
A Desktop Design for Synchronous Collaboration

Bogdan Dorohonceanu and Ivan Marsic
{dbogdan, marsic}@caip.rutgers.edu

Center for Computer Aids for Industrial Productivity (CAIP)
Rutgers — The State University of New Jersey

Piscataway, NJ 08854-8088

Abstract
This paper presents a novel graphics user interface for
desktop management of a synchronous groupware
client. The interface is part of the Rutgers University
DISCIPLE framework that enables sharing of
applications. The interface presents an individual view
of a collaboration space that contains collaboration
artifacts, collaborators, their groupings and
relationships. The conceptual model of the
collaboration process is described since it strongly
influences the design of the user interface. We establish
the requirements, describe the components of the user
interface and then discuss alternative approaches.
JavaBeans applications are shared by being imported
into the shared workspace, but additionally, importing
Beans allows user tailoring of the interface and thus
supports end-user programming. Interface
customization is demonstrated with multimodal
human/machine interfaces and the collaboration
components (such as group awareness widgets,
concurrency controllers, etc.). Another activity
supported is multi-user visual programming using the
JavaBeans technology. Users at geographically separate
locations can collaboratively build complex
applications using pre-existing components. This
interface has been implemented and tested on a variety
of Java applications.

Keywords: CSCW, synchronous collaboration, user
interfaces, end-user programming, JavaBeans.

1 Introduction
A user interface for synchronous groupware should
allow the collaborators to quickly grasp the contents of
the collaboration space, and the relationships between
the collaborators, as well as allow them to communicate
and share applications and data. The interface must be
capable of presenting the following essential
components of the collaboration process at any time
during the collaboration: representation of and access to
the set of collaborators and their groupings, artifacts
used to accomplish the collaborative tasks, and images
of the working or meeting places.

Additional components that are not directly related
to collaboration, but are necessary for collaboration, are

the tools for discovery of collaborators and the tools for
reviewing the past collaborative sessions.
The main objective of DISCIPLE (DIstributed System
for Collaborative Information Processing and
LEarning) project is application sharing. The
conceptual collaboration model strongly influences the
design of the user interface. An appropriate theoretical
model of work and workgroups is thus of critical
importance and the model used in our work is reviewed
in Section 2. The guiding principles for the design and
implementation of graphics user interface for
synchronous collaboration presented here are simplicity
and familiarity with the existing concepts of graphics
interfaces (mainly for single users). The interface is part
of our DISCIPLE framework that provides mechanisms
to control its cooperative features in an
application-independent manner.

This paper is organized as follows. We first briefly
review the DISCIPLE collaboration framework. Section
2 presents our approach for collaboration space
visualization and management. Section 3 continues
with the collaboration artifacts and tools we provide.
Sections 4 and 5 describe our implementation for the
user interface of a meeting place and design-time
collaboration, respectively. Finally, we discuss the
related work of the existing collaborative frameworks
(Section 6) and conclude on the contribution of our
project in its current state of development (Section 7).

1.1 DISCIPLE Collaboration Bus
The graphics user interface presented here is the client
view of the DISCIPLE system [9]. The objective of the
DISCIPLE project is to simplify the development of
multi-user collaborative applications, in particular
real-time synchronous groupware. It includes
conversion of single-user applications to multi-user
domain with minimum effort—possibly without
modifying the original code or requiring the user to
write additional code. This is achieved by relieving, to
the largest degree possible, the application programs
from performing collaboration tasks, that is, those tasks
that must be performed to allow more than one user to
interact with these programs. We target a particular
class of applications—Java applets and more generally,
Java Beans [15]. The DISCIPLE framework is

conceptualized as a collaboration bus (Figure 1), which
assumes the collaboration tasks. The user plugs the
applications or applets into the bus by pointing to their
URLs and thus makes them shared with the other users
that participate in a collaborative session. An applet is a
small application program that provides a graphics user
interface and accomplishes a user task (e.g., extracting
image features or computing and visualizing a
spreadsheet table). A user would typically use multiple
applets, independently or linked into a more complex
applet, to collaborate with other users. Since multiple
users can simultaneously interact with their respective
applications, the interactions need to be coordinated.
The bus therefore contains the software components
that manage synchronous group work (e.g.,
concurrency control of simultaneous activities, degree
of sharing the application (coupling), and degree of
awareness about the originators of the activities).

The DISCIPLE collaboration is based on a replicated
architecture for groupware [5]. Each user runs a copy of
collaboration client, and each client contains a copy of
the applet that is to be collaborated on. For each object
within the applet, there will be a counterpart in all the
other users’ applets. Collaboration in this type of
architecture essentially translates into intercepting the
state changes occurring in a user’s applet and
replicating the state changes in all the peer users’
applets. Event interception is based on the property of
Java Development Kit (JDK) version 1.1 event model.
Any object can register as an event listener to the event
sources and all listeners get notified upon the event
occurrence [15]. When an applet gets loaded into the
shared workspace, the workspace registers to listen for
all the applet’s events. Upon the event occurrence, the
collaboration bus distributes the event to all peer
workspaces. The bus achieves synchronous
collaboration through real-time event delivery, event
ordering and concurrency control. A more detailed
description of the DISCIPLE collaboration bus is
available in [8].

2 Collaboration Space Visualization

2.1 Meetings vs. Places for Collaboration
From the user’s viewpoint, the act of synchronous
collaboration may emphasize either the meeting itself
with no concern for the location or the place where the
meeting occurs. Human collaboration includes both
meeting places with specialized resources to support the
meetings, as well as spontaneous discussions that occur
regardless of the location and often do not need special
meeting support from the environment. Places contain
persistent content and may get more elaborate and
complex with time.

Our current model emphasizes meeting places,
where the user selects a place and, by entering it,
obtains access to the resources in the place. The shared
workspace window gets automatically launched as the
user enters a place. The model is very similar to the
rooms models described in [6, 13] as well as to the
locales model in [10]. A place, however, in our model
is linked to the topic of collaboration rather than to the
physical location of the place.

Although this model does not preclude spontaneous
collaboration, it is more difficult to establish a
spontaneous meeting since the model is not tailored for
such type of collaboration. In fact, the concept of places
conflicts with spontaneous collaboration since it
requires the conferees to meet at a specific place. The
lack of spontaneity is in the sense that users cannot start
sharing any application on the screen at any time.
Rather, the user needs to enter a place and use
applications therein or initiate new ones. This is
different from collaboration with a set of formal rules
(workflow) vs. an informal meeting.

One of the reasons for inadequate support for
spontaneous meetings in DISCIPLE (as well as other
Java-based approaches) is due to the way the Java
Virtual Machine (JVM) is currently implemented. JVM
runs as an application and it affects neither the window

Figure 1: Architecture of the collaboration framework. Each conference participant runs a replica of the
application. The arrows symbolize the user’s actions that cause the transitions of the application’s states. The

collaboration bus provides various group- and communication-related services.

manager nor other applications. Unlike this,
collaboration systems based on shared window systems
(e.g., [5]) get interposed between the user and the
operating system—the entire user interaction goes
through the window system. This provides for sharing
the entire user’s desktop, and any application can
become collaborative at any moment. An equivalent to
a shared window system would be a shared JVM
running on a Java Operating System. DISCIPLE is not a
shared JVM—it is an application running in JVM,
several levels above the window system. Spontaneous
collaboration is hindered by the fact that nothing but the
application Beans that run in one of the DISCIPLE
workspaces can be shared.

2.2 Hierarchical Space Visualization
The collaboration space is essentially a “phone book”
of all people that a user can collaborate with. It is
structured to reflect various people groupings as in
everyday life. It may be visualized in different ways,
for example, using an abstract model or using a
physical model. The space may be represented using an
abstract model or using a physical model. The simplest
abstract representation shows a plain list of
collaborative places. A more complex representation
structures the places into a tree or a graph, where the
nodes at higher hierarchical layers correspond to
buildings, cities, etc. Even more complex representation
positions similar places proximally according to certain
distance measure. On the other hand, in a physical
representation the space is represented as a 3D virtual
world, where the user walks through streets and
corridors to reach a collaboration place. This
representation is more intuitive than the abstract ones,
but its disadvantage is that the user can be in only one
place at a time. The length of time to move from one

place to another depends on their distance. In addition,
creating new places can be fairly difficult. Since the
places in our model are characterized by the topic of
collaboration, rather than by their physical location, an
abstract representation is more appropriate than a
physical one. As a result, the user can simultaneously
be in several places (think about several topics) and can
quickly move from place to place (switch form topic to
topic through the mind’s “hyper-space”).

The main window of the client part of the DISCIPLE
system is shown in Figure 2. This is the first window
that appears after the user logs into the system. The
window visualizes the information about the
collaboration space as present at the available place
server(s). The hierarchy is as follows: place servers >
organizations (hyper-places) > (meeting) places > users
(participants) and is represented with a tree, shown on
the left side of Figure 2 (similar to a file system
representation). For example, in Figure 2 one can see
the communication node (disciple) with one
organization (CAIP) that contains two meeting places
(Military and Medical). The users that participate in
meetings (boi, dbogdan, latha, and juth) are shown in
places, and there is one user (francu) that has connected
but presently is not participating in any meeting. Using
the main window users can navigate the collaboration
space, create new meeting places, or enter existing
ones. This current representation is space-centric rather
than user-centric, i.e., the entire tree has to be inspected
to find out what places a particular user has entered.

A place server supports public and private places.
Public places are grouped under organizations and users
are grouped under the places they have entered. A user
can enter multiple public places at a time. Only its
creator can enter a private place, and other users are not
aware of its existence.

Figure 2: Screen snapshot of the hierarchical representation of the entire collaboration space. Each organization,
place, or user is associated with a description (image and/or text).

On the right side of Figure 2 there is a stack of
pages representing different utilities available to the
user. Current snapshot shows a description of or
information about the selected item. The description is
provided for only one item at a time. A different
approach has been put forward in [10] that shows
simultaneously a short description of all places that the
user is involved in; however, the hierarchy of the entire
collaboration space is not visualized. A way to have
both is to have (on the right in Figure 2) a scrollable
window with the description of all places the user is
currently in. The information item is shown in a tabbed
pane that also contains other common tools like chat
window, video/audio conferencing startup, e-mail,
query window for finding users, etc.

2.3 Place Creation, Entering and Leaving
Creating and entering a place is easily done with a
mouse click—there is no requirements to specify any
network address or a port for connection. A user creates
a public place in an organization by a right-button
mouse click on the organization’s icon (left side of
Figure 2). The user is prompted to enter the place
description via a dialog box. As the view of the meeting
place is created, the user automatically enters the place.
A user enters a public place by clicking the place’s
icon. A workspace (Section 4.1) is an ephemeral
representation on user’s desktop that corresponds to a
place on a place server. It is generated automatically as
the user enters a place to display the current artifacts in
the place. A workspace is bound to a place and cannot
be re-bound to another place. As the user leaves the
meeting place, a private place (snapshot of the meeting)
gets created and filled with the artifacts currently in the
workspace. The same workspace now represents the
view for the private place.

The user can specify a list of users for whom s/he is
interested in being notified when they are present in the
collaborative space. A message dialog window
announces them whenever they log in. A user can
search for and invite other users to enter his/her public
places, or specify a rule/filter for automatically inviting
users to enter his/her places. When a new user enters a
place the collaboration space hierarchy is updated with
his or her icon and descriptive information so that all
place inhabitants who have the place’s folder open can
notice the change. We are currently exploring a means
(an audio or short visual message) for notifying the
existing inhabitants of a place about the newcomer.

Places are persistent, so when a meeting gets
suspended (e.g., the last user leaves the meeting place),
the content of the place gets automatically stored on the
server, so the meeting can be resumed in the future
starting with the same content. Persistence provides for
asynchronous collaboration.

2.4 Individual Desktop View
The overall desktop view can vary for different
conferees, i.e., it is not a strict WYSIWIS (What You
See Is What I See) mode [14]. All of the collaboration
desktop windows (i.e., the communication center
window and meeting place windows) are freely floating
on the user screen and are individually customizable.
An alternative that we explored earlier was to have all
windows glued together as children of the main
window. This has some advantages of being able to
move or iconify all windows simultaneously. On the
other hand, this solution potentially uses too much of
the screen space and constrains the user as to how to
arrange the windows on the screen. Notice, however,
that this principle is not held all the way to the level of
the artifacts (Java Beans). All the artifacts in a place are
shown in a single workspace window corresponding to
a place as will be seen in Section 4.1 below (unless a
Bean launches its own window).

Help is provided through a small HTML browser
that visualizes the project documentation available in
the HTML format from our Web site. This way, the
users can access the most up-to-date help information.

3 Collaboration Artifacts and Tools
The users collaborate by sharing artifacts, tools and
resources. In DISCIPLE these are software applications
of one type—Java Beans [15]—which can be Java
applets or applications. The DISCIPLE framework
supports both collaboration-aware and collaboration-
transparent Beans. Collaboration-transparent Beans are
usually developed by a third party and they are
completely unaware of the fact that they are interacting
with multiple users.

Bean Browser displays all the Beans that are
available to the user at launch time or have become
available during a collaborative session, see Figure 3.
User’s own Beans, located in the local directory ����,
will be loaded by default when the user logs in. Other
Beans may be acquired during the meeting. At present,
the system automatically distributes the Beans to the
other participants so that all users in a place have the
same set of Beans. The Java Beans are packed in Java
archives (JAR) for fast transmission over the Internet.
When a user acquires new JAR files or enters a place
having JAR files that are not available in the place, they
are dynamically loaded through the network and added
into the Bean browsers of all the users in the place.
Using a Bean in collaboration is as easy as pointing to
its URL. A Bean can be loaded from a local file system
or, given the Bean’s URL, it can be loaded from any
Web server. The loader loads a JAR file that may
contain multiple Beans, e.g., the multimodal JAR in
Figure 3 contains the Beans for speech recognition,

keyboard and pen interaction, and multimodal data
fusion (octopus). Ordinary Java applets can be shared in
the DISCIPLE framework as long as the applet is
packaged in a JAR file.

A user can drop a Bean in a workspace by selecting
it in the Bean browser. All the users in the
corresponding meeting place will see the Bean appear
in their workspaces. The users can also copy the Beans
from a workspace to another workspace. This operation
maintains the Bean’s current state. This way, the user
will often draw from the relevant places the things they
need, as they need them, to get their tasks done. The
interface provides for relatively seamless movement
between places.

The Property List tool introspects automatically the
selected Beans and finds out their exposed properties
and the associated editors. Using the Property List
Editor, the user can visually modify the properties of
the Beans dropped into the place, all updates being
automatically sent to other users in that place.

The user interfaces of the Java Beans are expected
to be written using the Swing toolkit of JDK 1.2 as the
GUI of the DISCIPLE framework is built with Swing,
since this package provides for setting the look-and-feel
of the applications without changing their code.

4 Collaboration Workspaces

4.1 Workspace View
A workspace is launched automatically as the user
enters a meeting place. It provides an individual view
of the place, showing the artifacts that are currently in
the place and their relationships (Figure 4). The toolbar
at the top provides for opening the Beans browser,
loading the Beans, and cut/copy/paste operations on
Beans. Clicking the second toolbar button loads into the

Workspace the Bean that is currently selected in the
Bean browser.
As is the case with the overall desktop view, the
Workspace also works in a relaxed WYSIWIS mode in
the sense that each conferee can position the Beans at
different locations within the Workspace. However,
Beans themselves are presently limited to consistent
views and actions for all the conferees, because it is not
possible to uncover the entire semantics of the
collaboration-transparent Beans. A Bean can be
displayed in a Workspace window or it can launch its
own independent window.

Each place is dedicated to one topic having its own
workspace. This enables the users to both run and/or
build new applications incrementally in a place at run-
time and allows for interface customization, as
discussed below. A well-known paradigm is that a user
has a single workspace for all the locales that he/she
participates in [10]. The user resides in one “office”
while he/she can be working on several problems
simultaneously; thus one workspace for multiple
meetings. Orbit has an icon and a label (indicating the
meeting it belongs to) identify each artifact in the
workspace. This representation is suitable since Orbit
deals with documents represented by icons, but not with
the document editors and viewers, i.e., applications.
Unlike that, the main objective of DISCIPLE is sharing
of application, and place labeling of the application
windows would be inconvenient.

4.2 Collaboration Components
The idea of collaboration components is that, even in
specialized collaborative applications, a common set of
functions exists that can be extracted and implemented
as self-contained software components. These include
such things as concurrency control, user awareness, etc.

Figure 3: Screen snapshot of the user interface for loading and browsing the Beans.
The loaded Beans can be used in collaboration.

It would be ideal to enable an application developer to
focus on the application itself and not on these multi-
user aspects. By providing a set of reusable software
components that encapsulate such multi-user features,
the collaboration components allow the user to easily
configure the shared workspace [4].

The DISCIPLE framework currently provides
awareness through telepointers and radar views that are
included in the set of Beans loaded by default at
start-up. A telepointer represents the position of a
remote user’s mouse cursor, providing location
awareness. It has unique color, and a name, and both
identify the user. A radar view displays a miniaturized
image of the workspace with highlighted regions that
the participants are currently viewing. Collaboration
components also include several concurrency control
algorithms (non-optimistic locking, optimistic locking,
and undo/redo) [4].

4.3 Interface Customization
Componentization of the collaboration framework
introduces the possibility for interface customization.
Figure 5 shows an example where the workspace is
augmented by collaboration component Beans [4] and
by multimodal human/machine interaction Beans [11].
By loading different collaboration component Beans,
the user can vary the degree of awareness about the
other conference participants or select the concurrency
control algorithm that applies to a particular Bean.
Similarly, by loading and activating different

multi-modal Beans, the user can dynamically choose
the modality for interacting with the workspace (e.g.,
speech, keyboard, eye gaze pointer, etc. [11]).

The users can also edit their description (picture,
personal information, URL address of the Web page,
etc.) and the properties of the awareness widgets
representing them remotely (such as telepointers, radar
views) at any time during collaboration.

5 Design-Time Collaboration
A special feature of our framework, which is not
present in other collaborative frameworks, is support
for design-time collaboration, where users can
customize at run-time the application or compose more
complex applications from simpler ones. A Bean is a
software component with a well-defined set of inputs
and outputs and the outputs of a Bean may be fed as
inputs to another Bean. Design-time collaboration is the
act of collaboratively assembling a composite
JavaBeans application from several JavaBeans
components. Once the application is composed, all the
state changes in the application will be shared. This
stage is the run-time collaboration of applications.

The DISCIPLE collaboration-enabling framework is
a simplified Java Integrated Development Environment
(IDE), augmented with a collaboration bus and the
mediators between the bus and the applications. The
framework is not intended to be a full-featured IDE.
The design-time collaboration feature is intended for
user-extensibility and incremental programmability of

Figure 4: Screen snapshot of the workspace. The workspace contains two examples of Java Beans: a
(collaboration-aware) whiteboard and a (collaboration-transparent) calendar.

collaborative applications, rather than as a development
tool. It is provided for advanced users to be able to
rapidly add extra features to an existing application or
to prototype an application using simpler components.
Although we do not expect that users will frequently
use this feature, we believe that it can be very valuable
on occasion. System administrators or other super-users
who do not see themselves as programmers would use
this feature and save the results for future use by
ordinary users.

Design-time collaboration can be compared to the
macro language for spreadsheets, where the advanced
users are able to create powerful macros to carry out
complex and useful work, without the need to require
upgrades and modifications to the application from the
original developer.

Although workspaces are hierarchical, linking
(using the JDK event model) the Beans from different
workspaces or hierarchies is flat. Any Bean can be
linked to any other Bean in any of the workspaces on
the user’s desktop. The linking can be accomplished
while the Beans are in one workspace, and then they
can be dragged to different workspaces. It can also be

accomplished when the Beans are already imported into
different workspaces.

6 Related Work
Traditional and currently available commercial user
interfaces for synchronous collaboration usually include
simple whiteboard and audio/videoconferencing1.
Conventional systems for sharing collaboration-
transparent applications, like Microsoft NetMeeting [7],
are also lacking in terms of support for key groupware
principles: concurrent work, relaxed WYSIWIS, and
group awareness. Few systems that do deal with general
application sharing are available only as research tools
and the design principles for the user interface are
rarely explicitly formulated. Some general guidelines
for developing multi-user interfaces are discussed in
[3], but design for specific components of a multi-user
interface is not described.

The model of collaboration presented here has
certain similarities to the locale concept and the Orbit
implementation of the concept [10]. In the Orbit

1 See e.g., MBONE multiparty conferencing tools available at
http://www.mbone.com/mbone/software.html.

Figure 5: An example of workspace customization. The workspace contains the task Bean (whiteboard), some of the
collaboration component Beans (user actions view, radar view, and telepointers), and some of the multimodal

interface Beans (speech and text input).

framework a user has a single workspace for all locales
(i.e., places) in which he participates. The paradigm is
that the user resides in one place (e.g., office) while
he/she can be working on several problems
simultaneously; thus one workspace for multiple
locales. Artifacts are represented in the workspace by
icons and labels associated with the locales they belong
to. Orbit focuses on visualizing the content of locales,
with some information about the artifacts’ states, but it
is not concerned with the viewers and editors for
interaction with the artifacts. Unlike this, as we
discussed in Section 4.1, DISCIPLE focuses on
application sharing, i.e., viewers for Java Beans that
allow interaction with the Beans, distribute the Bean
events, and provide customization of the user
interfaces. Therefore we proposed a different approach.

GroupKit toolkit [12] is used in groupware
prototyping for experimenting with different types of
group awareness and modeling shared applications
(called conferences) such as drawing tools, text editors,
and meeting tools. GroupKit intends to support
different types of session managers, tailored to the
group needs to create, locate, and join conferences. The
“open-registration” session manager uses small separate
dialogs to represent and modify the information about
conferences and participants. A shared application can
be selected from a list and, once opened, it has its own
window on the screen. The “room-based” session
manager represents the rooms as icons in a
collaboration space. A room groups several shared
applications (a set of tools needed to accomplish a
task). As the user enters different rooms only the tools
from the current room are displayed on the screen. Our
framework uses a more compact representation through
a tree hierarchy. GroupKit has several awareness
widgets particularly relevant to relaxed WYSIWIS
groupware awareness (identity, location, and actions)
and offers telepointers, radar-views, location and action
viewers, and multi-user scrollbars, most of them
implemented for the “open-registration” approach.

Collaboratory Builder’s Environment (CBE) [6]
provides both a toolkit for creating collaboration
environments and a complete collaboration system. To
support extensibility, the client application software is a
structured set of applets, which includes services (such
as data viewers) and tools (such as multi-user chat,
whiteboard, mail, audio-video conferencing tools) for
collaboration. CBE uses rooms to partition the shared
workspace consisting of multiple applets and data
sources represented by URLs. The session manager
supports one shared workspace, which corresponds to
one organization in our notation, and keeps information
about the users and objects in rooms, represented by a
tree-like hierarchy. Our framework goes further by

supporting multiple organizations (each of them
containing multiple places/workspaces and users). In
CBE, a user can dynamically add new applets and data
to their rooms and move both tools and data between
the rooms. CBE offers support for user roles in a room
(observer, member, administrator, restricted) and access
control for use over the network. The shared workspace
may contain applets, users, applet-groups, and rooms.
An applet-group denotes an applet shared among the
users in a room. Rooms are persistent and provide for
synchronous and asynchronous collaboration. CBE
relies on the Web browser in order to display the
session manager, the rooms, and the applications
(applets) in separate windows.

The Habanero framework [2] provides support for
sessions, similar to rooms in CBE, which can contain
URLs of data sources and collaboration-aware
applications. A session requires predefining the set of
applications to be shared and does not allow dynamic
adding of applications. Unlike this, DISCIPLE allows
for moving Beans or active applets among places and
organizations.

Flexible JAMM [1] supports sharing of single-user
Java applets in synchronous collaboration. It relies on a
custom-modified version of JDK 1.1, which makes it
non-portable. JAMM primarily targets unanticipated
sharing or spontaneous collaboration where a user is
able to initiate sharing at any time during the execution
of the application, not only before application is started.
Due to the specific collaboration model, JAMM user
interface does not represent the collaboration space.
The workspace accepts only one applet at a time, but
offers a radar view and different types of telepointers.

Although some of the components of the design
presented here exist in other systems, end-user
programming (through the run-time customization of
the user interface and design-time collaboration) is to
our best knowledge unique to our framework.

7 Conclusions
This paper has presented a design and implementation
of a graphics user interface for synchronous
collaboration that allows interaction with shared
JavaBeans applications. The interface is part of the
DISCIPLE framework that provides mechanisms to
control its cooperative features in an
application-independent manner. The interface is not a
complete, monolithic system but rather a component
system that is open and customizable (to the context in
which it is placed and particular user needs).

Our project is still evolving and there are unsolved
problems that we are currently investigating. For
example, if an application (by mistake) exposes chained
events, where an event causes the next event in the

chain, the collaboration bus is not able to detect this,
and causes duplicate events in remote applications. An
example is when in design-time collaboration a
collaboration-aware application is chained after any
other application. Another issue is to what class an
application belongs when it is composed of two simpler
applications, one collaboration-transparent and one
collaboration-aware. This is more than a philosophical
issue, since at the time of Bean loading the framework
registers different event adapters based on the
application type.

The DISCIPLE framework developed to date has
been implemented and tested on both
collaboration-transparent Java Beans (available on the
WWW) and our collaboration-aware Java Beans. The
applications include whiteboarding, collaborative
mapping, speech signal acquisition and processing, and
image analysis. We are currently running human
performance experiments to evaluate the interface
design (as well as other aspects of the framework). For
updated information or software download, check this:
����	

����
���������������
���
����
.

Acknowledgments
The authors had many inspiring discussions with
Cristian Francu, Stephen Juth, Boi Sletterink, and
Weicong Wang who contributed to the implementation
of the DISCIPLE framework. Marilyn Mantei Tremaine
and Jeff Hand of Drexel University helped with early
evaluation of the user interface. The research reported
here is supported by DARPA Contract No. N66001-96-
C-8510, NSF KDI Contract No. IIS-98-72995 and by
the Rutgers Center for Computer Aids for Industrial
Productivity (CAIP). CAIP is supported by the Center’s
Corporate Members and by the New Jersey
Commission on Science and Technology.

References
[1] J.B. Begole, C.A. Struble, C.A. Shaffer, R.B.

Smith. Transparent Sharing of Java Applets: A
Replicated Approach. In Proceedings of the 1997
Symposium on User Interface Software and
Technology (UIST’97), pages 55-64, 1997.

[2] A. Chabert, E. Grossman, L. Jackson, S.
Pietrowicz, C. Seguin. Java Object-Sharing in
Habanero. In Communications of the ACM,
41(6):69-76, 1998.

[3] P. Dewan. Principles of Designing Multi-User
User Interface Development Environments. In
Proceedings of the IFIP TC2/WG 2.7 Working
Conference on Engineering for Human-Computer
Interaction, pages 35-50, 1992.

[4] S. Juth, Collaboration Components for
Programming Real-time Synchronous Groupware
Applications, Master Thesis, ECE Department

and CAIP Center, Rutgers University, 1998. (At
http://www.caip.rutgers.edu/disciple).

[5] C. Lauwers. Collaboration Transparency in
Desktop Teleconferencing Environments. Ph.D.
thesis, Technical Report CSL-TR-90-435,
Computer Systems Laboratory, Stanford
University, 1990.

[6] J.H. Lee, A. Prakash, T. Jaeger, G. Wu.
Supporting Multi-User, Multi-Applet Workspaces
in CBE. In Proceedings of the ACM 1996
Conference on Computer-Supported Cooperative
Work (CSCW’96), pages 344-353, 1996.

[7] Microsoft Corporation. NetMeeting 2.1 Resource,
(at http://www.microsoft.com/netmeeting), 1996.

[8] I. Marsic, B. Dorohonceanu. An Application
Framework for Synchronous Collaboration using
Java Beans. In Proceedings of the Thirty Second
Hawaiian International Conference on System
Sciences (HICSS-32), 1999.

[9] I. Marsic. DISCIPLE: A Framework for
Multimodal Collaboration in Heterogeneous
Environments. To appear in ACM Computing
Surveys, 1999.

[10] T. Mansfield, S. Kaplan, G. Fitzpatrick, T. Phelps,
M. Fitzpatrick, R. Taylor. Toward Locales:
Supporting Collaboration with Orbit. To appear in
Journal of Information and Software Technology,
1999.

[11] A. Medl, I. Marsic, M. Andre, C.A. Kulikowski,
J.L. Flanagan. Multimodal Man-Machine
Interface for Mission Planning. In Proceedings of
the AAAI Spring Symposium on Intelligent
Environments, pages 41-47, 1998.

[12] M. Roseman and S. Greenberg. Building Real-
Time Groupware with GroupKit, a Groupware
Toolkit. ACM Transactions on Computer-Human
Interaction, 3(1):66-106, March 1996.

[13] M. Roseman, S. Greenberg. TeamRooms:
Network Places for Collaboration. In Proceedings
of the ACM 1996 Conference on Computer-
Supported Cooperative Work (CSCW’96), pages
325-333, 1996.

[14] M. Stefik, D. G. Bobrow, S. Lanning, D. Tatar.
WYSIWIS Revised: Early Experiences with
Multiuser Interfaces. In ACM Transactions on
Information Systems, 5(2):147-167, 1987.

[15] Sun Microsystems, Inc. JavaBeans 1.0 API
Specification (at http://www.javasoft.com/beans),
1996.

