
A Visual Model For Blast Waves and Fracture

Michael Neff Eugene Fiume

Department of Computer Science
University of Toronto

Abstract
The expense, danger, planning and precision required

to create explosions suggests that the computational vi-
sual modelling of explosions is worthwhile. However,
the short time scale at which explosions occur, and their
sheer complexity, poses a difficult modelling challenge.
After describing the basic phenomenology of explosion
events, we present an efficient computational model of
isotropic blast wave transport and an algorithm for frac-
turing objects in their wake. Our model is based on the
notion of a blast curve that gives the force-loading pro-
file of an explosive material on an object as a function of
distance from the explosion’s centre. We also describe a
technique for fracturing materials loaded by a blast. Our
approach is based on the notion of rapid fracture: that
microfractures in a material together with loading forces
seed a fracturing process that quickly spreads across the
material and causes it to fragment.

Key words: Fracture, blast waves, explosions, physically
based modelling, animation.

1 Introduction

Few phenomena are at once so short lived, so powerful
and so awe inspiring as explosions. They are a source of
wonder, delight, and destruction. Used widely in many
industries, the special effects industry among them, real
explosions are costly, dangerous, difficult to control, and
impossible to undo. That makes them excellent candi-
dates for visual and physical simulation, but the time
scales at which they operate, and the sheer number of
physical interactions involved makes this a difficult prob-
lem. The benefits are significant, since having a consis-
tent mathematical formulation of a phenomenon can give
reproducible user-controlled simulations. Our work is
primarily concerned with deriving a mathematical model
that gives rise to convincing visual depictions. It is un-
likely our work will be of significant relevance to the ac-
curate physical simulation of explosion mechanics.

An explosion can be broken roughly into two distinct
visual aspects: the explosive cloud and the blast wave.
An explosive cloud can be a bursting fire ball, or a collec-
tion of small particles that are propelled outward during

the explosion. A blast wave is a shock wave that expands
outward from the explosion’s centre. It is generated by
the rapidly expanding gases created by an internal chem-
ical reaction. The blast wave causes objects to accelerate
outward, deform and shatter.

Most previous computer graphics models have concen-
trated on the explosive cloud portion of the explosion
event. One of the earliest related attempts was made by
Reeves using particle systems[18]. This work was used
in the “Genesis sequence” of the movie Star Trek: The
Wrath of Khan to generate an explosive burst resulting
from the impact of a missile on a moon[16]. More re-
cent research efforts at modelling these effects have been
made using both physically based [24, 20] and fractal
noise approaches[13].

The focus of this paper is on a physically based, visual
model for the blast wave portion of an explosion. A blast
wave transports an explosion’s damage-causing energy.
The wave is a quickly advancing pressure discontinuity
that generates large forces on the objects in its path. Our
approach provides an accurate basis for calculating these
forces. After briefly surveying the scientific literature, we
present a blast wave model in the second section of this
paper.

Much of the visual excitement of a blast wave relates
to its ability to shatter objects. The third section of this
paper develops a fracture model based upon the idea of
rapid fracture, where microcracks in a material are prop-
agated and forked, leading to the shattering of the ma-
terial. This model is significantly different from previ-
ous computer graphics fracture models. We subsequently
show how the blast wave and fracture models can be com-
bined to produce an animation of a shattering window.
The paper concludes with a discussion of areas for future
work.

2 Blast Wave Modelling

2.1 Blast Phenomenology

This work is concerned with the detonation of condensed
high explosives, such as TNT, which are capable of gen-
erating powerful blast waves. The nature of such an ex-
plosion can be illustrated by considering the detonation



of a spherical charge of TNT, initiated at the centre of
the explosive. For an ideal, uniform explosive, a detona-
tion wave will propagate outward from the centre at great
speeds: 6800 m/s in TNT [9]. Detonation propagation
speeds are essentially constant and depend on the den-
sity of the explosive involved. As the detonation wave
passes through the explosive, it generates immense pres-
sure and high temperatures. Pressures are normally in
the range of a few thousand atmospheres and the tem-
peratures range between 2000 and 4000K for solid and
liquid explosives[6]. These high temperatures and pres-
sures are a result of the extremely rapid chemical reaction
that takes place just behind the wavefront. Typically, the
reaction is ninety percent complete in between ���� and
���� seconds[6].

Following the discussion in [19], the chemical reaction
releases large quantities of gas in a very short period of
time. These gases expand violently, forcing out the sur-
rounding air. A layer of compressed air in front of the
gases is thus formed, which expands outward, contain-
ing most of the energy of the explosion. This is the blast
wave. As the gases expand, their pressure drops to atmo-
spheric levels. Thus, the pressure of the compressed air at
the blast wavefront reduces with distance from the explo-
sive. As cooling and expansion continue, pressure falls
a little below ambient atmospheric levels. This occurs
because the velocity of the gas particles causes them to
over-expand slightly before their momentum is lost. The
small difference in pressure between the atmosphere and
the wavefront causes a reversal of flow. Eventually equi-
librium will be reached. As with pressure, the velocity of
the blast wave decreases as the wave moves further from
the explosive. The blast wave, moving through air, will
have a much slower velocity than the detonation wave
which is travelling in the explosive.

The above discussion is somewhat simplified, as it ig-
nores the role of wave reflections at the explosive-air
boundary. The reflection causes a portion of the wave en-
ergy to be sent back toward the explosive centre, where
it will “bounce” and be sent outward again. This leads to
secondary blast waves, but their strength is significantly
lower[9], and will therefore be ignored in this work.

An explosion can cause damage in several ways. The
explosive casing is sent outward as small, high speed
pieces known as primary fragments. Objects near the
explosive are also propelled outward, although at slower
speeds, and are called secondary fragments. For large ex-
plosives, however, the blast wave is the dominant damage
mechanism [10] and will be the focus here. The profile
of the pressure pulse is shown in Figure 1. Notice that
it represents a jump discontinuity where the pressure in-
creases by Ps. This is the peak static overpressure and
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Figure 1: Pressure pulse as a function of time at a point
in space.

represents the pressure that is felt by a particle moving
with the wave. With time, this pressure decays to be-
low the ambient pressure P� due to the overexpansion of
gases as described above. Pmin is the minimum pressure
reached, ta is the arrival time of the pressure pulse and T
is the period of the positive phase of the pulse. Often it
is sufficient to represent the positive pulse as a triangular
wave. There are two ways to do this: one that preserves
the period of the pulse, and another that preserves the im-
pulse of the pulse. The impulse is defined as the change
in momentum[4], and can be calculated as the product of
force and time, where time is the duration during which
the force was acting on an object. The impulse generated
by the pulse wave can be computed by integrating the
positive phase of the pulse wave; from ta to ta � T . The
pulse’s peak overpressure decreases with distance from
the centre of the explosion. This affects the shape of the
pressure pulse. Pressure pulses for fronts at four different
radii are shown in Figure 2.

When a blast wave encounters an object, it will both re-
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Figure 2: Pressure pulses at four different times show
how the shock wave changes as it propagates away from
the explosive source.



flect off the object and diffract around it. It will also gen-
erate stress waves within the object. The exact behaviour
depends upon the angle of incidence and power of the
wave and the geometry of the object. Wave propagation
is an important topic, but space prevents us from describ-
ing our approach here. Some good published research
exists on sound-wave propagation and on the impact of
occluding and reflecting objects on wave propagation; a
good start would be [23]. We develop a heuristic model
to account for object occlusions in[14]. Reflection will
only be dealt with as it relates to the strength of the initial
impact of the wave.

Reflections are divided into three categories: normal
reflections, oblique reflections and Mach stem formation.
Normal reflections occur when the blast wave hits the ob-
ject head on, or, in other words, at zero degrees incidence.
Oblique reflection occurs when the angle of incidence is
small, less than about forty degrees in air[19]. Mach stem
formation occurs for larger angles of incidence (� 40 de-
grees). A “spurt-type effect” occurs when the shock front
impinges on the surface at near grazing incidence[10].
The reflecting wave catches up with and fuses with the
incident wave to form a third wavefront called the Mach
stem.

A blast wave striking an object will generate a pres-
sure on the face of the object which is greater than the
peak static pressure of the wave. This occurs because
the forward moving air molecules are brought to rest and
further compressed by the collision. The peak static over-
pressure is the pressure felt by a particle moving with the
wavefront. When a stationary object is struck by the blast
wave, however, the object will face this pressure and will
also be hit by the particles being carried with the stream
– the blast wind. This leads to the concept of dynamic
pressure, q, which is defined as

q �
�

�
�u� . (1)

Here u is the particle velocity and � is the air density
immediately behind the wavefront.

The total pressure experienced by the object face is the
peak reflected pressure, Pr, a combination of static and
dynamic pressure. A reflection coefficient, Cr, can be
defined as the ratio of Pr to Ps. As the angle of incidence
for the blast wave increases (a head-on collision corre-
sponds to zero degrees), the reflection coefficient gradu-
ally decreases. This continues until the Mach stem tran-
sition is reached. At this point there is a jump in reflected
pressure which can actually exceed that of normal reflec-
tions for low peak overpressures. From this point, the
reflected pressure will again decline with angle of inci-
dence. At ninety degrees, there is no reflection and the

peak reflected pressure is equal to the peak static or side-
on overpressure,Ps. The magnitude of the reflected pres-
sure, and hence the amount of loading an object will ex-
perience, is related both to the angle of incidence of the
blast wave and the magnitude of Ps.

2.2 Techniques for Blast Wave Modelling
There are two main approaches for modelling blast
waves. One involves a full mathematical simulation of
the explosive event based upon the Navier-Stokes equa-
tions of fluid dynamics. The other, coming out of struc-
tural engineering research, uses either a simplified set of
equations or a set of blast curves to compute values for
key quantities related to a blast wave simulation.

Following [7], the governing equations for detonations
and explosions are the Euler equations of inviscid com-
pressible flow, with chemical reaction added. These are
obtained from the compressible Navier-Stokes equations
by dropping the transport terms. The front of the blast
wave was seen to be a jump discontinuity between the
ambient conditions in the atmosphere and the high pres-
sure state within the blast wave. The Euler equations en-
force the conservation of mass, momentum and energy
across this discontinuity. They can be combined with an
equation of state for the transmission material to solve for
the necessary parameters. These equations have been ap-
plied at research facilities such as Los Alamos National
Laboratory by scientists studying explosive phenomena
to create computer simulations known as hydrocodes[12].

A body of literature in the structural engineering field,
extending at least as far back as the 1950s, has attempted
to understand the impact of explosives using a combina-
tion of empirical data and mathematical models. Refer-
ences such as [10, 19, 2] document this work. The gen-
eral approach has been to use a combination of empir-
ical data and mathematical models to formulate both a
set of curves and a set of formulas that can be used to
determine important quantities such as peak over pres-
sure and impulse at a given distance from an explosion.
Sometimes these curves are developed using the more ex-
pensive Navier-Stokes based simulations, as was done by
Vanderstraeten et al.[25].

Two explosives with different masses of TNT will gen-
erate the same overpressure, but they would do so at dif-
ferent distances from the explosive centre. Thus, for a
target to experience the same overpressure with a smaller
bomb, the target will need to be much closer to the bomb
than with a more massive explosive. This is the basic
idea behind explosive scaling. Since the same overpres-
sures will be generated (at some distance) by different
amounts of explosives, the mass of the bomb can be com-
bined with distance from the explosive to create a scaled
distance parameter. This will allow equations or charts



Figure 3: The blast curves for static overpressure(PS)
and scaled pulse period ( TS

W
�

�

) as a function of scaled dis-

tance Z (from [19]). These curves are for spherical TNT
charges, exploded in air, at ambient conditions.

giving the peak overpressure to be defined once using this
scaled parameter and then applied for explosives of any
mass, greatly simplifying the modelling task. The scaled
distance Z is used for this purpose and is defined as fol-
lows:

Z �
R

W
�

�

(2)

where R is the radius from the centre of the explosion
given in metres and W is the equivalent mass of TNT
given in kilograms.

2.3 Blast Wave Model
The blast curve approach is significantly less computa-
tionally expensive than a simulation based upon the Euler
Equations. Furthermore, a more complete set of data is
available from the blast curves than from the blast equa-
tions also used in structural engineering. For these rea-
sons, blast curves are used in our model to provide the
physical data needed. The basic idea of the model is
to approximate the blast wave as a triangular pressure
pulse and propagate this pulse through space, appropri-
ately modifying it as its distance from the explosion cen-
tre increases.

Figure 4: The blast curves for normalized wave velocity
(U ) and dynamic pressure qs as a function of scaled dis-
tance Z(from [19]). These curves are for spherical TNT
charges, exploded in air, at ambient conditions.

The model is a one dimensional spherical or isotropic
model where the blast wave is considered to be expanding
evenly in all directions from the bomb centre. This is
justifiable as blast waves propagate spherically once at a
reasonable distance from the explosion centre[2].

Quasi-static loading occurs when the blast wave pe-
riod is long compared to the length of the object being
loaded. This will always be the case for a strong explo-
sion loading a small object. When an object experiences
quasi-static loading, the object is completely engulfed in
the blast wave. The static pressure acts everywhere on
the object and hence can be cancelled out, leaving a net
drag loading which acts on the front faces of the object.
Our work will assume quasi-static loading, which allows
loading calculations to be restricted to the drag force act-
ing on the front facing panels. This assumption is not
necessary in our model, but it simplifies the calculations.

All the blast curves are indexed in terms of the scaled
distance parameter Z. Figures 3 and 4 show blast curves
for the main blast parameters: static pressure, Ps; dy-
namic pressure, q; scaled pulse period, T

W
�

�

; and normal-

ized wave velocity, U . These charts are used to define
functions in the model that will return the value of a given



Figure 5: The reflection coefficient (Cr) as a function of
both angle of incidence (�) and static overpressure (from
[19]). Each curve corresponds to a specific static over-
pressure (bar) as labelled.

parameter for a given Z.
To model the impact of the blast wave on an object, the

reflection pressure must be calculated. The reflection co-
efficient CR is used for this purpose. It is multiplied by
the static pressure to determine the peak pressure felt by a
frontal face. The reflection coefficient is highly sensitive
to both the static pressure and the angle of incidence. Fig-
ure 5 shows the reflection coefficient plotted as a function
of both parameters. An angle of incidence of zero indi-
cates a wave striking the face head on. The transition
point in the middle of the chart corresponds to the Mach
stem transition.

The blast curves are used to calculate the pressure
pulse shown in Figure 6, which determines the loading
an object experiences. This figure is a superposition of
the peak reflected pressure and the drag pressure, both
being represented as triangular pulses. The time it takes
for the reflected pressure to fall to drag pressure is given
approximately by

T� � T� �
�S

Us
. (3)

Pressure

Q f(t) = C

Time

Pr

T1 2 3T T

CD D
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Figure 6: Translatory Pressure versus Time.

S represents the minimum distance the dissipation wave
must travel and is defined for rectangular objects as one-
half the smaller of the object front’s height or base width.
Us is the wave’s speed at the front of the object.

Objects in a scene are represented using polygonal
meshes. The basic modelling unit for calculating forces
in the simulation is a panel. The object’s geometry is
mapped to a series of panels. The panels can be at a
coarser, finer or equivalent granularity to the polygons in
the mesh, depending upon the resolution required. The
minimum set of data a panel must contain is: a centre
point, a normal, an area and a pointer to the object which
contains it. Forces and torques are calculated as acting
at the centre of each panel. The panel is considered to
be planar and the centre is taken as being the centroid of
the specified area. The normal is necessary for calculat-
ing the angle of incidence of the blast wave. Panels can
thus be seen as a point sampling of the blast wave on the
surface of the object being struck. Panels record the trian-
gular pulse (impulse) with which they are being loaded.

Forces and torques are calculated for each panel at each
time step during its loading. These are then passed on
to the panel’s object parent where they can be summed
to determine the total loading experienced by the object
during that time step. Objects store their velocity, angu-
lar momentum, inertial tensor and frictional resistance for
use in calculating their translatory and rotational move-
ment.

During each time step of the simulation, the blast ra-
dius is increased using a prediction-correction solution
scheme. The velocity of the blast wave at its current ra-
dius is determined. This is multiplied by the time step to
determine a new blast radius. The slower wave velocity
at this new radius is calculated. The new blast radius is
then recalculated using the average of the first velocity
and the new velocity. This second blast radius is used.

During a preprocessing stage, all front facing panels
are loaded into an event queue. The event queue is sorted
in order of the panel’s radial distance. As the blast’s



Figure 7: A single frame from an animation of a brick
wall blowing apart.

radius increases, it passes over the panels in the event
queue. When a panel is first struck, its pressure pulse
is calculated, defining the impulse the panel will receive.
With each future time step, this pulse is integrated until
the panel has completed loading. At this point the panel
is removed from the queue. This is the end of the accel-
eration phase for the object. The object is now ballistic
and is acted upon by the downward force of gravity and
the opposing force of wind resistance.

During the loading phase, an impulse is applied to each
panel. This impulse is integrated in a stepwise fashion in
order to capture the acceleration phase of an object’s mo-
tion. The acceleration phase is important in creating con-
vincing slow motion animations. Figure 7 shows a sin-
gle frame from an animation of a brick wall being blown
apart.

3 Fracture Modelling

3.1 Background

At least two different models for material breakage exist.
The first can be described using a material’s stress-strain
curve and its physical yield point. A stress-strain curve
shows graphically how a material will bend as varying
strength loads are applied. When a certain load is ex-
ceeded, the material will break. The maximum load a
material can sustain is called its yield point. The second
breakage mechanism depends on an initial crack being
present in the material. Given the length of the crack,
a critical stress can be determined that if exceeded, will
cause the crack to propagate. This type of breakage nor-
mally occurs about two orders of magnitude below the
material’s theoretical yield point[11]. The latter mecha-
nism is known as rapid or fast fracture, and is the break-
age mechanism that is the basis of our model. Rapid frac-
ture occurs over small time scales and often leads to the

fragmentation of the host material.
Following [1], rapid fracture can be illustrated with the

example of a partially-inflated balloon. If the balloon is
pricked with a pin, it will not fail at this low pressure. For
the flaw to expand, the rubber must be torn, causing ad-
ditional cracks on the surface to be created. This requires
energy. If the pressure inside the balloon plus the release
of elastic energy is less than the energy required for tear-
ing, tearing will not occur. As the balloon is inflated, the
pressure and stored elastic energy increase. At a certain
point, the balloon will have stored enough energy that if
the crack advances, it will release more energy than it will
absorb. At this point, the balloon will “burst” – fractures
propagate rapidly through the balloon and it breaks apart.
This is rapid fracture and it occurs below the balloon’s
material yield point.

During rapid fracture, cracks will propagate at high
speeds and will also bifurcate. Figure 8 shows the branch-
ing pattern that occurs as a crack propagates. This is a
simplified model that assumes that the crack resistance R
does not change during dynamic loading. Strictly speak-
ing, it can go up or down in the dynamic case, but assum-
ing a constant R simplifies the analysis. R is defined as
the the amount of energy required to form a crack divided
by the area of the newly formed crack. G is the elastic
energy release rate and is considered here to be propor-
tional to the crack length. ac is the critical crack length
at which propagation begins. At this point, G � R. As a
increases, G continues to grow. When a � �ac, G � �R.
This indicates that there is enough energy to propagate
two cracks. Similarly, whenG � �R, there is enough en-
ergy to propagate a third crack[3]. In this manner, a crack
tree is formed.

3.2 Previous Computer Graphics Fracture Models
Previous attempts at modelling fracture for computer
graphics have been based on spring mass models. Much
of the work on these models was done by Terzopou-
los with various collaborators [21, 22] and was applied
specifically to the problem of fracture by Norton et al.
[15]. The models represent materials as a grid of dis-
tributed masses connected together by springs. Often,
the modelling efforts have focused on relatively thin sur-
faces, although they are extensible to full three dimen-
sional solids. Fracturing occurs in these models when
the “spring” connecting two masses is stretched beyond
its yield point. This is equivalent to exceeding the yield
point on the stress/strain curve. These models have been
used for tearing paper, breaking a net over a sphere,
breaking a solid over a sphere, and breaking a teapot.
However, their effectiveness is limited by the need for
a dense spring mesh. Furthermore, simulating nonpliant
materials results in very stiff systems. The consequence
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Figure 8: The crack will branch whenever G exceeds a
multiple of R.

is that computation times are very slow, and when a ma-
terial does shatter, it looks unrealistic both in terms of the
size of the projectiles and their distribution.

3.3 Fracture Model
Our model makes use of the idea of rapid fracture. It
focuses on the sub-problem of generating fracture pat-
terns in a plane. The crack propagation algorithm is based
upon the simplified relationship between G andR shown
in Figure 8. An initial, very short micro-crack is specified
as a line segment. The crack is propagated in each direc-
tion. Every time the crack structure grows by length ac
(i.e., every propagating edge grows by that amount), one
of its propagating edges is forked. This process generates
a crack tree. Edges are allowed to propagate until they ei-
ther hit another edge, or the border of the geometry, being
terminated at these points. For collisions, only the collid-
ing edge is terminated. In the base algorithm, cracks fork
at a set angle specified by the user. All crack lines are
straight in the base algorithm. Stochastic variations are
described below.

The crack tree is maintained as a logical, searchable
tree structure. A leaf list is maintained consisting of all
edges that are currently propagating. Conceptually, at
each time step, every leaf is extended by length ac. Af-
ter each such ac extension, an edge is chosen to fork,
creating two new edges. These are added in random or-
der to a FIFO bifurcation queue. Elements of the queue
are popped off when a new forking candidate is needed.
Forking candidates could also be picked randomly from
the list to yield a less coherent structure.

Since the crack structure is a connected tree, whenever
there is an intersection of two edges, a new face must

have been formed. These faces correspond to fragments.
At the time of intersection, the fragment outline is traced
and its set of coordinates is stored. Fragments which have
the object border as an edge are traced once the crack
structure has finished propagating.

The fracture algorithm can be directly coupled to the
blast wave model by using the calculated pressure pro-
file to determine the critical length of the initial crack, or
they can be controlled independently to maximize flex-
ibility for an animator. The initial crack can be placed
anywhere on the panel, and indeed the algorithm could be
modified to accommodate multiple crack trees, if crack
nucleation from many locations is desired. The examples
below were intended to model a window being held in
a frame, and hence the initial crack was placed near the
centre of the panel.

The cracks are propagated using a bit bucket structure.
A bit bucket is an occupancy grid or coverage mask (cf.
[8, 5]) where a grid location, or bucket, is marked when
an edge propagates into it. The advantage of a bit bucket
is very fast detection of edge collisions.

The results shown here were computed on a 2k�2k bit
bucket. This allowed for the specification of very small
initial cracks, leading to small fragments. A coarser grid
could be used if small fragments were not desired. The
grid is marked with pointers to the crack edge occupying
a bucket so that when a collision occurs, the two edges
involved can be quickly identified in order to trace the
chunk.

The algorithm is currently limited to thin surfaces and
it is not obviously extensible to three dimensional solids.
This could prove interesting territory for future research,
possibly involving propagating planes or surfaces.

3.4 Results and Algorithm Enhancements
A very large number of patterns can be generated by vary-
ing the branch angle and initial crack size. Two of these
are shown in Figures 9 and 10, where the first has a prop-
agation angle of 25 degrees and the second a propagation
angle of 35 degrees. Notice that fragments are more shard
like, being long and narrow, with a smaller propagation
angle. As the propagation angle increases, they become
more round.

Although these patterns are visually interesting, they
have too much coherent structure to appear natural. The
algorithm is extended by allowing the propagation angle
to be randomly computed as the base propagation an-
gle perturbed by up to one-half the maximum variation,
which can be set by the user. Cracks in crystalline ma-
terials may propagate along straight cleavage lines, but
this will not occur for most materials. Line wiggling
was introduced to create more natural shapes. This corre-
sponds to a propagating crack hitting some imperfection



Figure 9: A crack pattern using the base algorithm and a
bifurcation angle of 25 degrees.

Figure 10: A crack pattern using the base algorithm and
a bifurcation angle of 35 degrees.

in the material which causes its direction to change, or to
changes in the stress field. The probability of a wiggle
and the maximum variance can be defined by an anima-
tor. Each time a new edge is generated that should be
a straight extension of the previous one, a random de-
cision is made to determine whether or not its propaga-
tion angle should vary. If it does wiggle, the edge’s angle
is calculated randomly in the range defined by its par-
ent’s orientation perturbed by upt to one-half the maxi-
mum variation. There are some similarities between this
work and that by Reed and Wyvill on modelling lightning
propagation[17], although the details of the propagation
algorithm are quite different. Figure 11 shows the com-
bined effect of both line wiggling and varying the propa-
gation angle for a base propagation angle of 35 degrees.
Note the vastly improved, more realistic pattern as com-
pared with the base algorithm. To provide a qualitative
basis for comparison to real world crack patterns, Fig-
ure 12 shows a series of cracks in a section of pavement.
The general overall structure of the pavement cracks ap-

Figure 11: A crack pattern featuring random variation of
the bifurcation angle and line wiggling.

pears to correspond quite well with the generated frac-
tures. The branching tree structure is clearly evident in
the pavement cracks. The general fragment shape also
shows good agreement.

4 Results

The fracture algorithm was used to generate the frag-
ments that would be created as a window shatters. This
fragment set was coupled with the blast wave model to
generate an animation of an exploding window, seen from
both the front and the side. In this example, fracture gen-
eration is not coupled with the blast wave model in order
to maximize animator control. The fragments are first
generated separately using the fracture algorithm to cre-
ate a desireable pattern. The fragments are then passed as
a geometry data set to the explosive model for animation.
The model does not modify their shape. Inertia tensors
are calculated assuming uniform density.

A simple coupling between the two models is possible
where the amount of pressure exerted by the blast wave
is used to calculate length of the crack which seeds the
fragment growth algorithm. An interesting area for fu-
ture work would be to actively use the pressure profile
determined by the explosion model in steering the crack
growth.

Several frames from these animations are shown in
Figures 13 and 14 respectively. It is clear from the side
view that the larger particles move faster than the smaller
ones. This occurs in the blast wave model because the
time for the reflected pressure to dissipate is longer for
larger particles. This means that larger particles experi-
ence the much higher reflected pressure for a longer du-
ration than the smaller particles do.

Damping is also proportional to area. This indicates
that although the larger particles initially move more
quickly, they will also be more greatly damped, allow-



Figure 12: A photograph of cracks in a section of pave-
ment. (The contrast of the photo has been increased and
the cracks have been outlined in black to make them eas-
ier to see.) To trace the crack tree pattern, start at the ar-
row and trace the cracks downward. Notice that the pat-
tern is consistent with a crack propagating forward and
forking every so often along the way. The one exception
to this occurs the upper left hand edge, where an extra
branch comes off the main structure.

Figure 13: Six equally spaced frames from an animation
of a shattering window. Front view.

Figure 14: Six equally spaced frames from an animation
of a shattering window. Side view.

Figure 15: Six equally spaced frames from an animation
of an over damped shattering window. Damping is 1000
times normal. Side view.

ing the smaller particles to eventually overtake them. To
illustrate this, an animation was generated using a damp-
ing factor 1000 times stronger than normal. This com-
presses the effect into a very short spatial distance. Sev-
eral frames from the animation are shown in Figure 15.
Notice that the larger particles undergo more rapid initial
acceleration, but are overtaken by the smaller particles.
Animators can adjust the damping in the system.

The crack patterns can be grown at interactive rates.
The glass window animation takes less than two seconds
a frame (on a 300 MHz Pentium II workstation). The
brick wall example requires less than one second a frame.

5 Conclusions and Future Work

New methods for modelling fracture and blast waves have
been presented. These methods have been successfully
employed to generate an animation of a shattering win-
dow. There are several interesting directions in which
this work can be taken, including: extending the fracture
algorithm to run on arbitrary surfaces and solids, combin-
ing the blast wave model with an explosive cloud model,
and finding a physical basis for “steering” the propagat-
ing cracks.
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