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Abstract
There are many schemes for fitting triangular surface 
patches to a triangular net o f  data. In general, lo­
cal schemes produce surfaces with poor surface qual­
ity. Although variational techniques construct surfaces o f  
higher quality, such techniques tend to be computation­
ally expensive. In this paper, I will present modifications 
to N ielson’s side-vertex method that improve its surface 
quality without resorting tb'variational techniques.

Résumé

Il existe de nombreuses méthodes pour ajuster des 
pièces de surface triangulaire a une maille triangularisée. 
En général, les méthodes locales produisent des sur­
faces de mauvaise qualité. Bien que les techniques vari­
ationelles produisent de meilleurs résultats elles sont 
habituellement dispensieuses à calculer. Dans cet article, 
je vais présenter plusieurs modifications de la méthode de 
Nielson permettent d’augmenter la qualité des surfaces 
sans faire appel aux techniques variationelles.
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Introduction
There are many variations o f  the data fitting problem. 
One class o f techniques fit a surface to a triangulated set 
o f data. This data may come from a surface that lies over 
a plane, in which case a function o f the form z =  f(x,  y) 
can be fit to the data. Often, however, the mesh of data 
will fold back on itself, necessitating the use o f a para­
metric scheme, where we must find three functions o f two 
parameters, x(u, v), y(u, v ), and z(u, v), that interpolate 
the data. Techniques for fitting parametric surfaces to 
a triangular mesh can be classified by the continuity of 
the surface they construct (e.g., C°, C 1, C°°) and by the 
amount o f  data considered when constructing a part of 
the surface (e.g., local schemes, which only consider data 
near the region being constructed, verses global schemes,

which consider all o f  the data when constructing any part 
o f the surface).

A large number o f local parametric triangular surface 
schemes have been developed over the past fifteen years 
(see [6 , II] for a survey o f  such schemes). Surprisingly, 
all o f  these schemes exhibit similar shape defects. On 
closer inspection, it is seen that these schemes all have a 
large number o f  free parameters that are set using simple 
heuristics. By manually adjusting these parameters, one 
can improve the shape o f  the surfaces [8].

One way to improve the shape o f the constructed sur­
faces automatically is to use variational methods. Sev­
eral authors have used such schemes to improve the 
shape o f the constructed surfaces, but usually at a high 
computational cost due to the global nature o f  the solu­
tion (e.g., [12]). Similarly, we can use local optimization 
methods to set the free parameters and improve the shape, 
although the results are not as good as the global meth­
ods [9].

In this paper, I will consider a local, parametric, 
triangular surface fitting scheme that constructs non­
polynomial surface patches that meet with tangent plane 
continuity. My method is a modification o f  Nielson’s 
side-vertex scheme [14], and relies heavily on the hybrid, 
scattered data fitting scheme o f Foley and Opitz [3]. The 
resulting surfaces show large improvement in shape over 
other local, parametric, triangular surface fitting tech­
niques. More precisely, given a triangle o f  data (a set 
o f three vertices each with an associated normal), my 
scheme constructs a parametric patch that interpolates the 
positions and normals at the comers. When used to fill a 
triangular mesh, the resulting surface patches meet with 
tangent plane continuity.

The paper begins with a review o f Bezier curves and 
triangular Bezier surfaces. Next, Nielson’s side-vertex 
scheme is presented, followed by a description o f the 
Foley-Opitz hybrid Bezier patch for functional data. In 
main section o f the paper, I present improvements to



Nielson’s scheme (with elaborations on some important 
details appearing in the following section), and in the fi­
nal section I present some results.

Background
A parametric, cubic Bezier curve parameterized over the 
interval [0, 1 ] is given by the formula

3

1=0

where the Pi are control points, and B f( t)  = (?)(1 -  
t)3~ 't ' . The two important properties of Bezier curves 
for this paper are (i) they interpolate their end points (i.e., 
¿3(0) =  Po and B (  1) =  P 3); (ii) the difference of the 
first two (last two) control points gives the derivatives at 
the ends o f the curve (i.e., •B'(O) =  3 (P i -  Po) and 
B '( l)  =  3(P 8 -  P a)).

There are two common generalizations of Bezier 
curves to surfaces: Tensor product surfaces and triangu­
lar Bezier patches. In this paper, we are concerned with 
the latter generalization. A cubic triangular Bezier patch 
is, again, a weighted combination o f control points:

B (*) =  E p r5 rW - 
r

Here, T — (i0, ¿1? i2), where i0, H, i2 are non-negative in­
tegers that sum to 3. The domain o f a triangular Bezier 
patch is a triangle, and we use the barycentric coordinates 
o f a domain point t =  ( to , t i , t2) to evaluate the general­
ized Bernstein polynomials:

The control points o f a triangular Bezier patch are ar­
ranged in a triangular net (Figure 1). The important 
properties o f triangular Bezier patches for this paper are
(i) they interpolate their comer control points; (ii) the 
boundary curves of the patch are cubic Bezier curves

Figure 2: Side-vertex method.

whose control points are the boundary points o f  the trian­
gular control net (e.g., the boundary t0 =  0 is the Bezier 
curve whose control points are P ~  with t  =  (0, ¿i, i2)); 
(iii) the cross-boundary derivatives along one boundary 
are given by two layers o f control points (e.g., for t.0 = 0, 
the cross-boundary derivatives are given by the control 
points P -w ith  T =  (0, , ¿2) andT = (1 , ¿i, ¿2))-

Although in this paper we are concerned with paramet­
ric surfaces, I will use ideas from a functional surface fit­
ting scheme to modify an existing parametric scheme. In 
the functional setting, we can write 2 as a function o f x 
and y (e.g., z =  f ( x ,  y)). Bezier curves and surfaces can 
be used to represent functional polynomials. In the case 
of surfaces, the x-y  coordinates o f the control points are 
distributed uniformly over the domain triangle. The only 
unknowns are the z coordinates o f these control points. 
To distinguish between the scalar and parametric cases, 
I will use italic symbols for scalars, and bold-italic for 
tuples.

For a further description o f Bezier curves and surfaces, 
see any text on Computer Aided Geometric Design (e.g., 
Farm’s book [2]).

Nielson’s Scheme
Nielson [14] developed a parametric side-vertex method 
to fit a piecewise smooth surface to a triangulated set of 
data. This method is a generalization o f an earlier func­
tional side-vertex interpolant [13]. Nielson’s paramet­
ric scheme proceeds by first constructing three bound­
ary curves, one corresponding to each edge o f  the input 
triangle. Next, three patches are created, one for each 
boundary/opposite-vertex pair. The interior o f  each patch 
is constructed by passing curves from points along the 
boundary (or “side”) to the opposite vertex. Hence the 
name “side-vertex,” as shown in Figure 2. The three 
patches are then blended to form the final patch (Fig­
ure 3).

All curves are constructed using a curve construction
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cubic Hermite curve that interpolates the two points Vo 
and Vx, and the two derivative vectors

fl«'(0) =  a N o  x (Vx -  V0 ) x N 0,

Figure 3: Nielson’s surface is a blend of three side-vertex 
surfaces.

operator g v that takes two vertices with normals and con­
structs a curve

flr*[Vo,Vi,Ar0 ,JVx](t)

such that <7t,(0) =  V0,g v (l) = Vx , <gv'{0), N o> = 0, 
and < g v'( l ) ,  N x >  =  0. Nielson’s method also uses a 
normal field constructor g n that constructs a continuous 
normal field along the curve gv , where gn is required to 
interpolate N 0 and N x at the endpoints and to be perpen­
dicular to g v at corresponding parameter values.

For a triangle A V p VqVr with normals N pN qN r , 
Nielson’s scheme proceeds by building three patches, 
G i, i jk  E {pqr. qrp, rpq} defined as:

G i ( tp , tq, t r

g v Vi, gv [V j,Vk. N j ,  iVfe]

N i, gn [Vj, Vk . N j .  N„] (1 -  ti),

where tp , t q, t T are the barycentric coordinates of the do­
main point. Nielson notes the following two properties of 
Gp.

1 . G i interpolates all three of the boundaries.

2 . G i interpolates the tangent plane field of the bound­
ary opposite vertex Vt.

The three surfaces are blended with rational functions 
to yield the final surface:

G[VP, Vq. Vr , N p, N q, N r] = PPG P +  /3qG q + ftrG r .

where

A  =
tjtk

tptq +  tqtr -F t rtp ( 1)

Nielson shows that if three surfaces having properties 1 
and 2 are blended with these ft,, then the resulting surface 
will interpolate all the boundary curves and tangent fields. 
The theorem is true for a large class of gv and gn . Note 
that for any g v and g n , this construction has a removable 
singularity at the comers o f the patch. Also, the mixed 
partial derivative at each comer is ill-defined.

The selection o f g v and gn has a large influence on the 
shape o f  the surface. Nielson’s g v operator constructs the

gv '( l)  = bN 1 x (Vx -  V0) x iVx,

where a and b are scalar degrees o f freedom. Selection o f  
these a and b are a critical part o f obtaining good shape. 
Unfortunately, there are no good criteria for setting these 
degrees of freedom.

For the comparisons in this paper, I used an alternative 
gv operator for the representative Nielson scheme. This 
alternative gv constructs the plane containing the edge 
Vx V2 and the vector N 0 +  TVx. Let N  be the unit vector 
perpendicular to this plane. My alternative gv operator 
then constructs a cubic Bezier curve with the following 
control points:

V  o -  V0

Vx =  Vo +
|V x -

3
Voi N  x No  

| N  x 7V0 |

V . =  V x -
|V T - Voi N  x N x

V 2
3 | N  x N x |

V s =  Vi

This is roughly equivalent to setting Nielson’s a and b 
shape parameters so that the length o f g„'(0 ) and «/„'(l) 
are |Vx —Vo|. However, the alternative method constructs 
a planar curve, which yields surfaces with slightly better 
shape than Nielson’s original method.

In a later paper, Hamann, Farin, and Nielson used gen­
eralized conics as the gv function [5]. In my tests I found 
that the g v operator in the previous paragraph usually 
gives better results than generalized conics. For exam­
ple, on the data sets used in this paper (two tori and a 
cat data set), the generalized conics gave slightly better 
results for the outside portions o f the toms, but the gv 
operator above gives better results for the insides o f the 
toms and for the cat data.

Nielson used the following gn :

gn(Vo. N 0. V1( N x) =
gv'(t) x (1 -  t )N 0 x firv'(0) x t N i  x gv'

Again, because it gives slightly better results, I used the 
following variation o f g n for my comparisons:

gn {V0. N 0,V x, N x ) =
gv '(t) x [(1 -  t ) N 0 +  t N x] x g v'(t). (2)

While use of these operators yields a G 1 surface, the 
resulting surfaces have poor shape (left column o f Fig­
ures 7, 8,9). In the next section, I will present the method

Graphics Interface ’98



Figure 4: Domain control net for the Foley-Opitz hybrid 
Bezier patch

o f Foley-Opitz; the main result o f this paper is to use the 
Foley-Optiz techniques for new gv and gn operators that 
result in surfaces with better shape.

The Foley-Opitz Scheme
Foley and Opitz [3] developed a method for interpolation 
of scattered data above the plane using a “hybrid” cubic 
Bezier patch. A hybrid cubic patch is similar to a cubic 
Bezier patch, except the interior control point is a rational 
blend o f three points. In the functional setting, the cubic 
patch boundaries are completely determined by the trian­
gle vertices and normals. Foley and Opitz then construct 
three inner control points using a C 1  cross-boundary con­
struction that gives the hybrid patch cubic precision.

Figure 4 shows the domain control net for two neigh­
boring triangles. Since this is the functional setting, we 
need only find the z-coordinate o f each control point. All 
of the boundary z-values are set to meet the interpola­
tion requirements (i.e., each patch must interpolate three 
points and normals). The Foley-Opitz method then con­
structs three interior control points for each patch. In Fig­
ure 4, p 2 is one o f  the three interior control points asso­
ciated with the left triangle and 9 2  is one o f the three 
interior control points associated with the right triangle.

Foley and Opitz compute P2 as follows. Let r, s, and 
t be the barycentric coordinates o f  coos with respect to 
boos> ¿>030, boos- If both patches o f Figure 4 form a 
single cubic, then from subdividing Bezier cubics it can 
be shown that the z-coordinate o f P2 is

P2 =  ( C102 +  C012 — ^"(6300 +  ¿210)

—2rs(i>2io +  ¿>120) — "¿rtbooi — 2sf6o2i 

— «“(¿>120 +  ¿>03o) — ¿“(¿>102 +  ¿>012)

) /(2 (r  +  s)t).

where only the z-coordinate o f the control points is used

in the calculation.
The z-coordinate o f  q2 is forced by continuity condi­

tions to be

92 == rp2 +  « 6 12 0  +  ¿&2 1 0 *

When applied to data that does not come from a cubic, 
the Foley-Opitz construction o f p 2  and q2 ensures that 
the two triangles have a C 1 join along their common bor­
der. Identical calculations would be made to ensure C 1 

continuity across the remaining two edges, giving three 
settings for the interior control points o f  each o f the two 
patches.

The three interior points (po, P i , P 2 ) are blended with 
Nielson’s rational blend functions (Equation 1) giving

blll(<0, ¿1 ,^2 ) =  A)(fo,fl,f2)PO+/?l(fo,fl,f2)Pl 

+p2(to, t i , t2)p2-

After blending, we are left with a 10 point cubic Bezier 
patch, which is evaluated at ( t o , t i , t 2) in the standard 
way.

In this paper, our interest in the Foley-Opitz scheme 
is that surfaces created by their scheme have noticeably 
better shape than those produced by schemes such as the 
Clough-Tocher technique [3, 7], The next section will 
show one way to incorporate the Foley-Opitz method into 
a parametric scheme, yielding similar improvements in 
shape.

A Modified Nielson Approach
Davidchuk [1, 10] incorporated the Foley-Opitz cross­
boundary construction into a hybrid parametric scheme. 
The resulting surfaces showed significant improvement 
in shape. In this paper, I will incorporate the Foley-Opitz 
method into Nielson’s scheme. This is done by changing 
the two Nielson operators gv and gn .

The Foley-Opitz cross-boundary construction relies on 
a natural parameterization between patch pairs, since the 
barycentric coordinates o f neighboring patches with re­
spect to each other are key in determining the tangent 
plane fields. In the parametric setting, there is no pre­
defined association between patch domains. Therefore, 
to use Foley’s tangent plane field construction, we must 
make an association between neighboring patch domains.

I chose to use Davidchuk’s choice o f  a plane, and per­
form the construction over the plane defined by the nor­
mal N  =  N 0 +  N-i passing through the point Vo (the 
choice o f Vo is arbitrary; any point may be chosen, as the 
Foley-Opitz construction is independent o f  this point). 
Given this plane, the new curve constructor builds a cubic 
Bezier curve V o, V 1 , V 2, V 3  as follows (Figure 5):

1. Set Vo =  V0 an d V 3  =  Vx.



value, I adjust the position o f  the corresponding in­
terior control point to shorten the length o f the first 
derivative. More precisely, at step (3a) o f the above 
construction, i f \Np • (Vo -  V i) |/|Vb -  V i| > C,„. 
then in place o f V i ,  g v constructs the point Vi as 
follows:

Figure 5: Functional g v operator.

2. Project V0 and Vi into the plane given by V0 and 
N .  giving the points D 0 and D i.

The straight line connecting D 0 and £>i forms the 
domain for the curve.

3. (a) Intersect the line given by (2Do +  D i) /3  and 
N  with the plane given by V0. N 0 to get the point 
V x.

(b) Similarly, the line given by (D 0 +  2 D i) /3  and 
N  is intersected with the plane given by Vi, N-i to 
get the point V 2.

For the normal operator gn , I use the Foley-Opitz con­
struction when possible. Since their construction only 
works for functional data, I reparameterize the data to be 
relative to the plane given in my g v construction. From 
the Foley-Opitz construction, I keep two layers of con­
trol points. The first layer contains the points fc030- *>120 . 
b210 . &3oo (which are the same points that gv constructs) 
and the second layer contains the points 6021. P2- and 
6 20 1- I then use these two layers to compute the normal 
for g n .

Problems and Solutions
On implementing and testing the scheme described in 
the previous section, I encountered several problems. 
Although in most areas, surfaces constructed using the 
above g v . gn operators have better shape than surfaces 
constructed using the original Nielson operators, for cer­
tain data, the new operators will construct surfaces of ex­
tremely poor surface quality. Fortunately, this problem 
data is easily detected, and the Nielson side-vertex con­
struction is flexible enough to allow us to use different 
operators on different parts o f the surface. The follow­
ing is a list o f problems with the new operators, and a 
discussion o f how to detect and correct these problems.

•  One problem with the new gv operator is that in 
the limit, as a normal becomes parallel to an edge, 
the intermediate control points move to infinity. To 
avoid this problem, I modified the new method to 
check the dot product o f the normal with an edge, 
and if the dot product is greater than a threshold

Vo -  Vo |P i  -  £>o|
I Vo -  Voi ' Z ^ / T ^ C Ï ,

(3)

Flere. C,„ is the maximum cosine (of the angle be­
tween N 0 and the edge Vo V i) for which we will use 
the Foley-Opitz construction. If the cosine of this 
angle is greater than C ,„, then we construct the tan­
gent vector to have the same length as one the one 
that would be constructed if  the angle was exactly 
C,„. A similar change is made at step (3b). For the 
images in this paper, 1 used a value o f C,„ =  0.8 .

•  A second problem is that the normal N  = No + N i  
may prove inadequate, since the neighboring trian­
gles may overlap one-another in this plane. Like­
wise, if one o f the one o f  the neighboring trian­
gles is nearly perpendicular to AT, then the Foley- 
Opitz cross-boundary construction has numerical 
problems, and produces interior control points that 
are far from the data triangle (which results in un­
acceptable bumps in the surface). A simple solution 
to this problem is to detect it by checking the dot 
product of N  with each triangle normal, and use the 
modified Nielson gn operator (Equation 2) for edges 
where either dot product is too small (I used a mini­
mum of 0.2). Alternatively, we could find a different 
plane into which the triangle have a projection, and 
use the gv and gn operators over this plane.

•  A further problem with the gn operator occurs for 
a face that lies on the boundary o f a mesh, since 
such a face does not have neighbors across some of 
its edges. In such cases, while the gv operator still 
works, a different g„ operator must be used. Also, if 
one of the interior control points o f a boundary curve 
is computed using Equation 3, then that boundary 
does not lie above a plane, and the Foley-Opitz 
cross-boundary construction can not be used. For 
both these boundary edges and these non-functional, 
I use Equation 2 for

Results
To test my scheme, I fit surfaces to two samplings of a 
torus, and to a cat data set (Figure 6). For the torus data 
sets, the normals were sampled directly from the torus. 
For the cat data set. the normal at each vertex was esti­
mated to be the average of the unit face normals for all 
faces surrounding the vertex.
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Figure 6: Data sets

Note that normal estimation is a difficult problem. For 
the cat data set, the normal estimation scheme used in this 
paper was chosen for its simplicity. However, this method 
does not produce particularly good normals. For an ex­
ample o f a more sophisticated normal estimation scheme, 
see Nielson’s paper [15].

I have compared my new scheme against several local 
schemes; however, none of these other local schemes per­
formed significantly better than (and several constructed 
worse surfaces than) Nielson’s original scheme. Thus, 
in this paper, I make comparisons to Nielson’s original 
scheme, and consider it as representative o f local, para­
metric triangular schemes.

In Figures 7, 8, 9, on the left is the surface constructed 
by Nielson’s scheme; in the middle is the surface con­
structed using the new gv operator; and on the right is the 
surface constructed using both the new gv operator and 
the g n operator. The middle images indicate that there is 
little change in the surface quality when you use the new 
g v operator without the new g n operator.

In Figures 7 and 8, I have plotted isophotes [4] atop 
the surfaces, as the shading artifacts are somewhat subtle 
(a discontinuity in the isophote indicates a wrinkle in the 
surface). In Figure 7, we see that the new scheme con­
structs a worse surface than the original scheme. How­
ever, as we increase the sampling of the torus, we see in 
Figure 8 that the new scheme constructs a higher qual­
ity surface. This rapid improvement as we increase the 
sampling of the torus suggests that the new scheme has 
a higher order o f convergence than the original Nielson 
scheme.

In Figure 9, we see that the new scheme performs 
significantly better on parametric scattered data than the 
original side-vertex method; many of the wrinkles in the 
surface have disappeared (e.g., on the tail and back of the 
cat).

Note that basic construction (described in the section

A Modified Nielson Approach) was used for most parts 
of these surfaces (both tori and the cat); the only spots 
in which the alternative boundaries and cross-boundaries 
(described in the section Problems and Solutions) were 
used were on the boundaries o f the cat and on the cat’s 
ears.

As a final comment, tests with other data sets indi­
cate that if the triangulation o f the data is “poor,” then 
the resulting surface will strongly reflect this poor trian­
gulate. This appears to be a problem inherent in Niel­
son’s scheme, as it occurs with all sets o f g v/gn opera­
tors used in this paper. While some improvements can 
by achieved by modifying the triangulation, there will be 
data for which neither my or the original Nielson scheme 
will be able to construct good surfaces.

Analysis and Conclusions
Methods for fitting G 1 surfaces to triangulated, paramet­
ric data have existed for many years. The early schemes 
uniformly constructed surfaces that had severe shape de­
fects. The flaws in these early schemes were due to poor 
settings of degrees of freedom. These degrees o f free­
dom occur in the boundary curve constructions, in the 
cross-boundary construction, and elsewhere in the patch 
construction. While using good settings o f the boundary 
curve degrees o f freedom is a necessary condition for ob­
taining good shape, it is not a sufficient condition -  one 
must also find good settings for the other degrees of free­
dom in the construction.

Other researchers have used variational techniques to 
set extra degrees of freedom in surface construction meth­
ods. In this paper, I have shown that the extra degrees of 
freedom can be set using local, geometric constructions 
based on functional constructions that have high degree 
polynomial precision. While the surfaces produced by 
my scheme arc not as good as those produced by vari­
ational techniques, my scheme is an improvement over



other local parametric schemes, the computational cost 
of my technique is lower than that of variational meth­
ods, and the ideas in this paper should prove useful to 
finding good starting points for variational techniques.
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Figure 7: Surfaces fit to a 10x5 sampling of a torus; Left: Nielson’s scheme; Middle; Nielson’s scheme using the new 
gv operator; Right: Nielson’s scheme using the new gv and gn operators.

Figure 8: Isophotc plots of surfaces lit to a 10x10 sampling of a torus.

Figure 9: Nielson cat, Nielson cat with Foley-Opitz boundaries. Nielson cal with Foley-Opitz cross-boundaries.
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