
Animating Lava Flows

Dan Stora Pierre-Olivier Agliati Marie-Paule Cani Fabrice Neyret Jean-Dominique Gascuel

iMAGISy-GRAVIR / IMAG
BP 53, F-38041 Grenoble cedex 09, France

Marie�Paule�Cani�imag�fr

Abstract
Animating lava flowing down the slopes of a volcano
brings several challenges: modeling the mechanical fea-
tures of lava and how they evolve over time depending on
temperature; computing, in a reasonable time, the inter-
actions inside the flow, and between the flow and a com-
plex terrain data-base; and lastly, rendering the visual as-
pect of the flow. The methods described rely on smoothed
particles governed by a state equation for animating the
flow. We adapt this model to the animation of lava by
linking viscosity to a temperature field and by simulat-
ing heat transfers. We propose particular data-structures
that lead to linear computational time with respect to the
number of particles. Lastly, we study a model based on a
color-and-displacement procedural texture controlled by
the flow for the realistic rendering of lava.

Key words: Natural phenomena, animation of fluids, par-
ticle systems, procedural textures, implicit surfaces.

1 Introduction

Modeling the richness and complexity of nature is a con-
stant challenge for Computer Graphics. In addition to re-
alistic shapes and rendering, Computer Animation tech-
niques try to generate consistent motion and deforma-
tions. A wide range of natural phenomena have been ani-
mated over the past few years. They include gaseous phe-
nomena such as fire or smoke [13, 18, 8], liquids – from
waves to droplets [9, 12, 16, 7, 10], and the simulation of
soft terrains, from footprints to landslides [4, 19, 11].
This paper addresses another complex problem: the

animation of lava flows. Our aim is to provide visual re-
alism in both motion and rendering. In order to generate
complex trajectories due to the interactions between lava-
flows and a complex terrain database, we need to model
the main mechanical features of lava and the way they
evolve over time. Another difficulty is to compute the
simulation at acceptable rates. Lastly, we would like to
provide a convincing visualization of lava “skin” appear-
ance, even though we are not attempting to use a simula-

yiMAGIS is a joint project of CNRS, INRIA, Institut National Poly-
technique de Grenoble and Université Joseph Fourier.

tion approach for this part of the phenomenon.

Recently, several movies featuring volcanos have been
launched, showing the potential impact of lava animation
in the field of special effects. However, despite the ad-
vertising that announced the use of Computer Graphics
techniques, ‘Dantes Peak’ and ‘Volcano’ mostly use reg-
ular special effects, including scale models for lava. As
far as we know, Computer Graphics was used for the 2D
compositing of these models with fire images, rather than
for computing a graphical simulation of the flows.
Geologists have been interested for years in the sim-

ulation of volcanic explosions and lava flows. However
their concern is not producing realistic images, but rather
computing a realistic account of flow and ash coats (e.g.
in a vertical section), and measuring the way some global
physical values vary over time. Thus, their models (see
http���www�geo�lanl�gov�wohletz�Erupt�html)
do not seem directly usable for a Computer Graphics
simulation.
In terms of physically-based simulation, lava can be

seen as a liquid whose viscosity increases exponentially
when the material cools down. Previous solutions to the
animation of liquids range into two main categories: Eu-
lerian approaches, that consist of discretizing space into
a fixed 3D mesh and studying how physical fields evolve
at the mesh nodes [12, 7]; and Lagrangian approaches
that consist of following the motion of punctual mass
elements, called particles, that sample the liquid. The
second approach seems more convenient in the case of
lava-flows since the use of particles enables us to attach a
deformable lava skin to the flow without introducing ex-
tra marker elements. In addition, particle systems have
successfully been used for modeling a wide range of be-
haviors that includes very viscous substances, and for an-
imating transitions between solid and liquid states, using
a temperature parameter [20, 21]. Among particle sys-
tems, the smoothed particle model introduced in [15, 6]
plays an original part, since inter-particle forces are not
tuned by hand, but are rather derived from a state equa-
tion that defines the macroscopic behavior of the material.
This model has been applied to the simulation of mud



slides [11]. There has been no attempt yet, to the authors
knowledge, to modify its mechanical features over time.

The approach described in this paper relies on an ex-
tension of the smoothed particle model. We control the
evolution of the lava dynamics over time by providing
each particle with a viscosity parameter, which depends
on temperature. During a simulation, heat transfers at the
surface of the lava and inside the flow causes the tem-
perature to decrease, enabling the transition from a low-
viscosity behavior to a highly viscous one. The visual as-
pect of the lava changes accordingly, thanks to a coating
of the particles that controls local color and granularity of
the lava skin as functions of temperature.
Section 2 details the model we have designed for the

physical features of lava. Implementation issues for the
efficient computation of a lava-flow, including the design
of convenient data structures, are discussed in Section 3.
Section 4 describes our method for generating a visually
realistic rendering of the animation.

2 Physically-based Modeling of Lava

2.1 Modeling Lava
Natural lava-flows present a wide diversity of morpholo-
gies and structures. Among other factors, the topography
of terrain, and the flow rate out of the crater affect the
lava spread. These factors will be considered in Section 3
for the practical computation of lava-flows. Studies of the
main mechanical features of lava [3] establish that:
� Viscosity depends on the chemical composition of
the lava;

� For a given chemical composition, viscosity in-
creases exponentially when the temperature de-
creases (see Figure 1, from [3]).

� The mass-density of lava remains quasi-constant un-
til it commutes to the solid state. The value of mass-
density for basaltic lavas is around ���� kg�m��.

Figure 1: Viscosity as a function of temperature, for lavas of
different chemical composition.

Our aim is to simulate the lava flowing process. We
are looking for a general model of a viscous fluid, ro-
bust enough for enabling high viscosity changes inside

the material. These changes will take place in space – as
viscosity is not constant along a lava flow at a given time
– and in time, since lava is cooling down during the sim-
ulation. During the simulation, the flow’s mass density
should be maintained around ���� kg�m��.
The next section presents the deformable model that

we have used as the background for our simulations. This
model uses a particle system for modeling the flow, which
is also convenient for rendering lava skin as will be shown
in Section 4. Its main feature is that, contrary to standard
particle systems, it sets the material to a specified mass-
density at rest, thanks to a state-equation that describes
the desired macroscopic behavior.

2.2 Smoothed particles maintaining a constant rest-
density

Our model is an extension of the smoothed-particles sim-
ulation method developed by Mathieu Desbrun1 [6]. This
section reviews this previous work.
Smoothed particles simulate a substance whose physi-

cal characteristics are governed by a state equation. The
following equation states that the pressure2 field P inside
the material is proportional to the difference between the
current mass-density � and a given rest value ��:

P � k��� ���

where the parameter k represents a stiffness coefficient.
During a simulation, the material is sampled by

“smoothed particles”. Each of them represents a sample
of mater of fixed mass mi which is distributed in space
around its current location xi according to a smoothing
kernel Wh (parameter h controls the extend of the ker-
nel’s support). The particles sample the values of contin-
uous physical fields such as pressure P and mass-density
� inside the material (so Pi and �i respectively denote
pressure and density at particle i). Interpolation yield the
value and gradient of these physical fields anywhere in
space:

f�x� �
X
j

fj
mj

�j
Wh�x� xj�

�rf�x� �
X
j

fj
mj

�j
�rWh�x� xj�

where fi is the value of field f at particle i.
This can be used for deriving the expression of internal

pressure forces exerted on particle i from the expression

1The formalism was originally inspired from works in astro-
physics [15] on “Smoothed Particles Hydrodynamics” (SPH).

2As in [6], the term “pressure” we use is not totally adequate: P is
rather a difference of pressure with a given reference value, thus it can
take either positive or negative values.



of pressure given by the state equation [6]:

�FPi
�
X
j ��i

�mimj

�
Pi

��i
�
Pj

��j

�
�riW

ij
h

where �riW
ij
h is the gradient ofWh�xi�xj�. The density

field is computed by integrating pressure changes over
time from its initial value �� (corresponding to the initial
particle distribution) using the continuity equation:

div�V � �
d�

dt
� �

The component of the interaction force �FPi
which is

exerted between particle i and particle j can be either
positive or negative according to the sign of the over-
pressures Pi and Pj . It has been shown in [6] that these
forces are similar to Lennard-Jones attraction-repulsion
forces (ie. long-range attraction and short-range repul-
sion) that are commonly used in physically-based parti-
cle systems [14]. One of the advantages of SPH is that no
local user-specified parameter is needed, since they are
directly derived from the global state equation.
As with any particle system, the animation is com-

puted by integrating, for each particle, applied forces over
time. Non-conservative forces that model viscosity inside
the material, as well as external forces such as gravity
and collision forces with obstacles, are added to pressure
forces. The smoothed particles representation provides
an expression for the maximal time step at which each
particle should be simulated, computed from Courant’s
condition [6]. The use of an adaptive time-step based on
this minimal rate ensures stability of computations.
The main benefits of this model is that the user de-

fines the macroscopic behavior of the material through
the state equation. As a consequence, the same substance
may be simulated with variable accuracy, by simply tun-
ing the number of particles that sample it (this is not the
case for particle systems based on Lennard-Jones inter-
action forces, such as those used in [20, 21], since the
material behavior then depends on both forces parame-
ters and the scale at which these specific forces are used).
Another advantage of this model is that we are able to
control the rest mass-density, whose value is well known
for lava. In practice, we model lava by taking the same
smoothing kernel that in [6] and by setting the parameters
of the state equation to3:

�� � ���� kg�m�� k � �����

The above model is not sufficient for modeling all the
physical features of lava listed in Section 2.1. In the next

3the higher k is, the more incompressible the material will be, but
the required time step is smaller.

two sections we extend the model to include variable vis-
cosity and to simulate heat transfers over time.

2.3 Modeling viscosity inside a lava-flow
Viscosity plays a very important part in the dynamics of
lava flows. The model for a viscosity force must be cho-
sen with care. The expression of viscosity force used
in [15, 6], originally designed for cosmologic fluids, was:

�Fvi � �mi

X
j ��i

mj	ij
�rW ij

h

where 	ij is a function of the relative speeds of particles
i and j, and of the distance between them:

	ij �

�
hc�vij �xij�

�ij �x�ij�h������
if vij � xij � �

� if vij � xij � �

where c is the speed of sound4 inside the material and
vij � vj � vi, xij � xj � xi, �ij � ��i � �j���.
This expression is not convenient for us, even for mod-

eling viscosity at a given temperature. Firstly, the force
contribution from a given neighbor particle j becomes
zero when the distance between the two particles in-
creases. Secondly, even when the speed vectors are not
oriented along the segment between the particles, this
force contribution is always applied along this segment.
Lastly, the parameters are not easy to calibrate due to the
complex formulation of 	ij .
We rather use a more intuitive and simpler expression

for viscosity forces, aimed at modeling the variations of
the velocity field at the neighborhood of a particle. The
value of the force is proportional to the difference be-
tween the particle’s speed and the mean speed around it:

�Fvi � �v
mi

�i

X
j ��i

mj

�j
vijW

ij
h

Since the viscosity of lava increases exponentially when
temperature decreases, we set the parameter �v to:

�v � b exp��aTi�� a 	 �� b 	 �

where Ti is a new parameter representing temperature,
which is associated with each particle (we use a � ���
and b � ��� in our simulations). Next we have to design
a simulation method for computing the local variations of
the temperature field during a simulation.

2.4 Simulation of heat transfers
Two kinds of heat transfers should be taken into account
during a simulation: those that are internal to the lava
flow, and those that are external (i.e. transfers with the air
and with the ground).

4i.e. the speed of the fastest propagation wave.



As in [20, 21], we model heat transfers inside the ma-
terial by integrating the general heat equation:

dT

dt
� k�T

However, the way we do this is different from previous
works, since we have to express it is the smoothed parti-
cles formalism. Since SPH cannot be used for computing
second derivatives due to the smoothing effect of the ker-
nel Wh, directly computing �T (the Laplacian of tem-
perature) is difficult. In practice, we compute �T for
each particle using:

�rTi �
X
j ��i

mj
Tj � Ti
�j

�rW ij
h

�Ti �
X
j ��i

mj

�rTj
�j

�rW ij
h

Thanks to temporal coherence and very slow speed of the
heat transfers inside the material, we can use the value of
�rTi stored at a given time step for computing�Ti at the
subsequent time step, in a single list traversal.
Now we need to model heat transfers that take place at

the surface of the lava flow, including both lava-air and
lava-ground interfaces. The term representing the time
variation of temperature for a particle located at the sur-
face of the flow should5 be proportional to the difference
between its temperature and the temperature of exterior
medium, proportional to the size of the contact surface,
and inversely proportional to the local mass density:

�
dT

dt
�exti � kext�Ti � Text�

r�i
�i

where ri, the approximate radius of the small sample of
lava the particle models, is computed from:




�

r�i �

mi

��

In our simulations, we set the temperature of basaltic
lava to 1200 �C when it spreads out of the crater. It goes
down to about 900 �C during the simulation.

3 Computing animations of lava flows

3.1 Data structures
The bottleneck of any simulation of a particle system is
the computation, at each time step, of the interactions be-
tween neighboring particles. In the smoothed particles
formalism, interactions (through pressure and viscosity

5This is just a simple model convenient for a Computer Graphics
applications. We do not pretend to simulate the real physics of lava
cooling such as degazing and radiative transfers.

forces) take place as soon as the distance between two
particles is smaller than �h, where h is the radius of their
smoothing kernel. Since the model maintains the mate-
rial around a given rest density, the number of neighbors
always stays around a given small value (between 20 and
30 in our simulations). However, in a brute force imple-
mentation, the neighbor search would be quadratic in the
number of particles, which would lead to unacceptably
low performances. A well-known solution consists of us-
ing a 3D grid that stores the connected list of the particles
that lie inside each voxel. In the specific case of lava
spreading out of a volcano, this solution cannot be used
directly, since the 3D grid would be too large.
Our solution exploits the fact that while lava spreads

far away from the crater, the local vertical range of the
flow always remains small compared to the size of the
terrain (see Figure 2 (a)). Thus, we use a predefined grid
of a large size in the horizontal plane, but with only a
few elements per vertical column. The vertical scope of
each column is adapted in order to cover the local vertical
range of the flow over this precise point of the horizon-
tal plane (see figure 2 (b)). During neighbor search, only
particles lying in a grid voxel that is closer than �h from
the current particle are considered. Since lava approxi-
mately maintains its rest density everywhere, calibrating
the grid in order to have an almost constant number of
particles per occupated voxel is easy. This strategy pro-
vides a simulation time which is close to linear with re-
spect to the number of particles.

Figure 2: (a) Lava spreading out of a volcano (cross section).
(b) Data structure for neighbors search.

The terrain is defined by a digital elevation model
(DEM), i.e. a 2D grid where altitudes are stored. The
use of a DEM makes easier the detection of collision be-
tween a particle and the terrain, since it only requires the
computation of the terrain’s altitude (through bilinear in-
terpolation) at the particle’s projection onto the horizontal
plane. In practice, collision detection is performed only
for particles that are at the surface of the flow. The com-
putation of this subset of particles is also necessary to ap-
ply the heat transfer equations. The next section proposes
a criteria for performing this computation.

3.2 Characterization of particles at the flow surface
An original feature of highly deformable materials com-
pared with solid deformable bodies, is that the set of
small matter elements that lie near the surface may
change over time. This is particularly obvious when a



flow separates into several disconnected components, or
when some components merge. In our simulations, the
set of particles lying near the surface has to be recom-
puted at each time step. We need a robust criteria for
characterizing these particles.
The gradient of mass-density at a particle location in-

dicates the direction where the highest neighbor mass is
found. So the border should be searched for in the oppo-
site direction. Our criteria states that a particle :
is on the surface if the quotient between the mass of its
neighbors located in the half space oriented by ��r�i
and the total mass of all neighbors is under a threshold.

Since this criteria will not work when the lava has com-
pletely spread out (the gradient of mass-density is in the
particle’s plane when all the particles are in contact with
a flat part of the terrain) we add a second criteria:
a particle is at the border if that particle and all its

neighbors are approximately located in the same plane.

3.3 Simulation process for lava flows
At each integration time step:
� Generate some more particles inside the crater, ac-
cording to the desired flow rate.

� For each particle:

1. Compute the list of neighbors.

2. Use it to compute �i, �rTi, and�Ti.

3. Compute pressure and viscosity forces.

4. Integrate the equation of motion according to
the set of external and internal forces.

5. If the particle is on the surface of the flow:

– test for collisions with the ground,
– compute the heat transfer with the exte-
rior.

6. Compute the heat transfers with neighboring
particles.

� If necessary, modify the value of the integrate step
in order to maintain Courant’s condition.

We have seen that in order to maintain lava in a quasi-
incompressible state, our simulations are computed with
a high value for k. Courant condition then leads to about
64 integration steps between two frames, using integral
integration schemes for increasing stability. Even in this
case, computational time is reasonable: On a SGI O�

workstation, an image is generated every 20 seconds for
a simulation of 1000 particles, and every two minutes for
a simulation of 6000 particles. If we decrease k to a less
realistic value such as k � ���, less integration steps are
needed between two images, so we obtain one image per
second for 1000 particles.

Figure 4 shows some steps of a lava flow for our stan-
dard high value for k. Particles are displayed as spheres
of radius ri. Their color varies with temperature. Dis-
playing particles as spheres is adequate for carefully fol-
lowing each particle’s motion, but does not, however,
yield the visually realistic rendering we need.

4 Visually realistic rendering

4.1 Trying to obtain the aspect of basaltic lava

Figure 7 depicts a real basaltic lava flow of type “aa”,
whose particularity is the formation of clinkers during
the slow transition between fluid and solid states. These
clinkers are made of the lava foam that has cooled down
quicker that the rest of the flow, andmerged into regularly
spaced clusters. In this paper, we are trying to render this
specific kind of lava, whose roughness, size of clinkers,
and color highly depend on temperature.
At first sight, obtaining a similar visual aspect for our

synthetic lava flows looks like a challenge. The most cur-
rent solution for defining a surface around a set of par-
ticles consists of computing an iso-surface of a sum of
scalar fields generated by the particles [1, 20, 21, 5]. This
solution easily deals with topology changes (separations
and fusions) but is not convenient for our application
since implicit surfaces generate very smooth shapes [2].
Motion and deformations of our lava flows are simu-

lated at a relatively large scale, then it seems obvious that
more geometric complexity should be generated. Per-
forming a micro-simulation of the lava skin mechanics
would be difficult, computationally intensive, and is not
really useful since our only aim is visual realism. Thus
we must deal with this smaller scale by providing a ge-
ometric dressing of the larger one. Perturbating the sur-
face with a stochastic continuous noise, such as Perlin’s
noise [17], seems a good approach. A first idea would
be to define a 3D noise depending on temperature in a
local frame linked to each particle, and to use it to de-
form the implicit primitive defined by the particle. The
surface of the flow would then be computed as an iso-
surface for the sum of perturbated fields. However, this
approach would be extremely time consuming due to the
resolution needed for polygonizing the surface. More-
over, when two neighboring particles move at different
speeds, the addition of noise contributions would proba-
bly produce aliasing artifacts (such as interferences).
Our approach consists of generating a procedural dis-

placement map, together with a color texture, on the
smooth implicit-surface generated by a standard isotropic
fields around the particles. Both color and roughness of
the texture are function of the local temperature of the
flow. One of the challenges is to maintain temporal co-
herence when an animation sequence is rendered: each



surface detail may continuously deform and change its
color, but must consistently follow the flow.

4.2 A lava skin that follows the flow
Texture is going to be generated on triangles, so the first
point is to tessellate the implicit surface. This cannot be
done by using a standard surface tiling algorithm [2] at
each time step since, because of our need of temporal
coherence, each triangle should deform and move with
the underlying flow.
Our solution is the following:

1. We associate a sample point on the implicit surface
to each particle that verifies the flow surface criteria
of Section 3.2. This is done by searching for the iso-
surface in the direction of the field’s gradient on the
particle.

2. We compute the Voronoı̈ diagram of these sample
points: for each of these points, we sort sample
points that correspond to neighboring particles in
counterclockwise order with respect to the surface’s
normal, and select those that are contributing to the
Voronoı̈ region.

3. We tessellate each Voronoı̈ region into triangles that
turn around the sample point defining the region.

This results into triangles that both tessellate the flow sur-
face, define the neighborhood of a particle on the surface,
and consistently follow the flow (see Figure 3).

Figure 3: Tesselated Voronoı̈ regions on a flow surface.

4.3 Generating a procedural texture
The idea is to generate a lava skin clinker into each
Voronoı̈ region. Since the sample point at the center of
the region follows a given flow particle, the clinkers will
be adequately carried by the flow.
Clinkers and lava skin between them are modeled by a

texture that includes both local color and also a displace-
ment map controlling surface altitude and roughness. We
compute the displacement map as the sum of two terms
(see Figure 6):

� a given 3D profile defining the shape of a clinker,

� a stochastic altitude perturbation modeling the local
surface’s roughness.

Continuity conditions at the border of triangles must be
maintained carefully. This includes both color and dis-
placement G� continuity (i.e. geometric continuity of
derivatives).
Modeling specific profiles whose shape and altitude

depend on temperature, and whose support is included
into each Voronoı̈ region is straightforward. Color con-
sistency and continuity can easily be obtained by asso-
ciating a given color to each altitude, with a color map
depending on the local temperature of the flow. The next
paragraph concentrates on the most difficult part of the
process, ie, defining a G� stochastic noise which gives
the desired visual effect.

4.4 Continuous Perlin’s noise on a triangular mesh
Perlin’s noise [17] is a stochastic auto-similar G� noise
that has become a standard for generating objects that
look like wood, marble, fog, or rock surface. One of its
main features is to maintain continuity of both noise and
noise derivatives. The idea is to use it for defining a 2D
displacement texture that will serve as a perturbation of
altitude over each lava skin triangle.
However, we need to generate the noise on a 2D tri-

angular mesh, since it is easier to guarantee continuity
through two adjacent texture patches if the noise control
points fall exactly on their boundary. Perlin’s standard
model being defined on a quadrangular grid, we modify
the algorithm in the following way:

1. we generate a pseudo-periodic noise function on a
regular grid of equilateral triangles by:
� randomly associating a plane to each grid
node, defined by its elevation above the node
and by its normal;

� defining the noise at any point inside the mesh
as the barycentric interpolation of the distances
to the three planes associated to the vertices of
the triangle where the point lies.

2. we define the final noise giving the altitude of a
mesh point as the sum of instances of the pseudo-
periodic noise defined above, applied at different
scales thanks to recursive subdivisions of the trian-
gular mesh. This gives a fractal aspect to the noise.

The color and displacement texture we obtain is de-
picted at the top right of Figure 6. Since the noise func-
tion has been generated on a regular grid made of equilat-
eral triangles, applying it on the non-equilateral triangles
resulting from the tessellation of Voronoı̈ regions may lo-
cally alter the isotropy of the noise. In practice, we re-
duce this problem by suppressing the very thin triangles
(by merging their edges) that may appear around a sam-
ple point.



Figure 4: An example of lava-flow where particles are displayed as spheres. About 3000 particles have spread out of
the volcano in the last image.

Figure 5: A textured lava flow.

Figure 6: Top left: a clinker’s profile; top right: stochastic
perturbation modeling the surface’s roughness; bottom: the re-
sulting texture.

Computational time has been measured on a test scene
containing one clinker made of 6 triangles (see figure 6,
bottom) covering a video-sized screen and subdivided 32
times (so that 6144 very small triangles are drawn). Com-
puting the texture takes about 0.15 seconds per frame on
a SGI O� workstation. As small triangles that sample the
texture should always be of the same size (about a few

Figure 7: A real lava flow for basaltic lava of type “aa”.

pixels), the subdivision depth decreases when the num-
ber of polygons increases, so the rendering time remains
of the same order of magnitude for any scene (less than a
second per frame).



5 Conclusion

This paper has focussed on the animation and ren-
dering of lava flows. Figure 5 depicts some steps
of an animation where lava flows down the slopes of
a volcano. Animation sequences are available from
http��www�imagis�imag�fr�LAVA�.
Lava flows represent a challenge for physically-based

animation, since the mechanical features of lava change
over time. This change is governed by a temperature
field, that needs to be animated. The first contribution of
this paper is to show that the smoothed particles formal-
ism is convenient for performing this kind of simulation.
In order to model lava, we extend the equations, and we
propose an efficient way to simulate them. Internal forces
inside the flow, and interactions between the flow and a
complex terrain data-base are computed in a reasonable
time, by the implementation of adequate data-structures.
Performing an animation is made easier by the use of a
macroscopic model for the lava flow, which only includes
a few intuitive parameters (mass, density, stiffness, initial
viscosity and temperature of lava, air and ground temper-
atures).
In the context of searching for visual realism, we also

addressed the problem of rendering lava. Our solution,
designed for a specific type of basaltic lava flow, consists
of rendering a moving texture controlled by the flow and
generated on the fly on an implicit surface that surrounds
the particles. The texture combines color and displace-
ment information. The displacement map is procedurally
computed as the sum of a large scale shape and of a Per-
lin’s noise component. Texture moves and deforms with
the underlying flow according to the local variations of
the flow speed and temperature. In particular, roughness
of the texture increases when the lava cools down, while
its color changes. Our methods for defining the displace-
ment map allows us to control the visual aspect of the lava
skin, and ensures spatial and temporal continuity during
an animation.
Future work includes the modeling of other categories

of lavas, such as block lavas for which an extra animation
layer could be used for animating large lava-crust blocks
carried by the flow, or obsidian flows whose skin behaves
as a smooth deformable surface that folds and rolls during
motion. The detailed modeling of a lava front, with for
example liquid parts spreading out of the rigid crust, is
also a challenging work to be done.

Acknowledgments:
We wish to thank Mathieu Desbrun, whose research work on
the animation of highly deformable substances served as a ba-
sis for this work. Thanks to Pierre-Olivier Noirey for integrat-
ing Mathieu’s work on our animation platform FABULE, and to

Eugenia Montiel for re-reading this paper. Many thanks to Eric
Ferley for whose practical help was determinant for making the
whole thing work.

6 References
[1] J. Blinn. A generalization of algebraic surface drawing. ACM

Transactions on Graphics, 1(3):235–256, July 1982.
[2] Jules Bloomenthal, editor. Introduction to Implicit Surfaces. Mor-

gan Kaufmann, July 1997.
[3] Jean-Louis Bourdier. Le Volcanisme. Editions BRGM (manuels

et méthodes).
[4] B. Chanclou, A. Luciani, and A. Habibi. Physical models of loose

soils dynamically marked by a moving object. In Computer Ani-
mation Conference, pages 27–35, June 1996.

[5] M. Desbrun and M.P. Gascuel. Animating soft substances with
implicit surfaces. In SIGGRAPH’95 Conference Proceedings,
pages 287–290, August 1995. Los Angeles, CA.

[6] M. Desbrun and M.P. Gascuel. Smoothed particles: A new ap-
proach for animating highly deformable bodies. In 7th Euro-
graphics Workshop on Animation and Simulation, pages 61–76,
Poitiers, France, September 1996.

[7] N. Foster and D. Metaxas. Realistic animation of liquids. Graph-
ical Models and Image Processing, 58(5):471–483, 1996.

[8] N. Foster and D. Metaxas. Modeling the motion of a hot, turbulent
gas. In SIGGRAPH ’97 Conference Proceedings, pages 181–189,
August 1997.

[9] A. Fournier and W.T. Reeves. A simple model of ocean waves. In
SIGGRAPH ’86 Conference Proceedings, pages 75–84, August
1986.

[10] Patrick Fournier, Arash Habibi, and Pierre Poulin. Simulating the
flow of liquid droplets. In Graphics Interface’98, pages 133–142,
May 1998.

[11] J.D. Gascuel, M.P. Cani, M. Desbrun, E. Leroy, and C. Mir-
gon. Simulating landslides for natural disaster prevention. In 9th
Eurographics Workshop on Computer Animation and Simulation
(EGCAS’98), September 1998.

[12] M. Kass and G. Miller. Rapid, stable fluid dynamics for computer
graphics. In SIGGRAPH ’90 Conference Proceedings, pages 49–
57, August 1990.

[13] A. Luciani, A. Habibi, A. Vapillon, and Y. Duroc. A physi-
cal model of turbulent fluids. In 6th Eurographics Workshop on
Animation and Simulation, Maastricht, Netherlands, September
1995.

[14] Gavin Miller and Andrew Pearce. Globular dynamics: a con-
nected particle system for animating viscous fluids. Computers
and Graphics, 13(3):305–309, 89.

[15] J. J. Monaghan. Smoothed Particle Hydrodynamics. Annu. Rev.
Astron. Astrophys., 30:543, 1992.

[16] J.F. O’Brien and J.K. Hodging. Dynamic simulation of splashing
fluids. In Computer Animation’95, pages 198–205, April 1995.

[17] Ken Perlin. An image synthesizer. In SIGGRAPH ’85 Conference
Proceedings, volume 19, pages 287–296, July 1985.

[18] J. Stam and E. Fiume. Depicting fire and other gaseous phenom-
ena using diffusion processes. In SIGGRAPH 95 Conference Pro-
ceedings, pages 129–136, August 1995.

[19] R. Sumner, J. O’Brien, and J. Hodgins. Animating sand, mud, and
snow. In Graphics Interface, pages 125–132, June 1998.

[20] D. Terzopoulos, J. Platt, and K. Fleisher. Heating and melting
deformable models (from goop to glop). InGraphics Interface’89,
pages 219–226, London, Ontario, June 1989.

[21] D. Tonnesen. Modeling liquids and solids using thermal parti-
cles. In Graphics Interface’91, pages 255–262, Calgary, AL, June
1991.


