would be an average of 0.63 
seconds slower than the old workstation. Thus the new 
workstation would not save money, but would cost 
NYNEX about 2 million dollars a year.

This was a counter-intuitive prediction. The new 
workstation had many technically superior features. 
The workstation used more advanced technology to 
communicate with the switch at a much higher speed. 
The new keyboard placed the most frequently used keys 
closer together. The new display had a graphic user 
interface with recognizable icons instead of obscure 
alphanumeric codes. The procedures were streamlined, 
sometimes combining previously separate keystrokes 
into one keystroke, sometimes using defaults to 
eliminate keystrokes from most call types, with a net 
decrease o f about one keystroke per call. Both the 
manufacturer and NYNEX believed that the new 
workstation would be substantially faster than the old 
one, by one estimate, as much as 4 seconds faster per

4 The details of this application of GOMS, both 
technical and managerial, can be found in [3] and [5].



call. Despite the intuition to the contrary, when the 
empirical field-trial data were analyzed, they supported 
the GOMS predictions. The new workstation was 0.65 
seconds slower than the old workstation.

In addition to predicting the quantitative outcome of 
the field trail, the GOMS models explained why the 
new workstation was slower than the old workstation, 
something which empirical trials typically cannot do. 
The simple estimate that the new workstation would be 
faster was based on the greater speed of the new features 
considered in isolation. But the execution time for the 
whole task depends on how all of the components of the 
interaction fit together, and this is captured by the 
critical path in the GOMS model. Because of the 
structure of the whole task, the faster features of the 
new workstation failed to shorten the critical path.

Thus, examination of the critical paths revealed 
situations in which the new keyboard design slowed 
down the call, why the new screen design did not change 
the time of the call, why the new keying procedures 
with fewer keystrokes actually increased the time of 
some calls, and why the more advanced technology 
communication technology often slowed down a call. 
The complex interaction of all these features with the 
task of the telephone operator was captured and 
displayed by GOMS in a way that no other analysis 
technique or empirical trial had been able to accomplish.

NYNEX decided not to buy the new workstations. 
The initial investment in adopting the GOMS technique 
paid off both in this one purchase decision, and by 
allowing NYNEX to make some future design 
evaluations in as little as a few hours of analysis work.

Modeling the User as a Guide for Adaptive 
Interaction

A second use of cognitive models in HCI is to model 
the knowledge or intentions of the user during 
interaction in order to serve that user better. There can 
be many applications of this, for example, active 
assistance, or intelligent agents attempting to divine the 
users’ goals. But nowhere is it more clear than in 
educational systems that are attempting to teach 
students a cognitive skill. Early systems had an implicit 
“model” that if a screen had been presented, then the 
student had learned the material on the screen, or if a 
student solved a problem correctly, he or she reliably 
knew all the material necessary to solve that problem. 
If you’ve ever taught a class, you know that both these 
assumptions are poor ones. More modem systems use 
more complex models of human knowledge acquisition. 
For example, let us look at the “cognitive tutors” of the 
Advanced Computer Tutoring (ACT) Project

Example: Cognitive tutors.5
The purpose of the ACT Project is to develop 

computer-based tutors for mathematics and 
programming that assist students in problem solving. 
Their cognitive tutoring technology, based on a 
computational theory of thought called ACT-R [1], 
generate and follow the multiple possible solutions a 
student might attempt on any given problem and 
dynamically tailor instruction to each individual student 
and problem. Like a personal human tutor or coach, 
cognitive tutors observe student performance, identify 
strengths and weaknesses, and provide individualized, 
just-in-time instruction while students learn by doing.

Over the past decade, the ACT cognitive tutors have 
been experimentally tested by more than 2000 students 
and have been shown to dramatically accelerate student 
learning (students take 1/3 the time to master the 
material), increase test scores (by about a letter grade) 
and improve student motivation (as measured by third- 
party evaluators). These impressive results came only 
through the application o f cognitive models to tutor­
building.

The ACT tutors use a much more sophisticated 
architecture for their cognitive modeling than the 
GOMS models discussed above. They are based on the 
ACT-R cognitive architecture which embodies a theory 
of performance and learning, including forgetting and 
strengthening of knowledge. It even models the chances 
of “slips” and “lucky guessing” by the student.

As the student solves problems posed by the tutor, 
the system uses cognitive models in two ways. In a 
process called “model-tracing” it maps the student’s 
solution onto a production-system model of ideal 
performance. On the basis o f this mapping, the system 
does “knowledge-tracing” where it assesses how well the 
student knows the information in each production of the 
ideal model. It then adapts the problem selection to 
exercise those pieces of knowledge that the student has 
not yet mastered.

Participants in Group Interactions
A final use for cognitive models in HCI is as 

replacement for human participants in group 
interactions. Such systems can be used to train or 
rehearsing people in a domain that requires many

5 The following section draws heavily from [2] and 
from the material on the Advanced Computer Tutoring 
Project homepage:

http://sands.psy.cmu.edu/ACT/tutor/tutoring.html 
Additional publications can be found by following links 
on that page.
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participants, e.g., high-level commanders in a simulated 
theater of war, or the personnel of who launch the 
NASA Space Shuttle. Furthermore, organizations 
would like to test out proposed changes in their work 
processes, technology, or organizational structure. In 
the latter case, this use o f cognitive modeling becomes 
similar to the first example: predicting the effects of 
proposed changes in the task environment.

(Note that this is different from intelligent agents as 
participants in group interaction. These cognitive 
models are to emulate humans in important parameters 
(e.g., both functional response and time to respond) as 
opposed to doing a job without the expectation that it 
be done as a human would do it. Although intelligent 
agents may play an important role in the future of 
interactive systems, they are not constrained by the 
same requirements as cognitive models.)

Example: Soar-based intelligent forces6
Military organizations have always had the need to 

train and practice their people in the processes of war. 
Previously, this took the form of “war games” staffed 
with many, many personnel. Recently, both the 
technology of actual engagement (e.g., that tactical air 
fighting often occurs out of range of visual sighting, 
and the pilot only sees the information given to him or 
her through the interfaces in the cockpit) and the 
technology of simulation have evolved to make a 
simulated theater of war (STOW) a possibility. If 
simulated agents could be created to emulate human 
behavior with sufficient fidelity, then realistic training 
and rehearsal becomes cost-effective. Not only can 
people practice on the current technology, but the 
effects of proposed changes in doctrine, tactics, or 
weapon systems can be assessed.

To these ends, the major goal of STOW-97 (October 
29-31, 1997) was to demonstrate that it was possible to 
generate high-fidelity behavior for a large-scale 
distributed entity-level simulation of a complete theater 
battle, such as the Iraq/Kuwait war in the early 1990's. 
In addition, STOW-97 was a full-fledged operational 
training exercise involving active duty personnel 
(approximately 1000 humans) and simulated forces,

6 The following section draws heavily from [10] and 
from the material on the Soar-IFor web pages at the 
University of Southern California and the University of 
Michigan:

http://www.isi.edu/soar/soar-ifor-project.html 
http://ai.eecs.umich.edu/ifor/index.html 

Additional publications can be found by following links 
on those pages.

both semi-autonomous and “intelligent” (approximately 
50,000 simulated entities).

Based on a theory o f cognition called Soar [9] (as 
complex as ACT-R, but different in its details), TacAir- 
Soar provides competent pilot-level behavior for a wide 
range of air roles, including defensive counter air, 
offensive counter air, close air support, and the different 
elements o f strike and interdiction packages (air-to- 
ground attack, escorts, suppression of enemy air 
defense, and sweeps). Additionally, TacAir-Soar can be 
used in a number of support and coordination roles for 
air missions, including airborne early warning, 
refueling, forward air control, and reconnaissance. In late 
October of 1997, TacAir-Soar provided the behaviors for 
all fixed wing aircraft entities and missions for STOW- 
97. With more than 5,000 rules and 500 operators, 
TacAir-Soar is one of the largest real-time "expert" 
systems ever developed.

RWA-Soar provides competent pilot-level behavior 
for a rotary-wing attack mission and a combined rotary­
wing transport and escort mission. It also provides 
automated commanders for companies of attack 
helicopters. In late October of 1997, RWA-Soar 
provided attack, transport, and escort missions for 
STOW-97.

TacAir-Soar and RWA-Soar are distinguished from 
other entity-level computer-generated forces by being 
truly autonomous. As with human forces, they are 
initially provided with exercise, operations, and mission 
information. They then plan and fly their missions, 
respond to threats, and communicate via simulated 
radios with other synthetic and human forces, all 
without any human intervention other than the standard 
interactions defined by the environment and doctrine.

STOW-97 consisted of 48 hours of continuous 
operations (7 AM ET October 29 to 7 AM ET October 
31, 1997). There were a total of 722 FWA scheduled 
missions plus numerous ground-alert missions for the 
48 hours (and an as yet undocumented number of RWA 
missions). The missions varied in length from one and 
a half hours to eight hours, with the median being three 
hours. At any one time, there were from 30 to 80 
planes airborne. The planes were run on approximately 
25 Pentium Pro's (P6's) with 4-6 vehicles/machine.

Tambe and his colleagues (1995, after STOW-E a 
smaller-scale STOW with 2,000 participating entities) 
compiled a list of the requirements for automated pilots. 
Many of these requirements emphasize the cognitive- 
plausibility aspects of these systems.

•Goal-driven and knowledge-intensive behavior. 
including planning, executing a plan, and replanning as 
needed.

http://www.isi.edu/soar/soar-ifor-project.html
http://ai.eecs.umich.edu/ifor/index.html


•Reactivity to changes in the environment, mitigated 
by a memory for internal state.

•Real-time performance to fully participate in mixed- 
entity simulations

•Conformance to human reaction times and 
limitations. Super-human abilities (e.g., faster reaction 
time, or unlimited memory) or sub-human abilities 
(e.g. reaction times too slow to keep a jet aloft in high- 
stress maneuvers) will give an unrealistic behaviors.

•Overlap of performance of multiple high-level tasks.
•Multi-agent coordination and communication. These 

entities must be able to coordinate their actions with the 
other entities, both human and simulated, in order to 
work as a team.

•Agent Modeling. Especially opponent modeling 
done concurrently with flying the mission!

•Temporal reasoning. Participating in a real-time 
simulation requires temporal reasoning at least for 
planning and executing plans, timing communications, 
and recognizing opponents’ plans.

•Explanation. These agents need to be able to 
explain their behavior after the fact for postmission 
debriefing. They need to accept questions and generate 
answers, both in verbal and graphical form, as needed, 
to best explain their assessment of the situation and 
actions.

•Maintenance o f episodic memory used for the 
explanation capability (an agent cannot explain its 
behavior if it cannot remember it), but also to help with 
agent modeling, i.e., tracking the movements of an 
opponent through time to reveal its intentions.

What do these applications of cogn itive  
models mean for GI design?

Each of these uses of cognitive models provide 
opportunities for GI designers and also pose challenges 
to the GI design community.

Predictive models
These models reliably predict quantitative measures of 

skilled performance (i.e., time to execute tasks) and 
relative method-learning time of WIMP interfaces. 
They have been used as a design tool for real systems 
(see 11 cases in John & Kieras, 1996) and could be used 
more widely with great potential benefit. Tutorial 
materials exist (e.g., presented at the CHI and HFES 
conferences and in the Handbook of Human-Computer 
Interaction [6]); this is a plea to use them.

However, the tool-support for doing these models is 
relatively meager, and confined to research labs. This is 
a plea to do something about that! Apply all GI’s 
knowledge of tools for programming languages to tools

for cognitive modeling, at a production-quality level to 
help bring this technique into routine use.

Cognitive Tutors
Again, this technique works for teaching people 

procedures and could be directly applied to help systems 
and tutorials for GI products. But, like the GOMS 
models above, the tools for creating them are not yet 
production quality, making the effort to produce 
cognitive tutors more costly than the six-month or year 
turn around on new releases of GI software warrant (as 
opposed to the unchanging rules o f  algebra or geometry, 
for example). Better tools would help. An intriguing 
possibility is to combine the need for tools for 
predictive models with cognitive tutoring tools, because 
a GOMS analysis is very close to the knowledge 
analysis necessary for a cognitive tutor.

Participants in Group Interactions 
Finally, this last application o f cognitive modeling 

opens whole new domains for GI, rather than 
contributing to the current way we do business. Again, 
better tools are needed, but specific challenges include 
the communication between multiple agents and 
debriefing explanation capability. Please bring all your 
experience with visualization and communication to 
bear on this problem.
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