
Cognitive M odeling for Human-Computer Interaction1

Bonnie G. John
Human-Computer Interaction Institute

and Departments of Computer Science and Psychology
Carnegie Mellon University
Pittsburgh, PA, USA, 15213

Phone: 412-268-7182 Fax: 412-268-1266
e-mail: bej@cs.cmu.edu

Abstract
The field of Human-Computer Interaction (HCI),

whose goal is to make computers support human
activity in much more satisfying ways than they
currently do, has three main uses for cognitive
modeling. A cognitive model can substitute for a
human user to predict how users will perform on a
system before it is implemented or even prototyped. A
system can generate a cognitive model of the user
currently interacting with the system in order to modify
the interaction to better serve that user. Finally,
cognitive models can substitute directly for people so
groups of individuals can be simulated in situations that
require many participants, e.g., for training or
entertainment. This paper presents some instances of
such models and the implications for GI design.

Le domaine de l'Interaction Homme-Machine, dont le
but est d'améliorer le soutien que portent les ordinateurs
aux activités humaines, peut utiliser la modélisation
cognitive de trois manières différentes. Un modèle
cognitif peut se substituer à un utilisateur humain pour
prévoir comment les utilisateurs agiront avec un
système avant qu'il ne soit implémenté ou même
prototypé. Un système peut générer un modèle cognitif
d'un utilisateur en train d'interagir avec le système afin
de modifier l'interaction au bénéfice de cet utilisateur.
Enfin, des modèles cognitifs peuvent se substituer
directement à des utilisateurs, de sorte que des groupes
d'individus peuvent être simulés dans des situations qui
nécessitent beaucoup de participants, par exemple
l’apprentissage ou les loisirs. Cet article présente des
exemples de tels modèles et leur conséquences sur la
conception d'interfaces graphiques.

Keywords: Cognitive modeling, GOMS, intelligent
tutoring, intelligent agents

Introduction
A cognitive model is a computer program that

behaves like a human being. It may emulate the
perceptual, cognitive and/or motor processes people go
through to complete a task. It may take the same
amount of time that people take to perform a task. It
may make the same type of errors people make. It may
take the same amount of time and require the same type
of experience to learn to perform a task. It may do the
same inefficient fumbling for a solution to a difficult
problem. In all, the point is to have the computer
behave like a human, not simply to get the job done
with the least effort or in the least time.

Cognitive models are used in psychological research
in several ways. They serve as a vehicle for
understanding human behavior; if you can program a
computer to behave the same way, you have
demonstrated a level o f understanding more rigorous
than the typical box-and-arrow diagrams that are also
models of a sort. If your model is successful at
producing human-like behavior under certain
assumptions, you can hypothesize that different
behavior will emerge under different assumptions,
change those assumptions in the model and see how it
behaves. Explorations with models in this way can
then be used to design experimental conditions that are
likely to show measurable effects. So, cognitive
models are useful tools for psychologists, but why
should graphic interface designers care about cognitive
models?

1 An earlier version of this talk was presented at the European Workshop on Cognitive Modelling. (14th- 16th
November 1996, Technical University of Berlin, Berlin Germany.)

Graphics Interface ’98

mailto:bej@cs.cmu.edu

Cognitive models for human-computer interaction
(HCI), as opposed to those for psychological science,
have a different goal. In general, they are used to make
interfaces “better” for users. There are at least three
different uses for cognitive models in service of this
general goal.

• Predicting human behavior on proposed interactive
systems,

• Modeling the user as a guide for adaptive
interaction, and,

• Substituting models for other participants in group
interactions.

Predicting Human Behavior on Proposed
Interactive Systems2

The overall motivation for HCI cognitive modeling
efforts is to provide engineering models of human
performance. In the ideal, such models produce a priori
quantitative predictions of performance at an earlier
stage in the development process than prototyping and
user testing. That is, they predict execution time,
learning time, errors, and identify those parts of an
interface that lead to these predictions, thereby focusing
the designer on what to fix. They allow analysis at
different levels o f approximation so predictions
appropriate to the design situation can be obtained with
minimum effort. They are straight-forward enough for
computer designers to use without extensive training in
psychology, and these models are integrated enough to
cover total tasks. Although HCI research has not yet
reached this ideal, GOMS [4] is currently the most
mature of engineering models, has many of these
properties, and can be truly useful in real-world system
development.

GOMS is a method for describing a task and the
user's knowledge of how to perform the task in terms of
Goals, Operators, Methods, and Selection rules. Goals
are simply the user's goals, as defined in layman's
language. What does he or she want to accomplish by
using the software? In the next day, the next few
minutes, the next few seconds?

Operators are the actions that the software allows the
user to take. With the original command-line interfaces,
an operator was a command and its parameters, typed on
a keyboard. Today, with graphic user interfaces,
operators are just as likely to be menu selections,
button presses, or direct-manipulation actions. In the
future, operators will be gestures, spoken commands, or

2 The following section draws heavily from my
previous writing in [7] and [8]. Extensive references to
GOMS research and validation can be found in those
works.

even eye movements. Operators can actually be defined
at many different levels of abstraction but most GOMS
models define them at a concrete level, like button
presses and menu selections.

Methods are well-learned sequences of subgoals and
operators that can accomplish a goal. The classic
example describes deleting a paragraph in a text editor.
Using a mouse, place the cursor at the beginning of the
paragraph, hold the mouse button down, drag to the aid
of the paragraph, release, highlighting the paragraph,
then hit the delete key. This complete sequence of
actions is one "method." Another (less efficient)
method: place the cursor at the end of the paragraph and
hit the delete key until the paragraph is gone.

If there is more than one method to accomplish the
same goal, then selection rules, the last component of
the GOMS model, are required. Selection rules are the
personal rules that users follow in deciding what method
to use in a particular circumstance. For instance, in the
paragraph-deletion example, if the paragraph is more
than five characters long, then I will typically drag to
highlight and hit the delete key. If the deletion is five
characters or less, then I will place the cursor at the aid
and delete back. Thus, my personal selection rule
depends on how long the paragraph is. Another user
may have a different selection rule that depends on a
different length of paragraph or even depends on other
features of the task situation.

GOMS analysis applies to situations in which users
will be expected to perform tasks that they have already
mastered. In the psychology literature this is called
having a cognitive skill, i.e., users are not problem
solving, not hunting around for what they need to do
next. They know what to do and all they have to do is
act. There are many different types of cognitive skill in
human-computer interaction. For instance, there are
many single-user applications where the user tells the
system what to do, then the system does it and tells the
user what it has done. This is a user-paced, passive
system and GOMS has been shown to work very well
in this type of situation. GOMS has been applied to
applications such as text and graphics editors, page
layout, spreadsheets, information browsers, operating
systems, ergonomic design systems, CAD systems,
map digitizers, flight-management computers in
commercial airplanes, oscilloscopes, programmable
television sets, and WWW pages.

GOMS has also been shown to be valid in single-
user, active systems, where the system changes in
unexpected ways or other people participate in the
accomplishing the task. There are GOMS models, for
instance, of radar monitoring and of video games, where

the system throws new situations at the user at a
maniacal pace, and GOMS models of telephone
operators interacting with customers. The knowledge
gathered by a GOMS analysis is sufficient to predict
what a person will do in these seemingly unpredictable
situations.

GOMS can be used both quantitatively and
qualitatively. Quantitatively, it gives good predictions
of performance time and learning time. So it can be
used to help in a purchasing decision or to see if a
proposed design meets quantitative performance
requirements.

Qualitatively, GOMS can be used to design training
programs, help systems, and even the system itself.
Since a GOMS model is a careful description of the
knowledge needed to perform a given task and it
describes the content of task-oriented documentation.
You need only tell the new user what the goals are,
what different methods could be used to achieve them,
and when to use each method (selection rules). This
approach has been shown to be an efficient way to
organize help systems, tutorials, and training programs
as well as user documentation. GOMS models can also
be used qualitatively to literally redesign a system.
When GOMS discovers a frequent goal supported by a
very inefficient method, then the design can be changed
to include a more efficient method. If GOMS shows
that there are goals not supported by any method at all,
then new methods can be added. GOMS may also reveal
where similar goals are supported by inconsistent
methods, a situation in which users are likely to have
problems remembering what to do, and show how to
make the methods consistent.

In the last decade, HCI researchers have very carefully
tested and re-tested the predictions of GOMS models,
and reported these results in refereed conferences and
journals, so designers can trust the method. Many
studies give rigorous laboratory verification of the
predictions made from GOMS models on a large
number of products. There have been several studies that
use real-world data to verify performance-time
predictions o f GOMS models. There has also been work
with realistic training situations that show the value of
GOMS-inspired training programs and help systems.3

3 There has been much less work with the prediction
of errors, so I recommend that designers without formal
psychological education not use GOMS models to
predict errors until the validation research matures.

Example: Project Ernestine4
In 1988, the telephone company serving New York

and New England (NYNEX) considered replacing the
workstations then used by toll and assistance operators,
who handle calls such as collect calls, and person-to-
person calls, with a new workstation claimed to be
superior by the manufacturer. A major factor in making
the purchase decision was how quickly the expected
decrease in average work time per call would offset the
capital cost of making the purchase. Since an average
decrease of one second in work time per call would save
an estimated $3 million per year, the decision was
economically significant.

To evaluate the new workstations, NYNEX conducted
a large-scale field trial. At the same time, a research
group at NYNEX worked with me to use GOMS
models in an effort to predict the outcome of the field
trial. First, models were constructed for the current
workstation for a set o f benchmark tasks. They then
modified these models to reflect the differences in design
between the two workstations, which included different
keyboard and screen layout, keying procedures, and
system response time. This modeling effort took about
two person-months, but this time included making
extensions to the GOMS modeling technique to handle
this type of task and teaching NYNEX personnel how
to use GOMS. The models produced quantitative
predictions of expert call-handling time for each
benchmark task on both workstations, which when
combined with the frequency of each call type, predicted
that the new workstation would be an average of 0.63
seconds slower than the old workstation. Thus the new
workstation would not save money, but would cost
NYNEX about 2 million dollars a year.

This was a counter-intuitive prediction. The new
workstation had many technically superior features.
The workstation used more advanced technology to
communicate with the switch at a much higher speed.
The new keyboard placed the most frequently used keys
closer together. The new display had a graphic user
interface with recognizable icons instead of obscure
alphanumeric codes. The procedures were streamlined,
sometimes combining previously separate keystrokes
into one keystroke, sometimes using defaults to
eliminate keystrokes from most call types, with a net
decrease o f about one keystroke per call. Both the
manufacturer and NYNEX believed that the new
workstation would be substantially faster than the old
one, by one estimate, as much as 4 seconds faster per

4 The details of this application of GOMS, both
technical and managerial, can be found in [3] and [5].

call. Despite the intuition to the contrary, when the
empirical field-trial data were analyzed, they supported
the GOMS predictions. The new workstation was 0.65
seconds slower than the old workstation.

In addition to predicting the quantitative outcome of
the field trail, the GOMS models explained why the
new workstation was slower than the old workstation,
something which empirical trials typically cannot do.
The simple estimate that the new workstation would be
faster was based on the greater speed of the new features
considered in isolation. But the execution time for the
whole task depends on how all of the components of the
interaction fit together, and this is captured by the
critical path in the GOMS model. Because of the
structure of the whole task, the faster features of the
new workstation failed to shorten the critical path.

Thus, examination of the critical paths revealed
situations in which the new keyboard design slowed
down the call, why the new screen design did not change
the time of the call, why the new keying procedures
with fewer keystrokes actually increased the time of
some calls, and why the more advanced technology
communication technology often slowed down a call.
The complex interaction of all these features with the
task of the telephone operator was captured and
displayed by GOMS in a way that no other analysis
technique or empirical trial had been able to accomplish.

NYNEX decided not to buy the new workstations.
The initial investment in adopting the GOMS technique
paid off both in this one purchase decision, and by
allowing NYNEX to make some future design
evaluations in as little as a few hours of analysis work.

Modeling the User as a Guide for Adaptive
Interaction

A second use of cognitive models in HCI is to model
the knowledge or intentions of the user during
interaction in order to serve that user better. There can
be many applications of this, for example, active
assistance, or intelligent agents attempting to divine the
users’ goals. But nowhere is it more clear than in
educational systems that are attempting to teach
students a cognitive skill. Early systems had an implicit
“model” that if a screen had been presented, then the
student had learned the material on the screen, or if a
student solved a problem correctly, he or she reliably
knew all the material necessary to solve that problem.
If you’ve ever taught a class, you know that both these
assumptions are poor ones. More modem systems use
more complex models of human knowledge acquisition.
For example, let us look at the “cognitive tutors” of the
Advanced Computer Tutoring (ACT) Project

Example: Cognitive tutors.5
The purpose of the ACT Project is to develop

computer-based tutors for mathematics and
programming that assist students in problem solving.
Their cognitive tutoring technology, based on a
computational theory of thought called ACT-R [1],
generate and follow the multiple possible solutions a
student might attempt on any given problem and
dynamically tailor instruction to each individual student
and problem. Like a personal human tutor or coach,
cognitive tutors observe student performance, identify
strengths and weaknesses, and provide individualized,
just-in-time instruction while students learn by doing.

Over the past decade, the ACT cognitive tutors have
been experimentally tested by more than 2000 students
and have been shown to dramatically accelerate student
learning (students take 1/3 the time to master the
material), increase test scores (by about a letter grade)
and improve student motivation (as measured by third-
party evaluators). These impressive results came only
through the application o f cognitive models to tutor­
building.

The ACT tutors use a much more sophisticated
architecture for their cognitive modeling than the
GOMS models discussed above. They are based on the
ACT-R cognitive architecture which embodies a theory
of performance and learning, including forgetting and
strengthening of knowledge. It even models the chances
of “slips” and “lucky guessing” by the student.

As the student solves problems posed by the tutor,
the system uses cognitive models in two ways. In a
process called “model-tracing” it maps the student’s
solution onto a production-system model of ideal
performance. On the basis o f this mapping, the system
does “knowledge-tracing” where it assesses how well the
student knows the information in each production of the
ideal model. It then adapts the problem selection to
exercise those pieces of knowledge that the student has
not yet mastered.

Participants in Group Interactions
A final use for cognitive models in HCI is as

replacement for human participants in group
interactions. Such systems can be used to train or
rehearsing people in a domain that requires many

5 The following section draws heavily from [2] and
from the material on the Advanced Computer Tutoring
Project homepage:

http://sands.psy.cmu.edu/ACT/tutor/tutoring.html
Additional publications can be found by following links
on that page.

Graphics Interface ’98

http://sands.psy.cmu.edu/ACT/tutor/tutoring.html

participants, e.g., high-level commanders in a simulated
theater of war, or the personnel of who launch the
NASA Space Shuttle. Furthermore, organizations
would like to test out proposed changes in their work
processes, technology, or organizational structure. In
the latter case, this use o f cognitive modeling becomes
similar to the first example: predicting the effects of
proposed changes in the task environment.

(Note that this is different from intelligent agents as
participants in group interaction. These cognitive
models are to emulate humans in important parameters
(e.g., both functional response and time to respond) as
opposed to doing a job without the expectation that it
be done as a human would do it. Although intelligent
agents may play an important role in the future of
interactive systems, they are not constrained by the
same requirements as cognitive models.)

Example: Soar-based intelligent forces6
Military organizations have always had the need to

train and practice their people in the processes of war.
Previously, this took the form of “war games” staffed
with many, many personnel. Recently, both the
technology of actual engagement (e.g., that tactical air
fighting often occurs out of range of visual sighting,
and the pilot only sees the information given to him or
her through the interfaces in the cockpit) and the
technology of simulation have evolved to make a
simulated theater of war (STOW) a possibility. If
simulated agents could be created to emulate human
behavior with sufficient fidelity, then realistic training
and rehearsal becomes cost-effective. Not only can
people practice on the current technology, but the
effects of proposed changes in doctrine, tactics, or
weapon systems can be assessed.

To these ends, the major goal of STOW-97 (October
29-31, 1997) was to demonstrate that it was possible to
generate high-fidelity behavior for a large-scale
distributed entity-level simulation of a complete theater
battle, such as the Iraq/Kuwait war in the early 1990's.
In addition, STOW-97 was a full-fledged operational
training exercise involving active duty personnel
(approximately 1000 humans) and simulated forces,

6 The following section draws heavily from [10] and
from the material on the Soar-IFor web pages at the
University of Southern California and the University of
Michigan:

http://www.isi.edu/soar/soar-ifor-project.html
http://ai.eecs.umich.edu/ifor/index.html

Additional publications can be found by following links
on those pages.

both semi-autonomous and “intelligent” (approximately
50,000 simulated entities).

Based on a theory o f cognition called Soar [9] (as
complex as ACT-R, but different in its details), TacAir-
Soar provides competent pilot-level behavior for a wide
range of air roles, including defensive counter air,
offensive counter air, close air support, and the different
elements o f strike and interdiction packages (air-to-
ground attack, escorts, suppression of enemy air
defense, and sweeps). Additionally, TacAir-Soar can be
used in a number of support and coordination roles for
air missions, including airborne early warning,
refueling, forward air control, and reconnaissance. In late
October of 1997, TacAir-Soar provided the behaviors for
all fixed wing aircraft entities and missions for STOW-
97. With more than 5,000 rules and 500 operators,
TacAir-Soar is one of the largest real-time "expert"
systems ever developed.

RWA-Soar provides competent pilot-level behavior
for a rotary-wing attack mission and a combined rotary­
wing transport and escort mission. It also provides
automated commanders for companies of attack
helicopters. In late October of 1997, RWA-Soar
provided attack, transport, and escort missions for
STOW-97.

TacAir-Soar and RWA-Soar are distinguished from
other entity-level computer-generated forces by being
truly autonomous. As with human forces, they are
initially provided with exercise, operations, and mission
information. They then plan and fly their missions,
respond to threats, and communicate via simulated
radios with other synthetic and human forces, all
without any human intervention other than the standard
interactions defined by the environment and doctrine.

STOW-97 consisted of 48 hours of continuous
operations (7 AM ET October 29 to 7 AM ET October
31, 1997). There were a total of 722 FWA scheduled
missions plus numerous ground-alert missions for the
48 hours (and an as yet undocumented number of RWA
missions). The missions varied in length from one and
a half hours to eight hours, with the median being three
hours. At any one time, there were from 30 to 80
planes airborne. The planes were run on approximately
25 Pentium Pro's (P6's) with 4-6 vehicles/machine.

Tambe and his colleagues (1995, after STOW-E a
smaller-scale STOW with 2,000 participating entities)
compiled a list of the requirements for automated pilots.
Many of these requirements emphasize the cognitive-
plausibility aspects of these systems.

•Goal-driven and knowledge-intensive behavior.
including planning, executing a plan, and replanning as
needed.

http://www.isi.edu/soar/soar-ifor-project.html
http://ai.eecs.umich.edu/ifor/index.html

•Reactivity to changes in the environment, mitigated
by a memory for internal state.

•Real-time performance to fully participate in mixed-
entity simulations

•Conformance to human reaction times and
limitations. Super-human abilities (e.g., faster reaction
time, or unlimited memory) or sub-human abilities
(e.g. reaction times too slow to keep a jet aloft in high-
stress maneuvers) will give an unrealistic behaviors.

•Overlap of performance of multiple high-level tasks.
•Multi-agent coordination and communication. These

entities must be able to coordinate their actions with the
other entities, both human and simulated, in order to
work as a team.

•Agent Modeling. Especially opponent modeling
done concurrently with flying the mission!

•Temporal reasoning. Participating in a real-time
simulation requires temporal reasoning at least for
planning and executing plans, timing communications,
and recognizing opponents’ plans.

•Explanation. These agents need to be able to
explain their behavior after the fact for postmission
debriefing. They need to accept questions and generate
answers, both in verbal and graphical form, as needed,
to best explain their assessment of the situation and
actions.

•Maintenance o f episodic memory used for the
explanation capability (an agent cannot explain its
behavior if it cannot remember it), but also to help with
agent modeling, i.e., tracking the movements of an
opponent through time to reveal its intentions.

What do these applications of cogn itive
models mean for GI design?

Each of these uses of cognitive models provide
opportunities for GI designers and also pose challenges
to the GI design community.

Predictive models
These models reliably predict quantitative measures of

skilled performance (i.e., time to execute tasks) and
relative method-learning time of WIMP interfaces.
They have been used as a design tool for real systems
(see 11 cases in John & Kieras, 1996) and could be used
more widely with great potential benefit. Tutorial
materials exist (e.g., presented at the CHI and HFES
conferences and in the Handbook of Human-Computer
Interaction [6]); this is a plea to use them.

However, the tool-support for doing these models is
relatively meager, and confined to research labs. This is
a plea to do something about that! Apply all GI’s
knowledge of tools for programming languages to tools

for cognitive modeling, at a production-quality level to
help bring this technique into routine use.

Cognitive Tutors
Again, this technique works for teaching people

procedures and could be directly applied to help systems
and tutorials for GI products. But, like the GOMS
models above, the tools for creating them are not yet
production quality, making the effort to produce
cognitive tutors more costly than the six-month or year
turn around on new releases of GI software warrant (as
opposed to the unchanging rules o f algebra or geometry,
for example). Better tools would help. An intriguing
possibility is to combine the need for tools for
predictive models with cognitive tutoring tools, because
a GOMS analysis is very close to the knowledge
analysis necessary for a cognitive tutor.

Participants in Group Interactions
Finally, this last application o f cognitive modeling

opens whole new domains for GI, rather than
contributing to the current way we do business. Again,
better tools are needed, but specific challenges include
the communication between multiple agents and
debriefing explanation capability. Please bring all your
experience with visualization and communication to
bear on this problem.

References
1. Anderson, J. R. (1993) Rules o f the mind. Hillsdale,

NJ: Lawrence Erlbaum Associates, Inc.
2. Anderson, J. R., Corbett, A. T., Koedinger, K. R.,

& Pelletier, R. (1995) Cognitive tutors: Lessons
learned. The Journal o f the Learning Sciences, 4(2),
pp. 167-207.

3. Atwood, M. E„ Gray, W. D„ & John, B. E. (1996)
Project Ernestine: Analytic and empirical methods
applied to a real-world CHI problem. In M.
Rudisill, C. Lewis, P. B. Poison, and T. D. McKay
(Eds.), Human-Computer Interface Design: Success
Stories, Emerging Methods and Real-World Context
(pp. 101-121). San Francisco: Morgan Kaufmann.

4. Card, S. K., Moran, T. P., & Newell, A. (1983).
The psychology o f human-computer interaction.
Hillsdale, NJ: Lawrence Erlbaum Associates.

5. Gray, W. D., John, B. E., & Atwood, M. E. (1993)
Project Ernestine: Validating a GOMS analysis for
predicting and explaining real-world task
performance. Human-Computer Interaction, 8, pp.
237-309.

6. Helander, M. G., Landauer, T. K., & Prabhu, P. V.
(1997) Handbook of Human-Computer Interaction,

Second Completely Revised Edition. Amsterdam,
Netherlands: North-Holland.

7. John, B. E. (1995) Why GOMS? interactions, vol.
2, no. 4. pp. 80-89.

8. John, B. E. & Kieras, D. E. (1996) Using GOMS
for user interface design and evaluation: Which
technique? ACM Transactions on Computer-Human
Interaction, 3 (4), pp. 287-319.

9. Newell, A. (1990) Unified Theories of Cognition.
Canbridge, MA: Harvard University Press.

10. Tambe, M J o h n s o n , W. L. Jones, R. M., Koss,
F., Laird, J. E., Rosenbloom, P. S., & Schwamb,
K. Intelligent Agents for Interactive Simulation
Environments, AI Magazine, Spring 1995, pp. 15-
39.

Graphics Interface ’98

