
High-Quality Interactive Lumigraph Rendering Through Warping

Hartmut Schirmacher, Wolfgang Heidrich, and Hans-Peter Seidel
Max-Planck-Institut für Informatik

Saarbrücken, Germany
http://www.mpi-sb.mpg.de

email: {schirmacher,heidrich,hpseidel}@mpi-sb.mpg.de

Abstract
We introduce an algorithm for high-quality, interactive
light field rendering from only a small number of input
images with dense depth information.

The algorithm bridges the gap between image warp-
ing and interpolation from image databases, which rep-
resent the two major approaches in image based render-
ing. By warping and blending only the necessary parts
of each reference image, we are able to generate a single
view-corrected texture for every output frame at interac-
tive rates.

In contrast to previous light field rendering approaches,
our warping-based algorithm is able to fully exploit per-
pixel depth information in order to depth-correct the light
field samples with maximum accuracy.

The complexity of the proposed algorithm is nearly
independent of the number of stored reference images
and of the final screen resolution. It performs with only
small overhead and very few visible artifacts. We demon-
strate the visual fidelity as well as the performance of our
method through various examples.

Key words: computer graphics, image based rendering,
light fields, Lumigraphs, image databases, image warp-
ing, blending

1 Introduction

Image based rendering has received a lot of attention dur-
ing the last few years, since it provides a means to ren-
der realistic images without generating, storing, and pro-
cessing complex models of geometry, material, and light
present in a scene.

Currently there are two major approaches for generat-
ing novel views from a set of reference images. One such
approach, which can be best described by the term im-
age databases, usually resamples and stores the reference
images in some way that allows a very efficient interpola-
tion of arbitrary views of the scene. The main problem of
these techniques is that in order to obtain satisfactory re-
sults, they require enormous amounts of data for storage
and display.

The second approach is called image warping. These
kind of algorithms usually store the input data as a scat-
tered (and relatively sparse) set of images together with
their arbitrary camera parameters. The lack of struc-
ture implies higher rendering costs, and also introduces
a number of artifacts that are not easily overcome.

In this paper, we propose an algorithm which combines
aspects of both image databases and warping. We use a
light field data structure with quantized, per-pixel depth
values. For reconstructing a novel view, we first estimate
which region of which reference image will contribute to
the final image. Then, we forward-project all the pixels
in these regions into the original image plane, but as ob-
served from the novel view point. We interpolate the final
pixel color from all unoccluded pixels that have been re-
projected into the same image plane location.

Our approach has several advantages over previous
methods. Since only parts of each reference image are
reprojected, the complexity of our algorithm is almost
independent of the number of reference images. In ad-
dition, the reprojection into the reference image plane
minimizes distortion and undersampling artifacts. And
finally, we can exploit dense depth information in order
to perform maximum-accuracy depth-correction without
reconstructing a 3D model. This is why the new algo-
rithm can produce high quality views at interactive rates
from a relatively small set of images.

2 Previous Work

The work presented in this paper combines the light field
and Lumigraph approaches with warping-based tech-
niques. In the following we briefly summarize both areas
of image-based rendering.

2.1 Light Fields and Lumigraphs
Light fields and Lumigraphs are two related representa-
tions that have been independently introduced in [9] and
[5]. Both approaches are based on storing samples of
the so-called plenoptic function[1] describing the direc-
tional radiance distribution for every point in space. Since
the radiance is constant along a ray in empty space, the

(u,v) plane

(s,t) plane

(s0,t0)

Figure 1: Schematic view of a two-plane parameterized
light slab. Rays passing through a scene are character-
ized by a pair [(s, t), (u, v)] of points in the two planes.
The set of all rays passing through (s0, t0) is a sheared
perspective image in the (u, v) plane.

plenoptic function of an object seen from outside its con-
vex hull can be represented as a 4D function by using an
appropriate parameterization.

This 4D function is called the light field, and the usual
parameterization uses two parallel planes as depicted in
Fig. 1. Every ray passing through the scene is charac-
terized by a pair of points (s, t) and (u, v) on the two
planes. The set of all (u, v) samples through a single
point (s0, t0) on the (s, t) plane is an image created by a
sheared perspective projection from (s0, t0). In what fol-
lows, we refer to the (s, t) plane as the view point plane
and to the (u, v) plane as the image plane. The set of rays
passing through the two planes is called a light slab. In
order to view a scene from any point in the surrounding
space, six light slabs are combined so that the six view
point planes cover some box surrounding the scene.

Other light field parameterizations have also been pro-
posed in the past [7, 2], but the two-plane parameteriza-
tion has the advantage of simplicity and, as shown in [6],
it also allows for insertion of new images with an efficient
and reliable warping algorithm that we will also make use
of in this paper.

The “light database” can be queried very efficiently in
order to create arbitrary views of the scene. With the two-
plane parameterization and regularly sampled image and
view point plane, the radiance along a viewing ray can
be reconstructed via quadri-linear interpolation from the
rays through all combinations of the 2 × 2 closest grid
points on the (s, t) and (u, v) planes (cf. Fig. 1). This is
a constant time algorithm.

It is often desirable to use an adaptive sampling of the
view point plane, e.g. for adjusting the amount of tex-
ture memory needed for the display [17], or for adding
arbitrary new view points/images to the light field struc-
ture [15]. In that case, a triangulation of the view point

plane domain is used, and ray casting-based algorithms
are logarithmic in the number of view points, since the
view plane triangle through which the ray passes has to
be determined. However, both regular and adaptive sam-
plings can also be rendered very efficiently in hardware,
using texture mapping and alpha blending [5, 17].

Unfortunately, simple interpolation will blur objects
that are off the image plane. This can be avoided if the
correct 3D location of the point, that is, its distance to
the image plane, is known. Therefore, the Lumigraph
uses an additional polygonal mesh that allows for depth-
correcting the viewing rays before the interpolation step,
as shown in Fig. 2.

The depth correction can be performed for each view-
ing ray if the rendering is done in software, or for the ver-
tices of each textured triangle when using graphics hard-
ware. Since the latter approximation is only valid if the
depths of a triangle’s vertices do not differ too much, the
textured triangles in [5] are subdivided until all depth val-
ues for each triangle are similar.

Since the depth correction requires intersecting depth
rays with the scene geometry, the approximate polygonal
mesh should contain as few polygons as possible. On the
other hand, the coarser the mesh, the lower the quality of
the depth correction, and the larger the blurring artifacts.
In [8], this fact has been used to simulate depth-of-field
effects with arbitrary camera apertures using light fields
and a very small number of polygons (1− 3) as approxi-
mate geometry. These polygons act as the focal plane(s)
of the camera. This shows that the use of depth informa-
tion is in no way a yes or no decision; rather a smooth
tradeoff between rendering time and image quality be-
comes possible, depending on the amount and quality of
geometric information used.

In [6], instead of using raycasting and polygonal
meshes, per-pixel depth information is stored as an addi-
tional channel in the light field images. This information
allows for refining the resolution of a light field during
a display pre-process using image warping. In [15], the
same kind of warping is used for estimating the amount
of missing information for differnt view plane regions,
and acquiring new synthetic reference images where nec-
essary.

2.2 Image Warping Techniques
Image warping [4, 12, 11] is the process of taking in-
dividual pixels from one or more images and projecting
them onto the image plane for a new eye-point location.
This process requires geometric information in the form
of per-pixel depth values or disparities, describing pixel
motion in the image plane per unit camera motion.

One interesting variant of image warping has been in-
troduced recently [13]. Here, the warping process is fac-

u

s

x’

u’

s’

u u u1

0

20

Figure 2: Depth correction scheme sketched in 2D. The
viewing ray (s′, u′) intersects the geometry at x′. For
some nearby view point s0, instead of interpolating the
color from u0 and u1 (which are the neighbors of u′), it
is more appropriate to use u1 and u2, since they represent
color information for points closer to x.

tored into a relatively simple pre-warping step and a tra-
ditional texture mapping step that can be performed by
standard graphics hardware. As we will see later, we em-
ploy a similar technique here.

The most serious problem of image warping is that
holes may occur in the destination image due to two dif-
ferent reasons. In the case of undersampling, the sam-
pling rate required in the destination image is larger than
that provided by the source images. Disocclusion occurs
when some part of the scene has been occluded in the
reference images, but becomes visible in the destination
image.

There are several strategies for removing these holes,
e.g. splatting and multi-scale approaches [4, 6], or con-
necting neighboring pixels in the source images by poly-
gons [10, 14]. However, none of these methods can make
up for the missing information.

Layered depth images [16, 3] deal with disocclusion
artifacts by storing information about the visible as well
as the occluded surfaces. Each pixel in such an “image” is
actually a linked list of positions and colors, representing
all intersections of surfaces with the viewing ray through
that pixel.

3 Interactive Lumigraph Warping

The proposed algorithm generates an arbitrary view of
the Lumigraph slab for any given output camera or view
point in 3D space. Instead of reprojecting directly into the
output camera plane, we compute a single texture to be
mapped on the Lumigraph’s image plane. The textured
polygon is rendered using OpenGL’s standard polygon
drawing features. This allows us to keep our algorithm
independent of the output image size, and exploits the
graphics hardware for the resampling to the final image

Figure 3: Schematic situation on the s/t and u/v planes
when warping a pixel ui from a reference view Ek with
coordinate s to its new location u′i for an arbitrary view
point C. Xi denotes the scene point corresponding to the
pixel. The depth di of a pixel is measured as illustrated.

resolution.
This section gives details about several aspects of the

algorithm. First, we look at how to warp single pixels
within the image plane for arbitrary view points. Then we
show how to determine the regions to be warped in each
reference image. After that, we explain the interpolation
of the final pixel colors, and show how the different parts
of the algorithm are put together.

3.1 Lumigraph Warping for Arbitrary Eye Points
The Lumigraph contains a set {I0, I1, . . . , IN−1} of N
images. Each image Ik is associated with an eye point
Ek which is the center of projection used to generate the
image. Warping a pixel (u, v) from a reference image
Ik into the image plane texture T means determining the
corresponding pixel location (u′, v′) in T . This corre-
spondence is established by the depth value of the pixel.

Fig. 3 depicts the basic situation. The pixel ui observed
from a reference eye point Ek corresponds to the color of
a scene object at Xi. The output camera C observes this
same point through the pixel u′i in the texture image T . D
defines the distance between the two planes of the slab,
and di is the depth value of pixel i, measured from the
image plane towards the eye point plane.

From the triangles in Fig. 3 we can derive these two
basic relations:

u′i − xi

di

=
u′i − sc

dc

,
s− xi

D − di

=
s− ui

D
. (1)

Solving the two equations for xi, substituting one into the
other, and solving again for u′i gives the following:

u′i =
uidcD + didcs− didcui − diDsc

D(dc − di)
. (2)

Eq. 2 computes the view-corrected coordinate u′i of a
pixel i, given its coordinate ui in the reference image, its

Figure 4: Texture partitioning: The reference image as-
sociated with eye point Ek has to contribute to the region
Fk, which results in projecting the triangle fan around Ek

from the current view point C and intersecting it with the
image plane domain.

depth di, the reference eye point s, and the depth dc and
plane coordinate sc of the output camera C. Since some
of these variables are constant through all pixels for a pair
(C,Ek), it makes sense to isolate some terms:

u′i = 1
D(dc−di)

[Acui + di(dcui + Bk)] , (3)

Ac := dcD, Bk := dcs−Dsc.

For each output image, Ac is constant, and Bk varies with
the reference eye point Ek. The same equations also ap-
ply to the second pixel coordinate v′i, by substituting v for
u and t for s.

If the ray through a reference pixel does not intersect
any scene object, the pixel does not need to be repro-
jected. We simply determine this by marking such back-
ground pixels with an “infinite”depth value.

3.2 Partitioning of the Image Plane Texture
Now that we know how to warp single pixels, the remain-
ing task is to determine which pixels from which refer-
ence images we need to warp in order to obtain an output
image of high quality at minimal cost.

In order to support the general case of a non-uniform
view point plane, we use a Delaunay triangulation of
the eye points {Ek} in the Lumigraph’s (s, t) planes
(cf. Sec. 2). This means that the radiance values ob-
served through each eye point triangle (Ea,Eb,Ec) will
be interpolated from pixels in the three associated images
Ia, Ib, Ic. In other words, each reference image Ik should
contribute to all those triangles containing Ek as a vertex.
One such triangle fan Fk is depicted in Fig. 4. After pro-
jecting the fan onto the image plane, we know to which
texture region Ik has to contribute to. But since the pix-
els will be forward-projected, we also need to know the
source region Rk in image Ik from which all pixels have
to be projected so that the whole destination region will
be covered. The source and destination regions are not

identical in general because the pixels “flow” through the
image. In order to compute a conservative bound, the
region has to be extended by the maximal flow that can
occur when warping into the destination region (which
does not need to be the same as when warping from the
region).

Looking again at Fig. 3, we can re-formulate the warp-
ing equations in terms of the “virtual” view point s′ on
the eye point plane. This corresponds to the formulae
presented in [6] and leads to:

u′i − ui =
di

D − di

(s′ − s). (4)

We see that the pixel flow (u′i−ui) is simply the product
of the virtual camera movement (s′−s) on the view point
plane and the source pixel’s disparity zi := di/(D − di)
that denotes the flow of pixel i for a unit camera move-
ment on the eye point plane.

The easiest way to find a conservative bound is to
use the absolute values of the global maximum dispar-
ity zmax := max{|zi|} within all images, and a per-fan
bound Fk on the longest distance |s′−s|within any trian-
gle (e.g. the longest fan edge). The maximal flow fmax

k

is obtained as the product of the two:

fmax
k = zmaxFk. (5)

In order to define a conservative warping region, we grow
the triangle fan around Ek by this distance fmax

k in each
direction. It is clear that this bound is far from optimal,
so that more pixels will be warped than are needed. On
the other hand, it guarantees that all the required pixels
will be reprojected.

One can tighten the bound (and reduce the overhead)
by partitioning the reference images into smaller blocks
B (e.g. 16x16 pixels each) and storing the maximal dis-
parity zB for each block in each image. In order to de-
termine fmax

k , one must iteratively determine from which
“nearby” blocks B pixels could flow into the target region
Fk . This is the case if

min{||X −Ek|| ; X ∈ B} − Fk ≤ zB · Fk, (6)

meaning that the maximal flow within the block is large
enough to reach the boundary of the target region.

3.3 Blending
In addition to finding the relevant samples and reproject-
ing them according to the current view, we have to inter-
polate each texel’s final color from all the visible samples
that have been projected into the texel’s domain.

In contrast to many warping-based algorithms, it is not
sufficient to determine the frontmost sample per texel.

C← output camera for this frame

for all front-facing slabs S do

init buffers {(Li, di)}
for all eye points Ek ∈ S do

/** partitioning **/
Rk ← triangle fan around Ek

fmax
k ← max. pixel flow into Rk

grow Rk by fmax
k

/** warping + blending **/
for all pixels ui in Rk

if di 6=∞ then

u′i ← warp(ui, di,Ek,C)
j ← pixel_index(u′i)
blend (Lj , dj) with (Li, di)

/** texture display **/
specify {Li} as texture

draw textured image plane polygon

end

Figure 5: Pseudo code of the basic rendering algorithm,
putting together the parts explained in Sec. 3.1 – 3.3.

We rather have to find the whole set of samples that repre-
sent visible scene features, discard all other samples, and
interpolate the final color from the remaining ones. We
do this along the lines of [6], by comparing the sample’s
depth values di, and keeping all those samples within an
ε-environment around the frontmost depth value. In the
case of quantized, discrete depth values, we can choose
ε = 0.

In order to guarantee a smooth reconstrution of colors
across triangle boundaries, the interpolation weight for a
sample from reference image Ik should be 1 in the trian-
gle vertex corresponding to the eye point Ek, and 0 on
the boundary of fan Fk . This corresponds to the sample’s
barycentric coordinate with respect to Ek. Alternatively,
one can choose a computationally simpler weight which
is 1 in Ek and falls off linearly or quadratically with the
distance to Ek [6].

3.4 Overall Algorithm and Complexity

The rendering algorithm combines the parts that have
been explained in the previous sections. Its pseudo code
can be found in Fig. 5. It iterates through all eye points
Ek of the current slab, computes the corresponding fan
Fk, and extends it for obtaining the warping source region
Rk (Sec. 3.2). All pixels in this region are then warped
into the image plane texture (Sec. 3.1), and blended with
the other valid samples (Sec. 3.3). After doing this for all
eye points, the resulting textured polygon is drawn on the
slab’s image plane using graphics hardware.

The worst-case complexity of the algorithm is propor-

tional to the number of pixels in the image plane texture,
which has the same resolution as the reference images.
Every image only contributes to a texture region that is
inversely proportional to the number of images, so the
computation time does not increase significantly with the
number of eye points. The region growing (cf. Sec. 3.2)
adds some overhead, but since the grow factor scales with
by the triangle size, this overhead roughly remains con-
stant, regardless of the number of reference images.

4 Results

In order to validate our approach, we show some results
produced with our experimental implementation. First,
we analyze the image fidelity and performance for dif-
ferent numbers of reference images and different image
plane resolutions. Next, we discuss the issue of quantiz-
ing the depth values used for warping. Last, we compare
the new algorithm with implementations of the light field
interpolation and depth-corrected Lumigraph rendering
techniques.

4.1 Rendering Quality

Using the adaptive acquisition approach proposed in [15],
we have generated images of a ray-traced elephant for
building Lumigraphs of the same scene with any number
of eye points from 4 – 164. We have rendered the same
views of the elephant for an increasing number of view
points (4, 25, 50, 100, 164, see [15] for the structure of
the view point meshes). Figure 7 shows a view computed
with our new method from a 2x2-image Lumigraph with
256x256 image plane pixels. Despite the small amount
of input images, the resulting view appears very sharp.
Due to the very sparse sampling of the scene, disocclu-
sion artifacts near the legs and the trunk of the elephant
are clearly visible. The glossy highlights on the surface
also generate some artifacts, appearing as color seams.

Figure 8 shows the same view, but generated from a
Lumigraph containing 25 images. This version of the
Lumigraph already provides enough information to avoid
the disocclusion problems as well as most of the glossy
artifacts when using our algorithm. Only a few stronger
artifacts can be detected from some viewing positions,
mostly small disocclusions caused by the trunk.

If the viewer moves behind the eye point plane and gets
very close to the image plane, the camera can be very
close to the actual scene object, and undersampling arti-
facts appear (cf. Fig. 9). Since the gaps are very small,
they could be removed quite easily by simple gap filling
approaches as often used in image warping (cf. Sec. 2),
or by adapting the image plane resolution accordingly.

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

0 20 40 60 80 100 120 140 160

w
ar

pe
d

pi
xe

ls

number of eye points in Lumigraph

7.1fps7.1fps

6.6fps

5.9fps

6.25fps

5.5fps

visited pixels:

130.000 - 150.000 (no region growing)
130.000 - 180.000 (with region growing)

5.9fps

4.8fps

5.9fps

4.8fps

with region growing
no region growing

Figure 6: Warped pixels / frame rate plotted against the
number of eye points in the ’elephant’ Lumigraph. For
the lower curve, warping source regions have not been
extended at all. The upper curve was obtained using
the global maximum (cf. Sec. 3.2). Rendering times are
given for a 270 MHz SGI O2 (R12K). On a 300 MHz
Octane, the rate goes up by 1.5–1.9.

4.2 Performance Issues
The rendering time of the algorithm depends on several
factors. The resolution of the image plane texture plus
the region growing overhead determine the upper bound
for the number of pixels to be processed. However, since
the algorithm discards background pixels immediately, it
is obvious that the main computation time is spent on
the actually warped foreground pixels (cf. algorithm in
Fig. 5). As discussed in Sec. 3.4, the number of processed
pixels is nearly independent of the number of reference
images.

Figure 6 shows the number of foreground pixels as
well as the frame rate for the “elephant” Lumigraph,
for different numbers of reference images. The image
plane resolution is 256x256 pixels, the maximum dispar-
ity 0.3. It can be observed that the rendering time in-
creases sublinearly with the number of eye points, and
the frame rate is proportional to the number of warped
pixels. The difference of the two plotted curves nicely vi-
sualizes the constant overhead added by the region grow-
ing (cf. Sec. 3.2).

Figure 11 shows a different artificial scene, rendered
into a 36-image Lumigraph with 512x512 image plane
pixels. The rendering time for this Lumigraph increases
as expected due to the four times higher image plane
resolution, but since the number of foreground pixels is
similar to that in the elephant scene, we still obtain 4.8
frames/s for 95.000 warped pixels with region growing,
and 5.5 fps for 70.000 pixels without region growing on
an O2 (max. disparity is 0.5). The average number of vis-

ited pixels (including background) per frame is 212.000,
as opposed to 140.000 for the elephant Lumigraph.

We viewed the images at full screen resolution. As
expected, the this does not affect the rendering time since
the final texture mapping step is done in hardware.

4.3 Depth Quantization
In all the example in this paper, the depth values have
been uniformly quantized in the range [−D : D] before
using them for the warping. Choosing a quantization of 8
bit does not affect the quality or performance of the algo-
rithm at all, and it removes the need for a blending depth
threshold ε as explained in Sec. 3.3. In our experiments
we found that even with 6 bit, the images appear quite
sharp and clean. Only the extreme edges in the scene
become a bit blurry (e.g. the elephant’s ear). When us-
ing less than 6 bit, the artifacts are similar to, but not as
strong as those of light field interpolation.

4.4 Comparison with Previous Approaches
Fig. 10 depicts the same view as Fig. 8, but computed
through interpolation from a light field without depth in-
formation [9]. Even though we used twice the number of
images than for Fig. 8, very strong blurring and ghosting
artifacts appear. These are even visible for the 164-eye
point light field.

Fig. 12 shows the same scene as in Fig. 11, but ren-
dered using depth-corrected Lumigraph rendering along
the lines of [5]. The algorithm casts depth rays towards
a coarse geometric model of the scene. If the three depth
values for an eye point triangle differ, the triangle is sub-
divided adaptively, and more depth rays are used. If the
algorithm does not detect any depth discontinuities us-
ing the initial depth rays, the adaptive scheme fails. This
leads to the blurred edges similar to those in Fig. 12.
Also, if a discontinuity is detected, quite a large num-
ber of depth rays (up to one per pixel along an edge) has
to be cast in order to adapt the triangles to the edge. The
computational cost of the approach depends on the depth
continuity of the scene as well as on the number of geo-
metric primitives used for approximating the scene. More
experiments would be necessary in order to analyze these
aspects in detail. From the tests with the implementa-
tion at hand, we learned that the algorithm becomes non-
interactive as soon as more than 1000 triangles are used.

Figure 7: A view of an elephant Lumigraph generated
from only 2x2 images. You can see that the elephant ap-
pears very sharp, but there are visible disocclusions and
highlight artifacts.

Figure 8: The same view, generated from a 25-image
Lumigraph. The disocclusion artifacts are gone, and the
highlight artifacts are only barely visible.

Figure 9: 25-image elephant Lumigraph, viewed from
very close to the image plane. Gaps with the maximal
width of 1 pixel can be observed (white spots).

Figure 10: A view generated by the light field interpo-
lation scheme from a 50-image Lumigraph. Despite the
large number of images, there are very strong blurring
and ghosting artifacts.

Figure 11: Lumigraph view of a simple scene, computed
by warping from 6x6 images of 512x512 pixels resolu-
tion.

Figure 12: Depth-corrected rendering of the same scene
as in Fig. 11, according to the original Lumigraph hard-
ware rendering algorithm [5]. Since the depth rays do not
detect all edges, there is still a large amount of blurring.

5 Conclusions and Future Work

We presented an algorithm for rendering high-quality
views of a Lumigraph at interactive rates. Using only
a very small number of reference images (e.g. 25) and
quantized depth values (6-8 bit), the algorithm produces
no serious artifacts except when zooming in very close
to the image plane. Furthermore, the method’s computa-
tion time depends mainly on the number of pixels actu-
ally drawn on the image plane. The frame rate is nearly
independent of the number of reference images used for
the Lumigraph.

The algorithm presents a hybrid method, bringing to-
gether the best of warping and image databases, since it
organizes and restricts the reference images in such way
that the artifacts and overhead are minimized for the ren-
dering.

Together with the adaptive acquisition scheme pre-
sented in [15], the algorithm can be employed for pro-
gressive transmission of Lumigraphs, for example in the
world wide web. After loading only the first four im-
ages, the slab can be displayed, and the user can navigate
around the object while some background process refines
the Lumigraph by inserting the missing images as they
are transferred. Standard image compression techniques
can be applied to the Lumigraph images, and on-the fly
decompression of pixel rows for warping seems to be fea-
sible with our approach.

It is very important to test how the algorithm performs
on real-world data, which is a major aspect of image
based rendering. The quantization of depth values is a
first step in that direction and shows promising results.
Furthermore, it would be interesting to see which parts
of the algorithm could be implemented using advanced
features of contemporary graphics hardware.

We believe that our method may inspire many direc-
tions of future research. The most important and promis-
ing goal is to find an fully adaptive and hierarchical Lu-
migraph data structure that stores only little redundant
information, but still allows for interactive rendering at
multiple resolutions.

Acknowledgements
Thanks to Christian Vogelgsang (University of Erlangen) for his im-
plementation of the Lumigraph rendering along the lines of [5], and
to Pere-Pau Vazquez (University of Girona), who provided continu-
ous encouragement and helped debugging a critical part of the im-
plementation. Annette Scheel, Marc Stamminger, and Katja Daubert
(Max-Planck-Institut für Informarik) provided kind support for ac-
quiring the Lumigraph data using the in-house rendering system
ANTELAO. The code for Delaunay triangulation was taken from
Jonathan Richard Shewchuk’s TRIANGLE package, available from
http://www.cs.cmu.edu/~quake/triangle.html.

6 References
[1] E.H. Adelson and J.R. Bergen. Computational Models of

Visual Processing, chapter 1 (The Plenoptic Function and
the Elements of Early Vision). MIT Press, Cambridge,
MA, 1991.

[2] E. Camahort, A. Lerios, and D. Fussell. Uniformly sam-
pled light fields. In Proc. 9th Eurographics Workshop on
Rendering, pages 117–130. Springer Verlag, 1998.

[3] C.-F. Chang, G. Bishop, and A. Lastra. LDI tree: A hierar-
chical representation for image-based rendering. In Proc.
SIGGRAPH 99, pages 291–298. Addison-Wesley, 1999.

[4] S.E. Chen and L. Williams. View interpolation for im-
age synthesis. In Proc. SIGGRAPH ’93, pages 279–288.
Addison-Wesley, 1993.

[5] S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M.F. Cohen.
The Lumigraph. In Proc. SIGGRAPH ’96, pages 43–54.
Addison-Wesley, 1996.

[6] W. Heidrich, H. Schirmacher, and H.-P. Seidel. A
warping-based refinement of Lumigraphs. In V. Skala, ed-
itor, Proc. WSCG ’99, pages 102–109, 1999.

[7] I. Ihm, S. Park, and R.K. Lee. Rendering of spherical light
fields. In Proc. Pacific Graphics ’97, 1997.

[8] A. Isaksen, L. McMillan, and S. J. Gortler. Dynamically
reparameterized light fields. Technical Report MIT-LCS-
TR-778, MIT LCS, May 1999.

[9] M. Levoy and P. Hanrahan. Light field rendering. In Proc.
SIGGRAPH ’96, pages 31–42. Addison-Wesley, 1996.

[10] W.R. Mark, L. McMillan, and G. Bishop. Post-rendering
3D warping. In Proc. 1997 Symposium on Interactive 3D
Graphics, pages 7–16. ACM Press, 1997.

[11] L. McMillan. An Image-Based Approach to Three-
Dimensional Computer Graphics. PhD thesis, Depart-
ment of Computer Science, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina, 1997.

[12] L. McMillan and G. Bishop. Plenoptic modeling: An
image-based rendering system. In Proc. SIGGRAPH ’95,
pages 39–46. Addison-Wesley, 1995.

[13] M. M. Oliveira and G. Bishop. Factoring 3-D image warp-
ing into a pre-warp followed by conventional texture map-
ping. Technical Report TR99-002, Dept. of Computer Sci-
ence, University of North Carolina at Chapel Hill, 1999.

[14] G. Schaufler. Nailboards: A rendering primitive for image
caching in dynamic scenes. In Proc. 8th Eurographics
Workshop on Rendering, pages 151–162. Springer Verlag,
1997.

[15] H. Schirmacher, W. Heidrich, and H.-P. Seidel. Adap-
tive acquisition of Lumigraphs from synthetic scenes. In
Proc. EUROGRAPHICS ’99, pages 151–159. Blackwell
Publishers, 1999.

[16] J. W. Shade, S. J. Gortler, L. He, and R. Szeliski. Layered
depth images. In Proc. SIGGRAPH ’98, pages 231–242.
Addison-Wesley, 1998.

[17] P.-P. Sloan, M.F. Cohen, and S.J. Gortler. Time critical
Lumigraph rendering. In Proc. 1997 Symposium on Inter-
active 3D Graphics, pages 17–24. ACM Press, 1997.

