
A General Framework for Mesh Decimation

Leif Kobbelt Swen Campagna Hans-Peter Seidel

Computer Sciences Department, University of Erlangen-Nürnberg
Am Weichselgarten 9, 91058 Erlangen, Germany
kobbelt@informatik.uni-erlangen.de

Abstract
The decimation of highly detailed meshes has emerged
as an important issue in many computer graphics re-
lated fields. A whole library of different algorithms has
been proposed in the literature. By carefully investigat-
ing such algorithms, we can derive a generic structure
for mesh reduction schemes which is analogous to a class
of greedy-algorithms for heuristic optimization. Particu-
lar instances of this algorithmic template allow to adapt
to specific target applications.We present a newmesh re-
duction algorithmwhich clearly reflects this meta scheme
and efficiently generates decimated high quality meshes
while observing global error bounds.

Introduction
In several areas of computer graphics and geometricmod-
eling, the representation of surface geometry by poly-
gonal meshes is a well established standard. However,
the complexity of the object models has increased much
faster than the through-put of today’s graphics hardware.
Hence, in order to be able to display and modify geomet-
ric objects within reasonable response times, it is neces-
sary to reduce the amount of data by removing redundant
information from triangle meshes.
A precise definition of the term redundancy in this con-
text obviously depends on the application for which the
decimated mesh is to be used. Technically speaking, the
most important aspect is the approximation error, i.e., the
modified mesh has to stay within a prescribed tolerance
to the original data. From an optical point of view, local
flatness of the mesh might be a better indicator for redun-
dancy. It is natural that applications as different as ren-
dering and finite element analysis put their emphasis also
on the preservation of different aspects in the simplified
geometric shape.
In the last years, a host of proposed algorithms for mesh
reduction has been applied successfully to level of detail
generation [14, 2], progressive transmission [6], and re-
verse engineering [1]. See [15] for an overview of some
relevant literature.
We consider most of the suggested algorithms as generic
templates leaving the freedom to plug in specific in-
stances of predicates. For example, each algorithm is

based on a scalar valued oracle which indicates the degree
of redundancy of a particular vertex, edge, or triangle.
Depending on the target application, different choices for
this oracle are appropriate but this does not affect the al-
gorithmic structure of the scheme.
On the most abstract level, there are two different basic
approaches to find a coarser approximation of a given
polygonal mesh. The one is to build the new mesh with-
out necessarily inheriting the topology of the original and
the other is to obtain the new mesh by (iteratively) modi-
fying the original without changing the topology.
Having a topologically simplified model of the original
mesh is useful in applications where the topology itself
does not carry crucial information. For example, when
rendering remote objects, small holes can be removed
without affecting the quality but for a finite element sim-
ulation on the same object the holes might be important
to obtain reliable results.
In this paper we will analyze incrementalmesh reduction,
i.e., algorithms that reduce the mesh complexity by the
iterative application of simple topological operations in-
stead of completely reorganizing the mesh. We will iden-
tify the slots where custom tailored predicates or opera-
tors can be inserted and will give recommendations when
to use which. We then present an original mesh reduction
algorithm based on these considerations. The algorithm
is fast according to Schroeder’s recent definition [17] yet
allows global error control with respect to the geometric
Hausdorff distance. The scheme is validated in the result
section by showing and discussing some examples.

Relevant algorithmic aspects
The topology preserving mesh reduction schemes typ-
ically use a simple operation which removes a small
submesh and retriangulates the remaining hole. Some
schemes use local optimization to find the best retriangu-
lation. To control the decimation process, a scalar valued
predicate induces a priority ordering on the set of can-
didates for being removed. This predicate can be based
purely on distance measures between the original and the
reducedmesh or it can additionally take local flatness into
account.
This macroscopic descriptionmatches most of the known



incremental mesh reduction schemes. Due to the over-
whelming variety of different algorithms that have been
proposed in the literature, there are several authors who
attempted to identify important features and classify the
different approaches accordingly [16, 15, 3]. We do not
want to add another survey but we just give an abridged
overview. We will focus on three fundamental ingredi-
ents that are necessary (and sufficient) to build your own
mesh reduction algorithm. The ingredients are a topolog-
ical operator to modify the mesh locally, a distance mea-
sure to check whether the maximum tolerance is not vi-
olated, and a fairness criterion to evaluate the quality of
the current mesh.

Topological operators
The classical scheme of [18] removes a single vertex v
and retriangulates its crown. Thus, in every step, a patch
of n triangles (the valence of v) is replaced by a new
patch with n � � triangles. In general, a local edge-
swapping optimization is necessary to guarantee a rea-
sonable quality of the retriangulated patch.
In [6], edges pq are collapsed into a new vertex r which
removes two triangles from the mesh. This operation can
also be understood as submesh removal and retriangula-
tion. In this case the local connectivity of the retriangula-
tion is fixed but the optimal location for r is determined
by a local energy minimization heuristic.
We could cut out larger submeshes from the original
mesh but this would require a more sophisticated treat-
ment of special cases.
A nice property of the basic vertex-removal and edge-
collapse operators is that consistency preservation is easy
to guarantee. We just have to check the injectivity of
the crown of the vertex v or the edge pq respectively.
The rejection of all operations that would lead to com-
plex vertices or edges is the reason why most incremental
schemes do not change the global topology of a mesh.
Our observationwhen testing different reduction schemes
on a variety of meshedmodels is that the underlying topo-
logical operator on which an algorithm is based does not
have a significant impact on the results. The quality of the
resulting mesh turns out to be much more sensitive to the
criteria which decide where to apply the next reduction
operation.Hence, we recommend to make the topological
operator itself as simple as possible, i.e., by eliminating
all geometric degrees of freedom.
Concluding from these considerations,we suggest the use
of what we call the half-edge collapse. A commonway to
store orientable triangle meshes is the half-edge structure
[13] where an undirected edge pq is represented by two
directed halves p � q and q � p. Collapsing the half-
edge p � q means to pull the vertex q into p and to
remove the triangles that have become singular.
This topological operator’s major advantage is that it does
not contain any unset degrees of freedom which would

have to be determined by local optimization. If we treat
the two half-edge mates as separate entities then the only
decision is whether a particular collapse is to be per-
formed or not. Moreover, the reduction operation does
not “invent” new geometry by letting some heuristic de-
cide about the position of r. The vertices of the decimated
mesh are always a proper subset of the original vertices.
The half-edge collapse can be understood as a vertex re-
moval without the freedom of chosing the triangulation
or as an edge collapse without the freedom of setting the
position of the new vertex.
Figure 1 shows the submeshes involved in the basic topo-
logical operations.

Figure 1: Vertex-removal, Edge-collapse, and Half-Edge-
Collapse.

Distance measures
In most technical applications there is a predefined tol-
erance which bounds the maximum deviation of the ap-
proximating mesh from the original one. To make a re-
duction scheme useful in practical real-world applica-
tions it has to guarantee such tolerance globally over
the whole surface. All schemes that base the decision
whether vertices are redundant or not merely on the local
curvature can never satisfy this requirement. In general
there is an obvious trade-off between tightness and com-
putational complexity of the geometric error estimation.
A straight forward solution to (over-) estimate the current
error during the reduction process is to compute the de-
viation of the submesh T �

i
that replaces the mesh Ti in

the ith step of the reduction and to accumulate these con-
tributions locally [17, 3]. In general, this leads to a very
coarse but conservative estimate of the true error. Accu-
mulating not only the pure distance but an error quadric
bounding the region of allowable deviation, leads to much
better results [5].
Several authors try to estimate the true geometric devi-
ation of the two meshes in a more sophisticated man-
ner by computing the two-sided Hausdorff distance be-
tween the meshes [9]. One way to cope with the compu-
tational complexity and the many special cases, is to scat-
ter sample points on both meshes and compute Euclid-
ian distances between pairs of points [8]. Alternatively,
both one-sided Hausdorff distances can be estimated by
computing distances between the scattered points on one
mesh and the triangles of the other [3].



A very interesting but also rather complex approach (if
computed exactly) is the construction of offset-meshes
which enclose a simplification envelope around the sur-
face [4]. Since the correct computation of the offset-
meshes is quite complicated, simple heuristics have to be
applied to obtain reasonable and conservative approxima-
tions.
In rendering applications, more specialized reduction
schemes base the error metric not on intrinsic geometric
measures in object space but (dependent on the current
view) on visual measures in screen space [7, 12].
Although the two-sided Hausdorff distance fits the intu-
itive notion of the deviation of one geometric object from
the other very well, it is not appropriate for most of the
typical input data to mesh reduction algorithms.
The reason for this is that in general only the vertices of
the given mesh represent actually measured points. This
is true for laser-range scanned data and data obtained
from mechanical probing. The initial triangulation that
recovers the neighborhood relations in the input to our re-
duction algorithm has typically been generated by a pre-
processing algorithm which itself is based on heuristic
decisions (and not on specific knowledge about the ob-
ject). Hence, there is no point in approximating the whole
piecewise linear surface but it is enough to approximate
the discrete data points themselves. As a consequence,
the one-sided Hausdorff distance between the discrete set
of data points and the current decimated mesh matches
the intended concept of geometric deviation best.
This error measure also corresponds to the standard set-
ting in scattered data approximation. Generally, surfaces
(the decimated mesh in our case) are fitted to scattered
points in space. There is no reason why connecting the
data points and additionally taking into account the con-
tinuum of points on this piecewise linear (pre-) recon-
struction of the surface should lead to better results.
One positive effect of approximative two-sided Hausdorff
distance based error metrics is that it has a stabilizing in-
fluence on the intermediate optimization performed dur-
ing the reduction. This however can also be achieved by
using a proper fairness criterion (cf. next section) with the
additional advantage that weight parameters are provided
which have an intuitively predictable effect on the result.

Fairness criteria
Several algorithms in this field do not clearly distinguish
between the approximation error that is introduced by
one reduction step and the effect on the fairness qual-
ity of the resulting mesh. Both are usually combined in
the predicate by which potential reduction steps are rated.
Analyzing the nature of the problem and the incremental
approaches to its solution reveals deeper insight.
Formalizing the mesh reduction problem as a scattered
data problem, our goal is to construct a surface S whose
maximum distance to the given data points P does not

violate a prescribed tolerance

kS � Pk� � �� (1)

In our setting, the surface S is a triangle mesh with ver-
tices V �S� being a (minimal) subset of P . Since a glob-
ally optimal solution for this problem is very difficult to
find, we have to be satisfied with a local minimum.
From this point of view, incremental mesh reduction
schemes appear as greedy algorithms for the optimization
problem. Just like for classical knapsack problems [19],
we have an objective function which is the number of re-
moved vertices and we have a capacity function which
reflects how far from exhausting the maximum tolerance
the current decimated mesh still is (the remaining “un-
used” tolerance). In fact, most mesh reduction schemes
apply those reduction steps first which cause the mini-
mum waste of capacity (i.e., the minimum increase in ap-
proximation error) and this would be an optimal greedy-
decision since it provides the most benefit for minimal
investment. Notice that every reduction step removes a
constant number of vertices (usually one).
However, the mesh reduction problem is more complex
than the knapsack problem. The reason for this is that in
the iterative algorithm, future reduction steps depend on
earlier decisions. Hence, the simple greedy approach can-
not lead to a globally optimal solution. This is the point
when fairness criteria are introduced to steer the algo-
rithm. We can exploit meta-knowledge about the prob-
lem, i.e., the knowledge that the points to be approxi-
mated lie on a reasonably smooth surface and that the
coarse approximation should also be as smooth as pos-
sible. This is why the ordering of the potential reduction
steps according to local curvature leads to better results
compared to the pure approximation error minimization.
In other words, the use of a fairness oracle turns the plain
downhill decision of the greedy algorithm into an ”edu-
cated guess”.
From this abstract point of view, we can clearly distin-
guish between the different functions that control an in-
cremental mesh reduction algorithm: we have the cost
function measuring the remaining complexity of the
mesh, we have a capacity function enforcing the pre-
scribed tolerance, and we have a guidance predicate rat-
ing the potential reduction steps according to the extent
to which the reduction would affect the fairness of the
decimated mesh.
Algorithmically, we have to implement a binary oracle
(yes/no) which checks whether a particular reduction step
would violate the maximum tolerance. This oracle merely
decides whether a given vertex or edge belongs to the
candidate set of legal reduction steps. Within the can-
didate set, we assign priorities according to the fairness
predicate. In each greedy-step we pick that reduction step
which improves the fairness most or at least decreases it
least.



By applying such algorithms to a highly detailed noisy
mesh (cf. Figure 2), we can actually see how the mesh is
smoothed out first (noise removal increases fairness) and
then slowly degenerates (decreasing fairness).

Figure 2: Fairness optimization during iterative mesh reduc-
tion.

We now turn our attention to the explicit definition of the
fairness functional. This functional obviously depends
on the application for which the decimated mesh is to
be used. We will try to systematically develop a generic
functional anyway which can be adapted to particular ob-
jectives by weighting factors.
The topological reduction operators modify the surface
locally. Hence, we have to base our fairness functional on
local surface properties. From differential geometry we
know that the first and second fundamental form charac-
terize the behavior of a surface sufficiently well for most
applications. Here, the first fundamental form accounts
for the local distortion within a parameterized surface, i.e.
the mapping of lengths and angles, while the second fun-
damental form provides complete information about the
local curvatures.
These concepts from differential geometry can be trans-
ferred to the discrete setting of triangular meshes [11].
Either local low order polynomial interpolants [20, 10] or
geometric analogies lead to semantically equivalent char-
acterizations.
Assigning parameter values �ui� vi� to the direct neigh-
bors pi of a vertex p allows us to construct a local least
squares fitting quadratic polynomial. The coefficients of
this polynomial can be considered as Taylor coefficients
of a local expansion. Having derivative information up to
the second order is enough to reconstruct the fundamen-
tal forms locally. This provides access to approximations
of all relevant geometric properties.
Since local interpolation requires the solution of a (small)
linear system, we can optimize the performance of the re-
duction algorithm by using geometrical analogies to es-
timate the local fairness of first and second order. For
example the roundness of the triangles, i.e., the ratio of
inner circle radius to the longest edge can be used to esti-
mate the local distortion and the dihedral angles between
adjacent triangles to measure the local curvature.
Combining these local surface properties into one func-
tional

F �S� ��
X

p�S

� E�p� � � R�p� � � S�p�

allows to put more emphasis on either the local approx-
imation error E�p� (function value), the local distortion
R�p� (1st order derivatives), or the local curvature S�p�
(2nd order derivatives) by simply adjusting the weight co-
efficients accordingly. For example, if the reduced mesh
should preserve as much detail as possible with a pre-
scribed number of triangles then � should be set to a large
value (and the tolerance to infinity). A large � leads to re-
duced meshes which are suitable for finite element analy-
sis since better conditioned triangles are preferred. If � is
the leading coefficient then the meshes will be optimized
with respect to outer fairness which is important for ren-
dering and display.
Of course, the right choice for the weight coefficients �,
�, and � strongly depends on the initial mesh since F �S�
is not even invariant with respect to scaling. If the ranking
of the different fairness aspects should be guaranteed in-
dependently of the object to be decimated then cascading
the fairness functional is more appropriate: to compare
two potential reduction operations, we can first compare
their impact on the sum of the surrounding dihedral an-
gles S�p�. If those are approximately equal then we com-
pare the average roundness of the adjacent trianglesR�p�
and so on.
The example in Figure 3 clearly shows that the qual-
ity measure S�p� (middle) makes the algorithm produce
meshes that closely follow the outer geometry but do not
have “round” triangles. Increasing the weight for R�p�
causes the resulting mesh to become more stable but
larger jumps of the normal vector might occur.

Figure 3: The mesh on the left is decimated by using a fair-
ness functional which punishes large dihedral angles (middle)
or strongly distorted triangles (right). Notice how the minimiza-
tion of discrete curvature causes the triangles to stretch along
the lines of minimal curvature.

In addition to these geometric fairness measures there is
also the possibility of taking color information into ac-
count which might be associated with the triangles or the
vertices [6].

A new mesh reduction algorithm
According to our analysis of the relevant components in
incremental mesh reduction schemes, we designed our



own algorithm to verify our recommendations. The re-
sult is an effective and efficient algorithm which allows
fairness control by intuitive parameters.
As the topological operation we use the half-edge col-
lapse. The reason for this decision is that we want to
strictly separate the topological operation from the ge-
ometrical aspects of fairness and approximation error.
Mixing the straight greedy paradigmwith local optimiza-
tions (in more flexible operators) does neither improve
the performance of the algorithm nor does it lead to better
results in general. Another reason why we prefer the half-
edge collapse is that no new points are generated. This
makes progressive transmission of meshes more effective
and is crucial for integrated level of detail extraction.
In a preprocessing phase all potential half-edge collapses
have to be evaluated and ranked according to the fairness
criterion. Only the legal collapses are stored in a priority
queue in the order of decreasing fairness. Obviously, after
the execution of a collapse operation this queue has to be
updated by locally reevaluating the potential collapses.
The estimation of the one-sided Hausdorff distance be-
tween the original data points and the decimated mesh
is computationally very expensive. In fact, the scheme
spends most of the time computing distances between
points and triangles. To speed up the process, we exploit
the fact that vertices are removed iteratively by simple
half-edge collapses.
When the edge pq is collapsed into the vertexp, we have
to compute the distance of q to the resulting mesh. In or-
der to reduce the complexity of this operation we restrict
the area where we search for the minimum distance to
that submesh which is affected by the edge collapse (cf.
Figure 4). This overestimates the true minimum distance
in general but in the vast majority of the possible config-
urations it will give the true minimum distance. After the
closest triangle has been identified, we store the vertex in
a list associated with this triangle.

Figure 4: Hausdorff-distances of removed vertices are only
computed to the local region which is directly involved in an
edge collapse (dark grey).

Now consider an arbitrary reduction step pq �� p dur-
ing the iteration. All triangles that are adjacent to q have
a list of associated vertices. In order to recompute the
Hausdorff-distance after the collapse, all those vertices
have to be redistributed among the remaining triangles.
Again, we restrict our search to the modified region of
the mesh. The very rare cases in which another triangle
happens to lie closer to an original data point are ignored

for the sake of simplicity.
Since more and more vertices are removed from the
mesh, this redistribution becomes more and more com-
plex. Hence, we have to optimize this step in order to
achieve reasonable performance. Since we want to find
the minimum distance of a set of points from a fan of
triangles we can exploit the special configuration.
The midplane between adjacent triangles, i.e. the plane
which is spanned by the common edge and the average
normal vector, splits the space into two half-spaces. To
decide which triangle is closer to a given vertex, we just
have to check on which side of this plane the vertex lies.
The whole fan of triangles among which the cloud of ver-
tices has to be distributed defines a pencil of midplanes
(cf. Figure 5). The most efficient way to distribute the
vertices is to check each against one plane after the other
until the right slot is found. Of course this algorithm is
not waterproof. Special configurations of mutually inter-
secting planes might cause wrong assignments but this
will only lead to conservative overestimations of the error
and hence the scheme will not fail to observe the maxi-
mum tolerance. In practical experiments with many dif-
ferent meshes, this simplified distance computation never
lead to severe problems. Figure 6 shows the distance vec-
tors computed by our algorithm for a simple example.
The scheme fails to be correct only in very extreme con-
figurations and then it overestimates the error, hence the
scheme behaves more carefully in dangerous regions.

Figure 5: A pencil of planes dividing the space into slots where
sample points are assigned to the corresponding triangle.

Special attention has to be paid to boundary vertices
where the one-sided Hausdorff-distance fails to be a
proper model for the intuitive geometric intent. On the
boundaries we have to prevent vertices from sliding into
the inner region of the surface. Although this would not
violate the maximum tolerance, it ignores the additional
knowledge about the local topology. Hence, for bound-
ary vertices we do not compute distances to triangles but
take distances to the decimated boundary polygon (cf.
Figure 6).
The same argument holds for inner surface vertices which
lie on a feature line. These are, in some sense, singular
curves on surfaces and hence should be treated as such,
i.e. deviations from such lines within the surface matter.
This is very similar to the treatment of discontinuities in
the color attributes.



Figure 6: The restricted Hausdorff-distance coincides with the
true minimum distance in most cases. In the right picture the
distance vectors from the original data points to the triangles
of the reduced mesh are shown. Notice the different distance
definition for the boundary vertices.

Results
We show several decimated meshes generated by our al-
gorithm. Figure 7 demonstrates the effectiveness of our
scheme. The original mesh is reduced to about ��� % of
the original data. The corresponding computing times are
given in Table 1. All times are benchmarked on a SGI,
R10000, 195 MHz.
Figure 9 shows a whole sequence of decimated meshes.
It demonstrates the effect of the different fairness func-
tionals. Using the dihedral angle criterion (middle row)
causes a concentration of the triangles in regions of high
curvature where the triangles stretch along the minimum
curvature direction. Flat regions are strongly decimated
without caring about the occurrence of long thin trian-
gles. Optimizing the aspect ratio of the triangles instead
leads to a more equalized distribution of the triangles and
avoids extreme configurations (lower row). However, the
number of remaining triangles for the same tolerance is
larger.
As we expect, the choice of the fairness criterion has
some impact on the obtainable degree of reduction for a
given tolerance (cf. Table 2). Ordering the potential edge
collapses according to the dihedral angle criterion (order
2) typically leads to the least number of triangles. This ef-
fect can be interpreted as the “educated guessing” which
pushes the downhill algorithm into the right direction. Or-
dering the reduction candidate set according to the aspect
ratio of the triangles (order 1) usually allows even less
reduction than the pure ordering by increasing approxi-
mation error (order 0).
A casual attempt to explain this behavior is the follow-
ing: all the objects we used to test our algorithm rep-
resented (piecewise) smooth objects. Hence, the affinity
of the algorithm to preserve the local flatness of the sur-
faces by minimizing dihedral angles is a suitable model
for the data. The roundness of the triangles, however, is
a bad model since the tight approximation of a smooth
surface by equilateral (and equally sized) triangles works
well only for very special geometries, e.g., for spheres.

Figure 7: Reduced meshes derived from a rather complex
model (top, 871,414 triangles). The absolute approximation tol-
erances are ������ (middle, 7,402 triangles) and ���� (bottom,
4458 triangles). Cf. Table 1 for the bounding box size.

Hence this guidance function is not chosen optimally (cf.
Figure 8).
The majority of the computational costs of the algorithm
is due to the fact that updating the fairness and the devi-
ation of the current mesh requires a local recalculation of
the corresponding values after each edge collapse. Re-
duction schemes which base the redundancy oracle on
conservative local overestimations are much faster but
tend to waste a significant amount of tolerance. Cf. the



(order 0) bounding box #� orig. #� reduced � prescribed � actual time (sec.)

dragon .20�.14�.09 871,414 7,402 .0005 .000499 584.9

dragon .20�.14�.09 871,414 4,458 .001 .000998 666.4
bunny .15�.15�.15 69,473 1,182 .001 .000998 35.3

mechpart 81� 50� 26 7,942 438 .5 .49646 2.64

Table 1: CPU times and reduction rates for different mesh models. Notice the tight satisfaction of the prescribed error bounds.

Figure 8: The reference model for mesh reduction algorithms. For moderate reduction (middle) the roundness criterion leads to
the best results, for extreme reduction (right) the flatness criterion yields better results since the coarse mesh adapts better to the
original geometry.

#� � actual time (sec.)

order 0, � � ��� 2,089 .0498 1.82

order 0, � � �� 1,500 .0999 2.03
order 0, � � ��� 837 .2492 2.37

order 1, � � ��� 2,555 .0499 1.98
order 1, � � �� 1,784 .0998 2.26

order 1, � � ��� 872 .2492 2.76

order 2, � � ��� 1,952 .0497 5.2
order 2, � � �� 1,357 .0991 6.04

order 2, � � ��� 704 .2491 7.51

Table 2: Reduction rates and running times for the mechanical
part model (7,942 triangles) with different fairness criteria and
error bounds. The computational costs increase with the order
of the fairness functional since larger regions have to be updated
after each reduction step.

tables 1, 2, and 3 where prescribed error tolerances and
actually occurring maximum errors are given.

Conclusions
We presented a detailed analysis of a generic incremental
mesh reduction framework putting this specialized prob-
lem into the more general context of greedy optimization.
We identified the relevant components and justified our
recommendations for the choice of such predicates and
operators. A constructive proof for our claim is given by

#� � actual time (sec.)

order 0, � � ����� 14,340 .000099 19.8

order 0, � � ����� 2,697 .000498 30.9
order 0, � � ���� 1,182 .000998 35.3

order 1, � � ����� 16,328 .000099 20.2
order 1, � � ����� 3,227 .000499 33.2

order 1, � � ���� 1,505 .000999 38.4

order 2, � � ����� 12,843 .000099 43.7
order 2, � � ����� 2,359 .000499 86.4

order 2, � � ���� 1,019 .000999 103.2

Table 3: Reduction rates and running times for the Stanford
bunny model (69,473 triangles) with different fairness criteria
and error bounds.

the new reduction algorithm which we derived accord-
ingly.
The scheme in our current implementation generates very
good meshes according to the setting of the weight coeffi-
cients in our fairness functional. Separating the tolerance
measure from the fairness measure makes the impact of
the coefficients on the result predictable and accessible
to the practical user. Although the scheme computes the
global Hausdorff distance between the data points and
the decimated mesh it still achieves a performance which
meets the Schroeder-bound [17] of 	�� removed triangles
per day.



Figure 9: Several meshes obtained from the original model
(upper left) by applying our new algorithm with different ab-
solute error tolerances (top to bottom: � � ����� ���� ����) and
fairness criteria (left: flatness, right: roundness). Cf. Table 2.

Carefully checking where the computation time is spent
during the reduction algorithm reveals that measuring the
Hausdorff-distance is still the most costly part. To evalu-
ate the fairness criterion does not seem to be a critical fac-
tor. Hence, we could think of more sophisticated fairness
functionals without much impact on the performance.
Since, due to the use of half-edge collapses, the set of ver-
tices in the reduced mesh is always a proper subset of the
original data points, progressive transmission of the mesh
is very effective. In fact, the incremental reduction can be
understood as the conversion of the original mesh into a
progressive mesh representation and hence the proposed
algorithm also serves as a device to generate a complete
set of level of detail approximations to the original mesh.

References
[1] Chandrajit Bajaj, Fausto Bernardini, J. Chen, and

D. Schikore. Triangulation-based 3d reconstruction meth-
ods. In 13th ACM Symposium on Computational Geome-
try, 1997.

[2] Rikk Carey and Gavin Bell. The Annotated VRML 2.0
Reference Manual. Addison-Wesley, 1997.

[3] A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno.
Multiresolution Decimation Based on Global Error. The
Visual Computer, 13:228–246, 1997.

[4] Jonathan Cohen, Amitabh Varshney, Dinesh Manocha,
Grek Turk, Hans Weber, Pankaj Agarwal, Frederick
Brooks, and William Wright. Simplification Envelopes.
In SIGGRAPH ’96, pages 119–128.

[5] Michael Garland and Paul S. Heckbert. Surface Simplifi-
cation Using Quadric Error Metrics. In SIGGRAPH ’97,
pages 209–218.

[6] Hugues Hoppe. Progressive Meshes. In SIGGRAPH ’96,
pages 99–108.

[7] Hugues Hoppe. View-Dependent Refinement of Progres-
sive Meshes. In SIGGRAPH ’97, pages 189–198.

[8] Hugues Hoppe, Tony DeRose, Tom Duchamp, John Mc-
Donald, andWerner Stuetzle. Mesh Optimization. In SIG-
GRAPH ’93, pages 19–26, 1993.

[9] Reinhard Klein, Gunther Liebich, and W. Straßer. Mesh
Reduction with Error Control. In IEEE Visualization ’96,
Conference Proceedings, pages 311–318.

[10] Leif Kobbelt. Variational Design with Parametric Meshes
of Arbitrary Topology. submitted for publication, 1997.

[11] Leif Kobbelt. Discrete Fairing. In Proc. of the 7th IMA
Conf. on the Mathematics of Surfaces, 1997.

[12] David Luebke and Carl Erikson. View-Dependent Sim-
plification of Arbitrary Polygonal Environments. In SIG-
GRAPH ’97, pages 199–208.

[13] Martti Maentylae. An Introduction to Solid Modeling.
Computer Sciene Press, 1988.

[14] Rémi Ronfard and Jarek Rossignac. Full-Range Approxi-
mation of Triangulated Polyhedra. In Proceedings of Eu-
rographics ’96, pages C67–C76.

[15] Jarek Rossignac. Simplification and Compression of 3D
Scenes, 1997. Tutorial Eurographics ’97.

[16] Will Schroeder. Polygon Reduction Techniques. IEEE
Visualization ’95.

[17] William J. Schroeder. A Topology Modifying Progressive
Decimation Algorithm. In IEEE Proceedings Visualiza-
tion ’97, pages 205–212.

[18] William J. Schroeder, Jonathan A. Zarge, and William E.
Lorensen. Decimation of Triangle Meshes. In SIGGRAPH
’92, pages 65–70.

[19] Robert Sedgewick. Algorithms. Addison-Wesley, 1983.

[20] W. Welch and A. Witkin. Free-form shape design using
triangulated surfaces. In SIGGRAPH ’94, pages 247–256.


