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Abstract

Character animation is usually reserved for highly
skilled animators and computer programmers because
few of the available tools allow the novice or casual user
to create compelling animated content. In this paper, we
explore a partial solution to this problem which lets the
user coach animated characters by sketching their trajec-
tories on the ground plane. The details of the motion
are then computed with simulation. We create memory-
based control functions for the high-level behaviors from
examples supplied by the user and from real-world data
of the behavior. The control function for the desired be-
havior is implemented through a lookup table using aK-
nearest neighbor approximation algorithm. To demon-
strate this approach, we present a system for defining the
behaviors of defensive characters playing American foot-
ball. The characters are implemented using either point-
masses or dynamically simulated biped robots. We eval-
uate the quality of the coached behaviors by comparing
the resulting trajectories to data from human players. We
also assess the influence of the user’s coaching examples
by demonstrating that a user can construct a particular
style of play.

Key words: animation, behavioral control, physical sim-
ulation, machine learning

1 Introduction
No matter how realistic a character may look, if it be-
haves in an unnatural way, the illusion of reality is lost.
Animated shorts, video games, interactive virtual envi-
ronments, and training simulation environments all re-
quire animated characters whose high-level behavior con-
veys an appearance of intelligence. For example, the op-
ponent agents in Quake are most appealing when they ap-
pear as proficient in combat as a skilled human opponent.
In a sports training environment, unrealistic behaviors are
unacceptable because they can lead to negative training.

High-level behaviors govern the way a character moves
within the environment to achieve its goals in the pres-
ence of obstacles and other characters. Two-dimensional
navigation control is necessary in any three-dimensional

Figure 1: Two teams of dynamically simulated bipeds
playing American football. The offensive players (blue)
are tracking pre-defined offensive routes from real foot-
ball data. Seven defensive players (yellow) are also track-
ing pre-defined routes while the four red defensive play-
ers are controlled by the behavior function table. Colli-
sions are enforced between all players.

scene with locomoting characters. For example, path
planning algorithms allow a character in a video game to
avoid collisions with other moving characters and static
obstacles. High-level behaviors can also tell a character
how to move to accomplish a task such as defending a
soccer goal.

We need intuitive interfaces for creating compelling
and realistic high-level behaviors because the people who
would like to create the content are not always experts in
animation, control, or computer programming. For ex-
ample, a quarterback training simulator should allow a
football coach to set up a scenario that is appropriate for
a particular trainee. A sports video game could allow the
user to demonstrate defensive maneuvers and customize
the playing style of his team. Similarly, a child might
want to create an animation by directing a swarm of bugs
to navigate a particular terrain. Architectural visualiza-
tions would benefit from a two-dimensional interface for



creating animated figures that navigate through a particu-
lar three-dimensional architectural structure.

In this paper, we explore a data-driven approach to
defining navigation control where much of the data is
supplied directly by the user via an intuitive mouse in-
terface. We use a real-time, memory-based technique
that builds local approximations of the appropriate action
based on data stored in a table. The data is obtained from
coaching examples provided by the user and from obser-
vations of real-world scenes[11]. We use point-mass sim-
ulations as well as three-dimensional dynamically simu-
lated characters that possess low-level locomotion prim-
itives (Figure 1) to execute the output of the navigation
control. We have used this system to implement de-
fensive behaviors for a man-to-man defense and a lim-
ited zone defense in American football. We demonstrate
the effectiveness of coaching examples by comparing the
performance of the coached behaviors to recorded human
behavior. We also show that the user can provide coach-
ing examples to create particular styles of defensive play.

2 Background
We build on a considerable history of work in memory-
based techniques for creating both high and low-
level controllers. In the machine learning community,
memory-based learning has been used successfully in
robot control. Atkeson and colleagues survey the use
of locally weighted learning for robot control tasks[2].
Moore investigates efficient memory-based techniques
for robot control[13]. Aha and Salzberg explore the use
of nearest-neighbor algorithms for a robot that learns
to catch a ball[1]. Researchers have also explored the
use of learning from examples to develop road-following
controllers for vehicles. The ALVINN system uses a
neural network to train off-line on examples of road-
following[14]. The ELVIS system learns the eigenvec-
tors of an input image and steering commands for road
following examples and projects new examples into this
eigenvector feature space to determine steering com-
mands for new situations[8]. In computer graphics,
Grzeszczuk, Terzopoulos, and Hinton used neural net-
works to learn the dynamics and control of several dy-
namic systems including a rocket ship, a car, and a
dolphin[7].

Many other researchers in computer graphics have ex-
plored data-driven approaches that combine multiple mo-
tion sequences to produce new motion. Unuma, An-
jyo, and Takeuchi use Fourier interpolation to gener-
ate walking and running gaits that express a variety of
emotions[16]. Wiley and Hahn use a tri-linear inter-
polation pyramid and time warping to create general-
ized pointing as well as walking on sloped terrain[17].
Rose, Cohen, and Bodenheimer use a radial basis func-
tion model to generalize behaviors such as walking and
running for speed and angle of the terrain[15]. Their
work also emphasizes parametric control of emotional
expressiveness for a set of base behaviors.

The goal of our research is to explore whether intu-

itive interfaces can be designed that allow the novice to
construct animations effectively. Recently, superb work
has been done on a related problem, intuitive interfaces
that allow the novice to build three-dimensional graphical
models. These systems used a pen and/or mouse to pro-
vide the user with intuitive control within a constrained
domain. Both Eggli and Zeleznik and their colleagues ex-
plored free-hand sketching techniques for creating three-
dimensional rectilinear models[5, 18] while Igarashi,
Matsuoka, and Tanaka provided an intuitive interface for
modeling rounded freeform objects[10]. Our interface
builds on these ideas by using a mouse to provide the
high-level control examples in the two-dimensional plane
and a dynamic simulation as a constraint to produce the
details of the low-level animated motion.

Several researchers have explored intuitive interfaces
for animation or character direction in virtual environ-
ments. Blumberg and Galyean allow the user to direct
a character at the motivational, task, and motor levels[4].
Johnson and his colleagues embedded an instrumented
skeleton within a plush toy and allowed users to manip-
ulate the toy. Their system recognized common gestures
made by the user and interpreted them as commands for
the control of an interactive animated character[12]. Each
of these techniques constrains the number of degrees of
freedom that the user must control to make the problem
tractable.

3 American Football
In this paper, we explore a mouse-based interface for
coaching reactive behaviors for the defensive-back posi-
tions in American football. We first develop a behavior
function table based on an existing database of tracked
football plays[11]. We then allow the user to modify the
behavior by adding coaching examples of the desired be-
havior. We also build behaviors starting from an empty
table for other tests. We present the behavior results with
both an offensive/defensive pair of point-masses and two
full teams of biped robots. The offensive players and
some of the defensive players run pre-defined routes from
the database of football plays while the actions of selected
defensive players are determined by the behavior func-
tion table.

We focus on two types of defense in football: man-
to-man and zone. The characteristics of each defensive
strategy determine the features that are used to index into
the behavior function table as well as the actions that
result from the function query. The man-to-man strat-
egy requires that the defender focus on a single offen-
sive receiver and maintain a position near the receiver as
he moves down the field. The defender must stay close
enough to the receiver to prevent the completion of a
short pass but allow enough space to prevent the receiver
from getting behind him to complete a long pass[3, 6].
The zone strategy requires that the defender focus on de-
fending any pass within a given area of the field rather
than focusing on a specific player. When the play begins,
the defender observes the offensive players and takes the
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Figure 2: During training, the algorithm stores all data.
At query time, it finds theK-nearest neighbor examples
in the table and uses them to compute a local approxima-
tion to the appropriate action.
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Figure 3: The man-to-man defensive strategy depends
on the absolute velocity of the defender(ẋ,ẏ), his position
with respect to the receiver (∆x,∆y), and his velocity
with respect to the receiver (∆ẋ,∆ẏ). The corresponding
action is the desired position of the defender with respect
to the receiver (∆xd, ∆yd).
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Figure 4: The zone defensive strategy depends on the ab-
solute velocity of the defender (ẋ,ẏ), the relative position
of the defender with respect to the zone center (∆x,∆y),
and a measure of the offensive activity in the assigned
zone area (occupancy map). The corresponding action is
the desired position of the defender with respect to the
zone center (∆xd, ∆yd).

appropriate position within his assigned zone based on
the movement of the offensive players[3, 6].

4 Behavior Representation
Memory-based learning is a lazy learning technique be-
cause all behavior examples are stored in a table and

actual learning or function approximation does not take
place until a query has been made. The query is a feature
vector that represents the current state or situation. When
a query is made, theK feature vectors that are closest
to the query are retrieved from the table along with their
accompanying actions. TheseK feature/action pairs are
used to build a distance-weighted local approximation of
the action (Figure 2).

Figure 3 illustrates the three features used in the man-
to-man defensive strategy: the defensive player’s ab-
solute velocity (̇x,ẏ), his position relative to the re-
ceiver (∆x,∆y), and his velocity relative to the receiver
(∆ẋ,∆ẏ). The action is the desired relative position of
the defender with respect to the receiver:(∆xd,∆yd).

Figure 4 shows the three features used in the zone de-
fensive strategy: the defender’s absolute velocity (ẋ,ẏ),
his position relative to the zone center (∆x,∆y), and the
general offensive activity in his zone area. The general
activity within a zone area is determined with a low reso-
lution occupancy map (16x24 m) of the offensive players
within the general zone area. If an offensive player occu-
pies a discretized position on the field over the course of
a play, a value of one is assigned to that position, creating
a map of offensive player travel within the zone area. The
maps are compared in a bitwise fashion and the distance
between two maps is the number of entries that differ.
The corresponding action is the desired position of the
defender with respect to the zone center:(∆xd,∆yd).

A feature vector p is represented as
(a1(p), a2(p), . . . , an(p)) where ar(p) denotes the
rth attribute of the feature vectorp. The distance
between two feature vectorspi andpj is

d(pi, pj) =

√√√√ n∑
r=1

(ar(pi)− ar(pj))2

The weighting for a particular neighbori given a query,
q, is wi = 1/d(pq, pi)2 The distance-weighted action is
then

f(pq) =
∑K
i=1wif(pi)∑K

i=1 wi

whereK is the number of nearest neighbors used in the
approximation andf(pi) is the action associated with the
instancepi. This locally approximated action is then used
as the output.

5 Sources of Data
TheK-nearest neighbor table is built on examples of the
desired behavior. These examples can come from mea-
surements of the real world or from data sketched by the
user. In Section 7, we describe experiments that use these
sources of data both independently and together. A be-
havior example is defined as a player’s defensive trajec-
tory over time. Regardless of the source, the behavior
example is sampled at 30Hz and these samples define the
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Figure 5: The database contains each player’s (x,y) field
position sampled at 30Hz. Velocity vectors for the play-
ers are computed using finite differences and shown as
lines in the image. Labels for each position are also in-
cluded in the database. Our interface allows the user to
draw a path for the defensive player over time in response
to the movement of the receiver. Non-coached players
move according to the tracked data.

features and actions that are stored contiguously in the
table so that continuous pieces of examples can be eas-
ily recalled. A 5 second play, then, would contain 150
feature/action pairs.

The real-world data that we used was extracted from
an existing database of digitized football plays[11]. This
database consists of approximately 100 plays from the
1993 season of the New England Patriots. The plays con-
tain the two-dimensional position of each player on the
field sampled at 30Hz as well as the name of the player’s
position within the offensive or defensive scheme (Fig-
ure 5).

The user can supplement the data from the real world
by creating time-dependent behavior examples for the de-
fender. The user drags the mouse to sketch out the defen-
sive trajectory on the two-dimensional plane of the field
as the play advances in time (Figure 5). The interface al-
lows the user to coach an entire play or only a portion of
a play. The user’s mouse pointer does not determine the
defensive player’s position directly; instead it defines the
endpoint of a spring and damper system that is connected
to the defensive player (Figure 6). The position of the
defensive player inx is

xt+1 = xt + ẋtdt+ 0.5
fx
m
dt2

and the force isfx = kp(xd − x) − kvẋ wherekp is a
position error gain,kv is a velocity damping gain,x is
the current position andxd is the desired position repre-
sented by the mouse pointer. Similar equations hold for
y. The velocity of the defender is clamped at 10m/s, a
reasonable limit for a football player and the position and
velocity are sampled at 30Hz. The dynamics of the spring
and damper model serve as a filter on the user’s actions

Mouse Pointer

Mouse Path

Defender’s Path Defender’s Velocity

d d(x ,y )

(x,y) (x,y)
. .

Figure 6: The user tugs at the defender with a spring and
damper connected to the mouse pointer.

with the mouse. Using the mouse position and differenti-
ated velocity directly does not provide reasonable feature
vectors.

As the user creates a behavior example, each new fea-
ture is compared to the closest features in the table. If
the new feature is one for which there is no nearby fea-
ture/action pair in the table, the new data is added to the
table. If the area has been explored, the data is added only
if the action is within a threshold distance of the actions
for similar features. This process helps to avoid unwanted
interference between old and new feature/action pairs
and reinforces existing feature/action pairs with similar
ones. This culling may also prevent the replacement of
bad feature/action pairs with new, radically different fea-
ture/action pairs. Instead, replacements are handled by
clearing the table or deleting particular behavior exam-
ples.

5.1 Run-Time Algorithm

We demonstrate the performance of theK-nearest neigh-
bor table by placing the defensive character in game situ-
ations and using the behavior function table to determine
his actions during a play. At run-time, a feature vector
is computed for the current state of the defensive player.
The feature vector is used to find theK-nearest fea-
ture/action pairs that come from different behavior exam-
ples with a simple linear search through the table (O(N)
time). Using a kd-tree would improve searching perfor-
mance toO(logN). The behavior lookup is performed
everyT time-steps. For the interveningT − 1 time-steps,
the system builds the local approximation using the fea-
ture/action pair that occurred next in time in the play ex-
amples that were originally selected. Switching examples
only everyT time steps creates more continuous actions.
A new query is performed sooner if a play example ends
or if the distance error between the current feature in the
play example and the current query becomes larger than
a threshold value. We usedT = 10 with a time step of
0.033s for the experiments reported in this paper.

The value ofK affects the performance of the sys-
tem. High frequency changes associated withK = 1
lead to poor feature values for subsequent lookups. A
higher value forK smooths the actions and consequently
the features for subsequent queries. The experiments re-
ported here use a value ofK = 3.
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Figure 7: The biped robot consists of a body and two
telescoping legs. Each leg has three degrees of freedom
at the hip and a fourth degree of freedom for the length of
the leg.

6 Simulations for Low-Level Behaviors

We demonstrate the performance of the behavior function
table on both point-mass simulations and dynamically
simulated biped robots. The point-masses have a mass
of 100kg and a maximum velocity of 10m/s. A spring
and damper connect the point-mass to the desired posi-
tion on the field. The spring and damper position gain,
kp, was7000 and the velocity damping gain,kv, was700
in our experiments.

The dynamically simulated biped consists of 5 body
parts and 8 degrees of freedom (Figure 7). The biped has
a leg length of 0.9 meters (approximately the length of
the leg of a person 2 meters tall) and uses control laws
described in [9]. Because the biped robots are not as
agile as human football players, the features are scaled
before lookup in the behavior function table and the in-
verse of the scaling factor is applied to the resulting ac-
tion. The tracked humans reach maximum velocities of
10m/s whereas the biped robot has a maximum velocity
of approximately 4m/s resulting in a scaling factor of 2.5.

7 Results

We ran several tests to evaluate the performance of the
system. The first test illustrates the improvement pro-
vided by combining coaching with a baseline behavior
function table built from the database of tracked foot-
ball plays. We extracted 30 examples of man-to-man de-
fensive behavior as played by the outside linebacker and
cornerback positions. The corresponding feature/action
pairs for 29 of these examples were entered into the ta-
ble to serve as the baseline for man-to-man defensive be-
havior. Although this table performs reasonably well on
many plays, in some cases, the performance is not partic-
ularly good.

When the user provides partial or full examples of the
desired behavior for several of the 29 plays, the perfor-
mance improves for the test play that was withheld from
the table (Figure 8). The user provided 8 example se-
quences that were the equivalent of approximately 2 full
plays of 3s each. Of the actions used in the final trajec-
tory, 30% were from coached data while the remaining

38.0 40.0 42.0 44.0 46.0 48.0
X(meters)

10.0

12.0

14.0

16.0

18.0

20.0

Y
(m

et
er

s)

Real defender
Defender before coaching
Defender after coaching

Figure 8: The line marked with squares shows the per-
formance of the point-mass using a behavior built from
the database of football plays. The line marked with
stars shows the performance after the table has been aug-
mented with coaching examples while the line marked
with circles shows the response of the digitized actual
defender. The symbols represent time stamps as the play
moves down the field from left to right.

70% were from the original table data.
Figure 9 shows the results of coaching a character to

play a generic man-to-man defense. Starting from an
empty table, the character was coached on a set of ran-
domly chosen plays from the database of real football
plays. The graph depicts the defender’s performance for
a play that was not included in the coaching drills. The
performance of the coached player is similar to that of the
real player not just in the path taken but also in the timing
of the play.

To be useful as a tool, the system must allow the user
to mold the behavior of the character. We ran two tests
to exercise this aspect of the system performance. In
each test, the user was to create two distinctly different
styles of man-to-man defense. Figure 10 shows a de-
fender coached to have an inside defensive bias and an-
other coached to have an outside defensive bias. This
graph is for a play that was not in the coaching set. A
defender might take such a bias if a defensive strategy
provides him with support from other defensive players
on either side. We ran a similar experiment to create both
a tight and a loose man-to-man defensive style. The need
for these two styles might arise in a football training envi-
ronment where the content creator would want a defender
who plays a tight man-to-man defense for a “goal line”
scenario but a loose man-to-man for a scenario of “third
down and long.”

For this experiment, we ran user tests to determine
if subjects other than the authors could use the coach-
ing interface to create the two styles of defense. The
subjects were given approximately five minutes to fa-
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Figure 9: A point-mass character coached to play
generic man-to-man competitive defense. Performance
against a play from the database is similar to that of the
real defender that was recorded for this particular play.
The play moves down the field from left to right.

miliarize themselves with the dynamics of the coaching
interface. They were then presented with two separate
movies of biped robots playing a man-to-man defense
against biped receivers. One video represented a tight
man-to-man defense while the other represented a loose
man-to-man defense. The subjects were asked to coach a
point-mass character to play a loose man-to-man defense
against a point-mass receiver for six plays. After train-
ing on these six plays, the resultant behavior table was
applied to an unseen and uncoached play to determine if
the subject was satisfied with the resulting loose man-to-
man defensive behavior. The process was repeated for the
tight man-to-man defense.

On a scale of 1-5, all of the subjects ranked their ability
to control the point-mass a 3 or above, and rated their sat-
isfaction with the resulting behavior on the unseen play
a 3 or above. Figure 11 shows a graph of the point-mass
performance on an unseen play after being coached by
one of our subjects. The loose variation was coached for
a total of 1015 feature/action pairs, the equivalent of ap-
proximately 11 plays of 3s each. The tight variation was
coached for a total of 1332 feature/action pairs, the equiv-
alent of approximately 15 plays of 3s each.

Figure 12 shows a graph of the average separation dis-
tance between the defender and the receiver for both the
loose and tight version of the man-to-man defense for
each test subject as well as for the demonstrated man-to-
man play that they were attempting to imitate. Subjects
2-6 clearly demonstrate the two distinct styles of man-to-
man defense, but subjects 7 and 8 were unable to pro-
duce the two styles of defense. Both subjects 7 and 8 are
left-handed, but use their right hands for typical mouse
manipulations. All other subjects are right-handed.
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Figure 10: The line marked with circles represents a
point-mass defender coached to play a man-to-man de-
fense with an outside position bias. The line marked with
squares represents a defender coached to play with a bias
to the inside of the receiver. Both behaviors were coached
starting from an empty table. The play moves down the
field from left to right. The sideline is at the top of the
graph, and the player with the outside bias defends clos-
est to the sideline.

Among the right-handed subjects, those with better
control over the character were clearly able to produce
more consistent examples and this consistency was re-
flected in the resulting behavior. The subject’s level of
football knowledge appeared to have little effect as long
as the subjects were consistent in their examples.

In the next example, we show that the user can train
the character for a limited zone defense. The defender
was drilled on three types of plays, with multiple vari-
ations of each type. There are three basic zone defen-
sive rules for a linebacker [3]. First, if the halfback to
the linebacker’s side runs a wide route, the defender must
stay wide to protect against the pass to the halfback. Sec-
ond, if the halfback runs a stop route, the wide receiver
will be running a route to the outside. The defender must
move to a wide position in the zone to protect against the
wide receiver outside route. And finally, if the halfback
runs an angle route, the wide receiver is running a deep-
inside route. The defender must get to a deep position in
the zone and fade to the inside to protect against the wide
receiver inside route.

Figure 13 shows an example of the second rule. The of-
fensive player routes were synthetically created for each
of the zone examples because the database of football
plays did not contain a sufficient number of examples.
The defender reacts correctly for a play that was not used
in the coaching drills. He moves to a wide position to
protect against the wide receiver out route as stated in the
second rule.

All of the preceding examples used a point-mass sim-
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Figure 11: The line marked with circles represents a
point-mass defender who was coached to play a loose
man-to-man. The line marked with squares represents
a defender who was coached to play a tight man-to-man.
Both behaviors were coached starting from an empty ta-
ble. The play moves down the field from left to right.

ulation to compute the low-level motion but we can also
use simulated bipeds as the football players. Figure 14
shows the performance of a simulated biped robot de-
fender. The robot is controlled with a behavior function
table that did not include this particular play. The biped
trajectory is compared to that of the human player where
the human data has been scaled by1/2.5 to match the
abilities of the biped.

In each of these examples, the offensive characters are
not responsive to the defense and are running predefined
routes from the database of football plays or from hand-
drawn routes in the case of the zone. This simplification
is often reasonable for receivers because their routes must
be followed closely after a play has started. The quarter-
back will often throw the ball to a predetermined spot on
the field before the receiver arrives or even looks toward
the quarterback.

8 Discussion

This paper illustrates how coaching can be used to cre-
ate or refine high-level behaviors for animated characters
and demonstrates the approach in American football. We
built a man-to-man defense behavior based on an initial
database of examples and applied it to both a point-mass
and a biped robot. We demonstrated the power of the
user interface by using coaching to modify this baseline
behavior function table as well as to define man-to-man
and zone defense behaviors from an initially empty table.
We performed user tests and showed that subjects could
produce both a tight and a loose man-to-man defense.

The selection of appropriate features is an important
aspect of our approach because it determines the dimen-
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Figure 12: Average separation distance between de-
fender and receiver for user test subjects coaching a loose
man-to-man and tight man-to-man defense. The bold line
represents the average separation distance for the demon-
stration play.

sionality of the table and therefore the amount of data
necessary to populate the table. Unnecessary features re-
sult in wasted storage space while too few features can
result in an inability to model the desired function. We se-
lected a small set of appropriate features based on our do-
main knowledge. Given sufficient data, techniques such
as principal components analysis might compute the ap-
propriate features automatically. Scaling of the features
also affects the performance of our system. We do not
normalize the features for the man-to-man or for the zone
examples because they were on the same order of mag-
nitude. We did, however, weight the relative position by
a factor of 3.0 to increase its importance. For the zone
example, our occupancy map feature is potentially sub-
ject to noise problems because offensive situations that
are shifted with respect to the zone center may not appear
similar. This problem could be addressed by using pat-
tern matching techniques that are invariant with respect
to shift.

Although we have used only real-world and coach-
ing examples to control the characters in this paper, we
believe that the next step towards easily programmed
and controlled characters is a combination of several
techniques including coaching examples, real-world data,
hand-programmed reactive behaviors, and finite state ma-
chines for switching between behaviors. Combining
coaching with other techniques would allow the anima-
tor to influence behavior when desired but would free the
animator from providing examples for every situation.
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Figure 13: After coaching on several zone play ex-
amples, the character effectively defends the zone for
this play where the halfback runs a stop pattern. The
linebacker retreats to his zone area and correctly moves
to the outside to guard against the wide receiver out route.
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