
Image-Based Virtual Camera Motion Strategies

Eric Marchand Nicolas Courty

IRISA - INRIA Rennes
Campus de Beaulieu,

35042 Rennes Cedex, France

Abstract
This paper presents an original solution to the camera
control problem in a virtual environment. Our objective is
to present a general framework that allows the automatic
control of a camera in a dynamic environment. The pro-
posed method is based on the image-based control or vi-
sual servoing approach. It consists in positioning a cam-
era according to the information perceived in the image.
This is thus a very intuitive approach of animation. To
be able to react automatically to modifications of the en-
vironment, we also considered the introduction of con-
straints into the control. This approach is thus adapted
to highly reactive contexts (virtual reality, video games).
Numerous examples dealing with classic problems in an-
imation are considered within this framework and pre-
sented in this paper.

Key words: Automatic camera motion, Automatic cine-
matography, Visual servoing, Animation

1 Overview

Issues. There are numerous issues related to the control of a
camera in a virtual environment. Typically, the control of the
camera is handled by Lookat/lookfrom techniques associated
with the definition of 3D trajectories. The camera must, usually,
first position itself wrt. to its environment, and must then react
in an appropriate and efficient way to modifications of the envi-
ronment. As regards with the first issue, even if a full knowledge
of the scene is available, as in the computer animation context,
the positioning task is not a trivial problem (see [2]). There is
a need for precise control of the 6 degrees of freedom (d.o.f) of
the camera in the 3D space. The second issue, that can be de-
fined as the introduction of constraints in the camera trajectory,
is even more complex. In order to be able to consider unknown
or dynamic environments and to achieve real-time camera mo-
tion control, these constraints must be properly modeled and
“added” to the positioning task.
Related work. Visual servoing has proved, within the robotics
context, to be an efficient solution to these problems. Visual
servoing or image-based camera control consists in specifying
a task (mainly positioning or target tracking tasks) as the regu-
lation in the image of a set of visual features [17, 6, 8]. A good
review and introduction to visual servoing can be found in [10].
As the task specification is carried out in 2D space, it does not

require a 3D relationship between objects. However, since the
approach is local, it is not a priori possible to consider planning
issues. If the control law computes a motion that leads the cam-
era to undesired configurations (such as occlusions, obstacles),
visual servoing fails. Control laws taking into account these
“bad” configurations therefore have to be considered. Frame-
work that allows the consideration of such constraints has been
presented in, for example, [13, 12]. It combines the regulation
of the vision-based task with the minimization of cost functions
reflecting the constraints imposed on the trajectory.

Viewpoints computation also has received attention in com-
puter graphics. The main difference wrt. computer vision or
robotics is that the problem is no longer ill-posed. Indeed, in
that case a full knowledge of the scene is available. Even in
an interactive context, the past and current behavior of all the
objects is fully known. Ware and Osborn [16] consider various
metaphors to describe a six d.o.f. camera control including “eye
in hand”. Within this context, the goal was usually to deter-
mine the position of the “eye” wrt. its six d.o.f in order to see
an object or a set of objects at given locations on the screen.
User interfaces such as a 3D mouse or a six d.o.f joystick could
be considered to control such virtual device. Obtaining smooth
camera motions required a skilled operator and has proved to be
a difficult task. The classical lookat/lookfrom/vup parameteri-
zation is a simple way to achieve a focusing task on a world-
space point. However specifying a complex visual task within
the lookat/lookfrom framework is quite hopeless. Attempts to
consider this kind of problem have been made by Blinn [2],
however the proposed solutions appear to be dedicated to spe-
cific problems and hardly scaled to more complex tasks. Image-
based control has been described within the computer graphics
context by Gleicher and Witkin in [7], who called it “Through-
the-lens camera control”. They proposed to achieve very sim-
ple tasks such as positioning a camera with respect to objects
defined by static “virtual” points. This technique, very similar
to the visual servoing framework, considers a local inversion of
the nonlinear perspective viewing transformation. A constraint
optimization is used to compute the camera velocity from the
desired motion of the virtual point in the image. Another formu-
lation of the same problem has been proposed in [11]. In both
case, the image Jacobian (that links the motion of the features
to camera motion) is proposed only for point features. Further-
more, the introduction of constraints in the camera trajectory is
not considered within the proposed framework.

The introduction of constraints has received great attention



in both the robotics (e.g. [15, 4]) and computer graphics [5]
communities. The resulting solutions are often similar. Each
constraint is defined mathematically as a function of the cam-
era parameters (location and orientation) to be minimized using
deterministic (e.g. gradient approaches) or stochastic (e.g. simu-
lated annealing) optimization processes. These approaches fea-
ture numerous drawbacks. First they are usually time consum-
ing (the search space is of dimension six) and the optimization
has to be considered for each iteration of the animation process
(i.e. for each new frame). It is then difficult to consider these
techniques for reactive applications such as video games. As
already stated, visual servoing allows the introduction of con-
straints in the camera trajectory [14, 13, 12]. These constraints
are modeled as a cost function to be minimized. The resulting
motion, also named secondary task, is then projected in the null
space of the main task; it has then no effect on the main visual
task. In this framework, as the camera trajectory that ensures
both the task and the constraints is computed locally, it can be
handled in real-time as required by the considered applications.

Presented system and contributions. The aim was to define
the basic camera trajectories for virtual movie directors as well
as the automatic control of a camera for reactive applications
such as video games. We assume that we fully know the model
of the scene at the current instant. Within this context, we
present a complete framework, based on visual servoing, that
allows the definition of positioning tasks wrt. to a set of “virtual
visual features” located within the environment (these features
can be points, lines, spheres, cylinders, etc.). When the spec-
ified task does not constrain all the camera d.o.f, the method
allows the introduction of secondary tasks that can be achieved
under the constraint that the visual task is itself achieved. Fur-
thermore the considered features are not necessarily motionless.
Using this approach we present solutions to various non-trivial
problems in computer animation. Some of these tasks are more
concerned with reactive applications (target tracking and fol-
lowing, obstacles and occlusion avoidance) while others deal
with cinema application (panning, camera traveling, lighting
conditions optimization, etc).

The remainder of this paper is organized as follows: Sec-
tion 2 recalls the visual servoing framework within the task
function approach. Section 3 presents methods allowing nav-
igation in cluttered dynamic environments. Section 4 handles
constraints more closely related to the cinema industry.

2 Image-based camera control

Image-based visual servoing consists in specifying a task as the
regulation in the image of a set of visual features [6][8]. Embed-
ding visual servoing in the task function approach [14] allows
the use of general results helpful for the analysis and the syn-
thesis of efficient closed loop control schemes. A good review
and introduction to visual servoing can be found in [10].

2.1 Camera positioning wrt. visual targets
Let us denote P the set of selected visual features used in the
visual servoing task measured from the image, or by projection
in the computer graphics context, at each iteration of the control
law. To ensure the convergence of P to its desired value Pd,

we need to know the interaction matrix (or image Jacobian) LTP
that links the motion of the object in the image to the camera
motion. It is defined by the now classic equation [6] :

�P � L
T
P�P�p�Tc (1)

where �P is the time variation of P (the motion of P in the im-
age) due to the camera motion Tc. The parameters p involved
in LTP represent the depth information between the considered
objects and the camera frame. A vision-based task e� is defined
by:

e� � C�P�Pd� (2)

whereC, called combination matrix, has to be chosen such that
CLTP is full rank along the desired trajectory r � SE�. If e�
constrains the 6 d.o.f, it can be defined as C � LT

�

P �P�p�.
We will see in Section 2.3 how to define C if the 6 d.o.f are not
constrained. L� is the pseudo inverse of matrix L.
To make e� decreases exponentially and behaves like a first

order decoupled system, the camera velocity given as input to
the virtual camera is given by:

Tc � ��e� (3)

where � is a proportional coefficient.
Within this framework we can easily perform positioning

tasks wrt. to any object of the scene. The main advantage of
this approach is that even if the task is specified within the 2D
image space, control is performed in 3D.

2.2 Building new skills
One of the difficulties in image-based visual servoing is to de-
rive the image Jacobian LT which corresponds to the selected
control features. A systematic method has been proposed to
analytically derive the interaction matrix of a set of control fea-
tures defined upon geometrical primitives [6]. Any kind of vi-
sual information can be considered within the same visual ser-
voing task (coordinates of points, line orientation, surface or
more generally inertial moments, distance, etc).
Knowing these interaction matrices, the construction of el-

ementary visual servoing tasks is straightforward. A large li-
brary of elementary skills can be proposed. The current version
of our system allows to define X-to-X feature-based tasks with
X = fpoint, line, sphere, cylinder, circle, etc.g. Using these
elementary positioning skills, more complex tasks can be con-
sidered by stacking the elementary Jacobians. For example if
we want to build a positioning task wrt. to a segment, defined
by two points P� and P�, the resulting interaction matrix will
be defined by:

L
T
P �

�
LTP�

LTP�

�
(4)

where LTPi
is defined, if Pi � �X�Y � and z is its depth, by

(See [6] for its derivation):

L
T
P
�

�
���z � X�z XY ��� �X�� Y
� ���z Y�z � � Y �

�XY �X

�
(5)

More positioning skills can thus be simply defined.



2.3 Introducing constraints
If the vision-based task does not constrain all the n robot d.o.f, a
secondary task (that usually represents a camera trajectory con-
straint) can be performed. C is now defined as C � CLTP and
we obtain the following task function:

e �W
�
e� � �In �W

�
W�e� (6)

where

� e� is a secondary task. Usually e� is defined as the gra-
dient of a cost function hs to be minimized (e� � �hs

�r
).

This cost function is minimized under the constraint that
e� is realized.

� W� and In �W�W are two projection operators which
guarantee that the camera motion due to the secondary
task is compatible with the regulation of P to Pd. W is
a full rank matrix such that KerW = Ker LTP. Thanks
to the choice of matrix W, In �W�W belongs to
Ker LP, which means that the realization of the sec-
ondary task will have no effect on the vision-based task
(LTP�In �W

�W�e� � �). Let us note that, if the visual
task constrains all the n d.o.f of the manipulator, we have
W � In, which leads to In �W�W � �. It is thus
impossible in that case to consider any secondary task.

The control is now given by:

Tc � ��e� �In �W
�
W�

�e�

�t
(7)

2.4 Tracking a mobile target
A target motion generally induces tracking errors that have to
be suppressed in order to always achieve the tracking task per-
fectly.
In that case, the motion of the target in the image can be

rewritten as:
�P � L

T
PTc � L

T
PT� (8)

where LTPTc and LTPT� are respectively the contribution of
the camera velocity and of the autonomous target motion to the
motion of the target in the image. The new camera velocity that
suppresses the tracking errors is then given by:

Tc � ��e� �In �W
�
W�

�e�

�t
� �T� (9)

where � � ��� �	 is a scalar. If � � �, the tracking errors are
fully suppressed while if � � �, they are not handled.

3 Reactive viewpoint planning
The positioning tasks that can be considered within the frame-
work presented in the previous section are quite simple. As we
did not consider the environment, the target was assumed to be
“alone”. We now present a method that makes it possible to
achieve far more complex tasks in dynamic “cluttered environ-
ments”. In this difficult context we will propose a purely reac-
tive framework in order to avoid undesirable configurations in
an animation context.

3.1 Avoiding obstacles
Obstacle avoidance is a good example of what can be easily
given within the proposed framework. Let us assume that the
camera is moving in a cluttered environment while focusing on
a visual target. The goal is to ensure this task while avoiding all
the obstacles in the scene.
There are in fact multiple solutions to this problem: one so-

lution is to planify a trajectory that avoids the obstacles using
a trajectory planning process. Another solution is to consider
a secondary task that uses the redundant d.o.f of the camera to
move away from obstacles. This function will tend to maximize
the distance between the camera and the obstacle. A good cost
function to achieve the goal should be maximum (infinite) when
the distance between the camera and the obstacle is null. The
simplest cost function is then given by:

hs � �
�


kC �Ock�
(10)

where C��� �� �� is the camera location and Oc�xc� yc� zc� are
the coordinates of the closest obstacle to the camera, both ex-
pressed in the camera frame (note that any other cost func-
tion that reflects a similar behavior suits the problem). If
Os�xs� ys� zs� are the coordinates of the obstacle within the
scene frame (or reference frame) and Mc�RT � the homoge-
nous matrix that describes the camera position within this ref-
erence frame, the obstacle coordinates within the camera frame
are given byXc � RTXs �RTT .
The components of the secondary task are given by:

e� � ��xc� yc� zc� �� �� ��
T h

�
s

�
and

�e�

�t
� � (11)

Multiple obstacles can be handled considering the cost function
hs �

P
i
� �

kC�Oci
k�
.

3.2 Avoiding occlusions
The goal here is to avoid the occlusion of the target due to static
or moving objects (with unknown motion). The virtual cam-
era has to perform adequate motion in order to avoid the risk
of occlusion while taking into account the desired constraints
between the camera and the target. There are actually many sit-
uations that may evolve in an occlusion. The first and most sim-
ple case is a moving object that crosses the camera/target line
(see Figure 1.a). Two other similar cases may be encountered:
in the first one (see Figure 1.b) the target moves behind another
object in the scene while in the second one (see Figure 1.c) the
camera follows an undesirable trajectory and is hidden behind
an object.
We will now present a general image-based approach that

make it possible to generate adequate camera motion automat-
ically to avoid occlusions [12]. In a second time we will see
a simple method to determine the risk of occlusion in order to
weight adequately the camera response (i.e. its velocity).

Automatic generation of adequate motions
Let us consider O the projection in the image of the set of
objects in the scene which may occlude the target T : O �
fO�� � � � Ong. According to the methodology presented in



a b c

Figure 1: Occlusion issues (a) occlusion due to a moving
object (b) occlusion due to the target motion (c) occlusion
due to the camera motion

paragraph 2.3 we have to define a function hs which reaches
its maximum value when the target is occluded by another ob-
ject of the scene. In fact this occlusion problem can be fully
defined in the image. Indeed, if the occluding object is closer
than the target, when the distance between the projection of the
target and the projection of the occluding object decreases, the
risk of occlusion increases.
We thus define hs as a function of this distance in the image:

hs �
�



�

nX
i��

e
���kT�Oik

�� (12)

where � and � are two scalar constants. � sets the amplitude of
the control law due to the secondary task. The components of
e� and �e�

�t
involved in (7) are then:

e� �
�hs

�r
�

�hs

�P

�P

�r
�

�e�

�t
� �

Computing �hs
�P

is seldom difficult. �P
�r
is nothing but the image

Jacobian LTP.
Let us consider the case of a single occluding object here

considered as a point. The generalization to other and/or to
multiple objects is straightforward. We want to see the target
T at a given location in the image. Thus we will consider the
coordinates P � �X�Y � as its center of gravity. If we also
consider the occluding object O by a point PO � �XO � YO�,
defined as the closest point of O to T , we have:

hs �
�



�e
��kP�POk

�

and e� is given by:

e� �
�hs

�r
�

�hs

�X
L
T
X �

�hs

�Y
L
T
Y (13)

with
�hs

�X
� ����X �XO�e

��kP�POk
�

and
�hs

�Y
� ����Y � YO�e

��kP�POk
�

In fact e� as defined in (13) is an approximation of �hs
�r
.

Indeed LTP �
�
LTX � L

T
Y

�T
is the image Jacobian related to

a physical point. In our case, since the point is defined as the
closest point of O to T , the corresponding physical point will
change over time. However considering LTX and LTY in (13) is
locally a good approximation.

Risk of occlusion
Using the presented approach to compute the camera reaction
is fine if the occluding object moves between the camera and
the target [12] as depicted in Figure 1. Indeed, in that case oc-
clusion will occur if no action is taken. However, it is neither
necessary nor desirable to move the camera in all the cases (if
the occluding object is farther than the target). A key point is
therefore to detect if an occlusion may actually occur. In that
case we first compute a bounding volume V that includes both
the camera and the target at time t and at time t�ndt assuming
a constant target velocity (see Figure 2 and Figure 3). An occlu-
sion will occur if an object is located within this bounding box.
The time-to-occlusion may be computed as the smallest n for
which the bounding box is empty. If an object O of the scene
is in motion, in the same way, we consider the intersection of
the volume V with a bounding volume that includesO at time t
and at time t� ndt.

a b

Figure 2: Computing the risk of occlusion

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

a �
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���

���
���
���

Obstacle b

Figure 3: Detection of a future (a) occlusion (b) collision
with an obstacle

Let us point out two other interesting issues:

� Obstacle avoidance may be considered in this context. In-
deed, if an obstacle is on the camera trajectory, it will be
located in the created bounding box (see Figure 3.b). The
system will therefore forbid the camera to move in that
direction.

� Some cases are more difficult to handle. A good example
is a target moving in a corridor (see Figure 4). In that
case, the only solution to avoid the occlusion of the target
by one of the walls and to avoid the contact with the other
wall is to reduce the camera/target distance. This can only
be done if the z axis is not controlled by the primary task.

In conclusion, let us note that in this paragraph, we have just
proposed a method to detect and quantify the risk of occlusion.
The method proposed in paragraph 3.2 must be, in all cases,
used to generate the adequate motion that will actually avoid
occlusion. The time-to-occlusion computed here will in fact be



Figure 4: Occlusion issues: camera in a corridor

used to set the parameter � (see equation (12)) that tunes the
amplitude of the response to the risk.

4 Virtual director for automatic cinematography

Whereas the issues considered in the previous section are more
related to reactive applications such as video games, the prob-
lems considered in this paragraph are more concerned with
camera control for movie making applications. The question
considered here is the following: where should we place the
camera to ensure film constraints within a given shot [1]. Our
goal here is not to provide a director with a language that de-
scribes scenes and shots such as in [3][9] but to propose some
elementary skills to be used afterwards by the director.

4.1 Cinematographic basic camera placement
Panning and Tracking Panning and tracking, certainly the
most common camera motions, are straightforward to consider
within the image-based framework, and have been widely con-
sidered in the previous sections of this paper. In fact the only
difficulty is to choose the visual features (virtual or not) on
which we want to servo. This choice is very important as it
will determine the d.o.f of the virtual camera that will be used
to achieve the task. For example for panning issues, the users
are likely to choose one or two virtual points or a straight line
as visual features (for these features the pan axes of the camera
will be controlled). For tracking issues, the adequate features
may depend on the desired camera motion. For example, if the
camera motion has to be “parallel” to the target trajectory, the
6 d.o.f must be constrained in order to achieve a rigid link be-
tween the camera and the target (4 points or 4 lines – or any
other combination of visual features such that LT is a full rank
6 matrix – are then suitable for such a purpose).

Trajectory tracking As regards with the trajectory tracking is-
sue, the problem is fairly simple. We want the camera to move
on a curve V�t� � �x�t�� y�t�� z�t�� defined in the camera
frame. We consider a secondary task that is nothing but a func-
tion of the distance between the camera and the point V�t�. A
good solution is to define the secondary task as the function hs
simply defined as:

hs � kV�t�k�� (14)

Many other basic cinematographic issues exist (see [1]
or [9]), e.g. building apex camera placement (that can be de-
fined by two segments or two points for example), external or
internal view (that has to consider the target and a virtual line
of interest). Our goal is not to describe these tasks here. How-
ever, as they are described within the image space, image-based
camera control is suitable for such issues.

4.2 Controlling lighting conditions
Controlling lighting condition (i.e. the “photography” problem),
is a fundamental and non trivial issue for a film director. The
main problem is to define what a good shot is wrt. these condi-
tions.Two different functions are proposed to achieve this goal:
one is directly based on the intensity within the image while the
second is based on the intensity gradient (that gives information
about the contrast in the image).
Our goal is to position the camera wrt. the lit aspect of the

object. Therefore, we want to maximize the quantity of light
(re)emitted by this object to ensure good lighting conditions.
Applying the proposed methodology, we want to maximize the
following cost function:

hs �
�

n

X
X

X
Y

I�X�Y �

where I�X�Y � represents the intensity of the 2D point �X�Y �.
The points �X�Y � belong to the object. The secondary task is
then given by:

�hs

�r
�

�

n

X
X

X
Y

�
�hs

�X

�X

�r
�
�hs

�Y

�Y

�r

�

�
�

n

X
X

X
Y

�
rXL

T
X �rY L

T
Y

�
(15)

where rIX � �I
�X

and rIY � �I
�Y

represents the spatial in-
tensity gradient.
If our goal is to maximize the contrast within the image, one

possible criterion will be to maximize the sum of the spatial in-
tensity gradient within the image. The corresponding cost func-
tion is given by:

hs �
�

n

X
X

X
Y

�
rI�X �rI�Y

�
(16)

We therefore need to compute the gradient �hs
�r

that is in fact
given by

�hs

�r
�

�

n

X
X

X
Y

�
�hs

�X
L
T
X �

�hs

�Y
L
T
Y

�
(17)

After some rewriting, we finally get:

�hs

�r
�




n

X
X

X
Y

�	
��I

�X�
rIX �

��I

�Y �X
rIY



L
T
X

�

	
��I

�X�Y
rIX �

��I

�Y �
rIY



L
T
Y

�T
(18)

5 Results
In this section some results are presented to illustrate our ap-
proach. Most of the images are generated in “real-time” (i.e.
less than 0.1 s/frame) on a simple SUN Ultra Sparc (170Mhz)
using Mesa GL (the images produced using this process can be
seen in, for example, Figure 6 or Figure 8). The animations of
Figure 7 or Figure 9 are computed afterwards using Maya from
Alias Wavefront.



5.1 Avoiding occlusions: museum walkthrough.
In this example, we applied the proposed methodology to a nav-
igation task in a complex environment. The target to be fol-
lowed is moving in a museum-like environment. The goal is
to keep the target in view (i.e. to avoid occlusions) while con-
sidering on-line the modifications of the environment (i.e. other
moving objects). In this example, we consider a focusing task
wrt. an image centered virtual sphere. This task constrains 3
d.o.f of the virtual camera (i.e. to achieve the focusing task and
to maintain the radius constant in the image). The reader can
refer to [6] for the complete derivation of the image Jacobian
related to a sphere. Figure 5 shows the camera trajectories for
various applied strategies. Obstacles appear in yellow. The tar-
get trajectory is represented as a red dotted line, while the tra-
jectory of another moving object is represented as a blue dotted
line. The red trajectory represents the simplest strategy: just fo-
cus the object. As nothing is done to consider the environment,
occlusions and then collisions with the environment occur. The
blue trajectory only considers the avoidance of occlusions by
static objects; as a consequence, the occlusion by the moving
object occurs. The green trajectory considers the avoidance of
occlusions by both static and moving objects.
A bird’s eye view of some key-frames are given in Figure 6.

The yellow volume (associated to the camera-target couple) cor-
responds to the bounding volumes used to predict the occlu-
sions. The green volume is only used to detect the occlusions
by the moving object as explained in Section 3.2. Figure 6 (A2,
A3, B1) shows three views “acquired” during the avoidance of
the occlusion by the wall 1. Between view B1 and view B2 the
occlusion by the moving object is avoided. As for the first wall
the problem of wall 2 in the center of the room is handled as
shown in images B3, C1 and C2. Final position is reached on
C3. Figure 7 shows six views acquired by the virtual camera
and rendered by using Maya.

−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

2

4

6

x

y

avoid obstacles and occlusions

target trajectory                                    
occluding object trajectory                          
no constraints                                       
avoid occlusions by static objects only              
avoid occlusions by static and mobile objects        

Wall 1 

Wall 2 

avoiding the occlusion by
moving object 

avoiding occlusion
by wall 2 

avoiding occlusion
by wall 1 

Figure 5: Museum walkthrough: camera trajectories for
various strategies

5.2 Walking in a corridor: Merging multiple con-
straints

In this experiment the considered task is the same but the tar-
get is moving within a narrow corridor and is turning right (see

1 2 3

A

B

C

Figure 6: Museum Walkthrough: bird’s eye views with
the bounding volumes used for occlusion predictions

Figure 7: Museum Walkthrough: bird’s eye views and
corresponding camera views

Figure 8). In this experiment it is not possible to achieve this
task if the distance between the camera and the target remains
constant. If one wants the camera to keep the target in view an
occlusion avoidance process has to be avoided. The problem
is that the motion computed to avoid the occlusion moves the
camera toward the red wall. An obstacle avoidance process is
then necessary. We then have three secondary tasks: one related
to the camera-target distance, one related to obstacle avoidance
(see paragraph 3.1) and the last one related to occlusion avoid-
ance (see paragraph 3.2). The resulting control law automati-
cally produces a motion that moves the camera away from the
wall and reduces the camera-target distance. This distance, ini-
tially set to 3.5 m, decreases and reaches less that 2.5 m to en-
sure the task.



Figure 8: Moving in a corridor: bird’s eye views and cam-
era views

5.3 Trajectory tracking
In the experiment described in Figure 9, the camera focuses on
the tower (i.e. we want to see this tower vertically and centered
in the image). Let us note here that a similar task has been
considered in [7].
Let us first consider the positioning task itself. It can be han-

dled in various ways according to the chosen visual features.
The simplest way to define a segment is to consider its two ex-
tremities. In that case LTP is a full rank 4 matrix. In that case,
the distance between the camera and the middle of the segment
must remain constant. If we want to follow a trajectory that
does not ensure this constraint, we will have to modify the fo-
cal length of the camera to ensure both the main task and the
trajectory tracking [7]. This solution is usually not suitable for
cinematographic issues. The other way to consider this segment
is to choose the segment support straight line as visual feature.
In that case, the image Jacobian is a full rank 2 matrix and only
two d.o.f are then constrained. Figure 9.a and Figure 9.b show
the beginning and the end of this focusing task. Once this is
achieved, the camera follows a given 3D trajectory. Results are
shown on Figure 9(b–f).

a b c

d e f

Figure 9: Positioning wrt. a segment and trajectory track-
ing

5.4 The “photography” problem
As regards this issue, we first perform a positioning experiment
wrt. to a sphere lit by a positional light source. Results of this
positioning task are presented on Figure 10(a-b). It is worth
noting that the average intensity increases very smoothly (see
Figure 10.c). We also plot the distance between the camera and
the object-light axis (see Figure 10.d ). We can note that this
distance tends towards zero, i.e., the camera is located between
the sphere and the light as can be predicted by theory (see Fig-

ure 10.e).

a

120

140

160

180

200

220

240

260

20 40 60 80 100 120

’cost’

b

0

2

4

6

8

10

12

14

16

20 40 60 80 100 120

’distance’

c

−15

−5

5

−5

5

15

0

5

y

optimizing lighting conditions

x

z

camera location
target         
light          

d

Figure 10: Positioning wrt. a sphere under good lighting
conditions: (a) scene observed by the camera (illumina-
tion increases) (b) average intensity in the image (c) dis-
tance to sphere-light axis (d) camera/sphere/light position
over time

Other experiments involve more complex objects (here a
teapot has been used). The results presented (see Figure 11)
show the validity of our approach. Only a focusing task has
been considered. This explains that the teapot turned upside
down.

a b

c d

Figure 11: Teapot sequence: considering lighting condi-
tions

6 Conclusion
There are many problems associated with the management of
a camera in a virtual environment. It is not only necessary to
be able to carry out a visual task (often a focusing task or more



generally a positioning task) efficiently, but it is also necessary
to be able to react in an appropriate and efficient way to modifi-
cations of this environment. We chose to use techniques widely
considered in the robotic vision community. The basic tool that
we considered is visual servoing which consists in positioning
a camera according to the information perceived in the image.
This image-based control constitutes the first novelty of our ap-
proach. The task is indeed specified in a 2D space, while the
resulting camera trajectories are in a 3D space. It is thus a very
intuitive approach of animation since it is carried out according
to what one wishes to observe in the resulting images sequence.
However, this is not the only advantage of this method. In-

deed, contrary to previous work [7], we did not limit ourselves
to positioning tasks wrt. virtual points in static environments.
In many applications (such as video games) it is indeed nec-
essary to be able to react to modifications of the environment,
of trajectories of mobile objects, etc. We thus considered the
introduction of constraints into camera control. Thanks to the
redundancy formalism, the secondary tasks (which reflect the
constraints on the system) do not have any effect on the visual
task. To show the validity of our approach, we have proposed
and implemented various classic problems from simple tracking
tasks to more complex tasks like occlusion or obstacle avoid-
ance or positioning wrt. lit aspects of an object (in order to en-
sure good “photography”). The approach that we proposed has
real qualities, and the very encouraging results obtained sug-
gest that the use of visual control for computer animation is a
promising technique. The main drawback is a direct counterpart
of its principal quality: the control is carried out in the image,
thus implying loss of control of the 3D camera trajectory. This
3D trajectory is computed automatically to ensure the visual
and the secondary tasks but is not controlled by the animator.
For this reason, one can undoubtedly see a wider interest in the
use of these techniques within real-time reactive applications.

Acknowledgements
The authors wish to thank François Chaumette for is valuable
comments and Rémi Cozot for submitting us the lighting prob-
lem.

Animations on-line.
Most of the animations presented in this paper can be
found as mpeg film on the VISTA group WWW page
(http://www.irisa.fr/vista then follow the “demo”
link).

References
[1] D. Arijon. Grammar of the Film Language. Communica-

tion Arts Books, Hastings House, New York, 1976.

[2] J. Blinn. Where am I ? what am I looking at ? IEEE
Computer Graphics and Application, pages 76–81, July
1998.

[3] D.B. Christianson, S.E. Anderson, L.-W. He, D.H.
Salesin, D.S. Weld, and M.F. Cohen. Declarative camera
control for automatic cinematography. In Proc of AAAI’96
conference, pages 148–155, Portland, Oregon, 1996.

[4] C.K. Cowan and P.D. Kovesi. Automatic sensor place-
ment from vision task requirements. IEEE trans. on Pat-
tern Analysis and Machine intelligence, 10(3):407–416,
May 1988.

[5] S.M. Drucker and D. Zeltzer. Intelligent camera control
in a virtual environment. In Graphics Interface’94, pages
190–199, Banff, Canada, 1994.

[6] B. Espiau, F. Chaumette, and P. Rives. A new approach to
visual servoing in robotics. IEEE Trans. on Robotics and
Automation, 8(3):313–326, June 1992.

[7] M. Gleicher and A.Witkin. Through-the-lens camera con-
trol. In ACM Computer Graphics, SIGGRAPH’92, pages
331–340, Chicago, July 1992.

[8] K. Hashimoto. Visual Servoing : Real Time Control of
Robot Manipulators Based on Visual Sensory Feedback.
World Scientific Series in Robotics and Automated Sys-
tems, Vol 7, World Scientific Press, Singapor, 1993.

[9] L.-W. He, M.F. Cohen, and D.H. Salesin. The virtual cin-
ematographer: a paradigm for automatic real-time camera
control and directing. In Proc. of ACM SIGGRAPH’96,
in Computer Graphics Proceedings, pages 217–224, New
Orleans, August 1996.

[10] S. Hutchinson, G. Hager, and P. Corke. A tutorial on vi-
sual servo control. IEEE Trans. on Robotics and Automa-
tion, 12(5):651–670, October 1996.

[11] M.H. Kyung, M.-S. Kim, and S. Hong. Through-the-lens
camera control with a simple jacobian matrix. In Proc. of
Graphics Interface ’95, pages 171–178, Quebec, Canada,
May 1995.

[12] E. Marchand and G.-D. Hager. Dynamic sensor planning
in visual servoing. In IEEE Int. Conf. on Robotics and Au-
tomation, volume 3, pages 1988–1993, Lueven, Belgium,
May 1998.

[13] B. Nelson and P.K. Khosla. Integrating sensor placement
and visual tracking strategies. In IEEE Int. Conf. Robotics
and Automation, volume 2, pages 1351–1356, San Diego,
May 1994.

[14] C. Samson, M. Le Borgne, and B. Espiau. Robot Control:
the Task Function Approach. Clarendon Press, Oxford,
United Kingdom, 1991.

[15] K. Tarabanis, P.K. Allen, and R. Tsai. A survey of sensor
planning in computer vision. IEEE trans. on Robotics and
Automation, 11(1):86–104, February 1995.

[16] C. Ware and S. Osborn. Exploration and virtual cam-
era control in virtual three dimensional environments. In
Proc. 90 Symposium on Interactive 3D Graphics, pages
175–183, March 1990.

[17] L.E. Weiss, A.C. Sanderson, and C.P. Neuman. Dynamic
sensor-based control of robots with visual feedback. IEEE
Journal of Robotics and Automation, 3(5):404–417, Octo-
ber 1987.


