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Abstract

In this paper we examine the simultaneous solution of
a set of image transformations with the goal of creat-
ing a globally optimal image mosaic. We examine an
alternative parameterization of the full projective matrix
transformation that leads to elimination of independent
skew and aspect ratio parameters for each image. We
also create a scale-free distance error metric which pre-
vents the tendency of simultaneously solved systems to
tend toward the zero solution.
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Introduction

Image stitching or image mosaicing is the process of
transforming and compositing a set of images, each a sub-
set of a scene, into a single larger image. The transfor-
mation for each image maps the local coordinate system
present in each image onto the global coordinate system
in the final composite.

There are several image transformation types used.
Panoramic transformations onto cylinders are most com-
mon, as found in QuickTime VR[3, 2] and plenoptic
modeling[8]. Mosaics on planar surfaces are also pop-
ular. Panoramas with a stationary eyepoint can be placed
on piecewise planar surfaces[5, 13]. Arbitrary images of
planar surfaces can also be composited[7]. Composition
of image strips onto planar surfaces under affine transfor-
mations has also been investigated[11, 6].

The previous work mentioned has focused on compo-
sition of images with large image overlap, typically at
least 50%. The distance, in terms of number of images,
between any subimage and a subimage whose transfor-
mation is fixed, is often very small. Often this distance is
one, i.e., each new image is combined with the previous
composite image which is held fixed.

In the field of aerial photogrammetry, solution tech-
niques for finding projective transformations are well
developed[1]. However, correspondence with known
global points is used to give accuracy to the final com-
position.

The focus of this paper is to examine the simultane-
ous solution of the full set of component image trans-
formations needed for a composite image. Many com-
ponent images are distant from a fixed image. Unlike
cylindrical panoramas, we will examine mosaics extend-
ing both horizontally and vertically from the fixed image.
We will use photogrammetric techniques for simultane-
ous solution of the image transformations. However, like
the previous stitching work mentioned, we will assume
no known global control points. We will also demonstrate
how a new error measurement function and a reparame-
terization of the standard projective transformation pro-
duce composites with less warping than traditional for-
mulas.

We will illustrate our work with two image sets, one
of a mountain scene in the visible spectrum, and an in-
frared'filtered set from a Mayan archaeological site in
Bonampak, Mexico[9]. The first set is a typical video mo-
saicing set with overall good contrast, clean signal, and
generous overlap. It contains 79 images. The Bonampak
set contains 91 frames, many with low contrast, heavy fil-
tering, uneven sensor response, and abundant noisy back-
ground texture. This set has proved to be an excellent test
set for our methods. Examples of both image sets can be
seen in Figure 1. The relative positions and overlaps of
the individual images can be seen in Figures 4d and 5d.

Standard Projective Transform Solution
Solution of an image transformation involves two com-
ponents:

e An error function which measures the difference be-
tween features in overlapping image pairs. This er-
ror metric is usually the sum squared error for indi-
vidual image pair features.

e A set transformation functions between the coordi-
nate systems of the component subimages and the
coordinate system of the composite image.

TAll infrared video images in this paper are courtesy of Stephan
Houston, Brigham Young University Anthropology Department and the
Bonampak Documentation Project.



Figure 1: Three video frames from two image stitching sets. The left image is the summit of Squaw Peak in Provo,
Utah. The center and right images are two infrared video frames of a Mayan archaeological mural in Bonampak,
Mexico. This center image is typical and a good example of a composition set of low contrast, uneven sensor response,
and ambiguity from irregular background texture. The right image shows a more interesting, but more infrequent frame
from the same data set. Note the light-colored profile of a Mayan figure in the lower left area of the frame.

A non-linear least squares minimization technique such
as Levenberg-Marquardt[12, 10] is used to compute the
transformation function parameters for each image.

In order to compute a unique solution, it is necessary to
fix the transformation of at least one image with respect
to the global coordinate system. This is usually done by
giving one image the identity transformation.

Error Functions
A commonly used error function minimizes the differ-
ence in image intensity between transformed image pairs:
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where I; and I; are a pair of overlapping images and f;
and f; the corresponding transformations from global co-
ordinates x to local image coordinates.

Error functions such as equation 1 are the function of
choice for interactive video mosaics and wherever no ex-
plicit point matching is performed between image frames.
Such functions work well when contrast is high, sensor
response is even, noise is low, and ambiguity is minimal.
Image sequences that respond poorly to automatic match-
ing techniques require explicit point matching and a dif-
ferent error function.

An error function that minimizes the global distance
between matched points in image pairs is

() = >

4,j,n

(Xip 1 Xj, )EPi;

l9i(xi,) — 9;(x;,)]° (@)

where g; and g; are the image transformations from local
to global image coordinates and P;; is the set of matched
point pairs for images ¢ and j.

Matrix Transformations
In the plane, all projective transformations can be ex-
pressed as 3 by 3 homogeneous matrix transforms[4].
These transforms are equivalent up to a non-zero scale
factor, leaving eight independent variables in the trans-
formation:
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The transformed coordinates of a point (x,y) using this
transformation are

maT + msy + mg
mrx + mgy + 1
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Examples of global mosaics computed for the two test
data sets using the error metric of equation 2 and the
transformation parameterization of equation 4 can be
found in Figures 4a and Sa.
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Modified Projective Transform Solution

Using the direct matrix entry parameterization of equa-
tion 3 reveals two problems. First, there are sufficient
degrees of freedom to allow an independent image skew
angle and independent = and y scale factors for each im-
age. Cameras used in image stitching application can
be considered to have a constant, and often negligible,
skew angle for each image. A zoom lens may provide an
isotropic scale factor, but the aspect ratio can be assumed
to be fixed.

Secondly, a valid globally optimal solution is the zero
solution, i.e when all free matrix entries go to 0. In prac-
tice, the existence of the zero solution is seen as a ten-
dency for images to shrink with distance from the fixed
image. This phenomenon can be seen in Figures 4a and
Sa.
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Figure 2: A reduced set of projective transformation pa-
rameters. Individual skew and aspect ratio are ignored for
each image. The perspective parameters are reformulated
as rotations in the z direction.

Reparameterized Projective Transforms

An equivalent representation of the full projective trans-
form with a different parameterization uses the compo-
sition of the following matrices with their accompany-
ing parameters: image rotation R.,0; isotropic scale factor
S.k; skew angle L.f,; anisotropic scale factor or aspect
ratio A a; translation T, ¢, and t,; and perspective or
keystone factors P, p, and p,. A common transforma-
tion composition would be

x' = TPRALSx Q)

Note that this parameterization has the same number of
free parameters, 8, as the direct parameterization.

An alternative view to the perspective factors treats
them as rotations in the xz and yz planes of a camera
centered coordinate system as shown if Figure 2. These
rotations, #> and #3, can be combined with the rotation
in the zy plane, 61, into a single 3 by 3 rotation matrix.
Casting out the skew and aspect ratio parameters the new
parameterization for the projective transformation matrix
becomes the matrix shown in Figure 3. The new param-
eterization has 6 parameters instead of 8, which reduces
the size of the Jacobian matrices used in the Levenberg-
Marquardt routine and helps compensate for the com-
plexity of the new formulas. In addition, our experiments
have shown that without the extra degrees of freedom, the
transformation solver converges to its solution in fewer
steps.

Using this reduced parameterization for projective
transforms results in the composite images shown in Fig-
ures 4b and 5b.

Scale-free Error Function
Even with the new parameterization, the undesirable zero
solution still exists. As the scale of any image goes to

zero, so does the overall error. A new inverse scaled dis-
tance function ameliorates this problem. The new error
function for each point pair in an image pair is calculated
as the difference in transformed point coordinates divided
by the geometric average of the scale factors for each im-
age transformation, i.e.,
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This formula measures the relative distance between
points in an image pair. The overall error is unaffected
by scaling both images equally. As the scale factor ap-
proaches 0, the relative distance error increases. In an
iterative solver, changes to scale will be made to reduce
the overall distance error for a set of points rather than
the distance between any given point pair.

Composite images using transformations calculated
using the inverse scaled error function are shown in Fig-
ures 4c and Sc. Note the improvement in the wall-floor
intersection line in the Bonampak image. Also note the
reduced keystone effects in the Squaw Peak image and
the flattening of the bottom edge of the composite. This
is proper behavior for this image set, as the fixed image
with identity transformation for this set is located on the
bottom row below the summit.

Conclusion

In this paper we have examined the simultaneous solution
of sets of image transformations under perspective pro-
jection for the purpose of image composition. We have
reformulated the standard projective matrix transforma-
tion in order to reduce degrees of freedom that do not ex-
ist in the initial image set. Using the new transformation
parameters, we have developed a new error metric that
keeps the global solution from sliding towards the global
zero solution. The combination of new error metric and
projective parameterization produces projective transfor-
mation composites without as much warping as the full
projective matrix solution. In addition, because the so-
lutions are globally optimal, transformation error is dis-
tributed throughout the composite image and is thus less
noticeable.
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Figure 3: The matrix formulation of a reduced set of projective transformation parameters. See the text for a descrip-

tion of the parameters.
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Figure 4: Globally optimal Squaw Peak image composites. Image a was computed using a simple distance error
metric and matrix entry transformation parameterization. Image b was computed with a simple distance error metric
and constrained projective transformation parameterization. Image ¢ was computed with an inverse scale error metric
and constrained projective transformation parameterization. The fixed image in each composite is outlined in white.
Each composite contains 79 images, which are outlined in image d.
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Figure 5: Globally optimal Bonampak image composites. Image a was computed using a simple distance error metric
and matrix entry transformation parameterization. Image b was computed with a simple distance error metric and
constrained projective transformation parameterization. Image ¢ was computed with an inverse scale error metric and
constrained projective transformation parameterization. The fixed image in each composite is outlined in white. Each
composite contains 91 images, which are outlined in image d. Note particularly the line in the images where the wall
meets the floor. This line should be straight. (The dark spot in the lower right hand corner is an ancient Mayan camera
lens cap.)



