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Abstract

The frame of our work is the efficient realistic rendering

of scenes containing a huge amount of data for which an a
priori knowledge is available. In this paper, we present a
new model able to render forests of pine-trees efficiently
in ray-tracing and free of aliasing. This model is based
on three scales of shaders representing the geometry (i.e.
needles) that is smaller than a pixel size. These shaders
are computed by analytically integrating the illumination
reflected by this geometry using the a priori knowledge.
They include the effects of local illumination, shadows
and opacity within the concerned volume of data.

Keywords: Shaders, levels of details, natural scenes, ray-
tracing

1 Introduction

Natural scenes such as landscapes and forests are ex-
tremely complex in term of the number of geometric
primitives that lies in the field of view. Trees belongs
to this category of objects that have no defined surfaces,
which makes most of the geometry inside the canope po-
tentially visible and potentially enlightened. Ray-tracing
such a scene is thus very costly and very subject to alias-
ing. On the other hand, geometric details like needles or
leaves are so small that they usually cannot be seen except
for the nearest trees. Boughs of leaves themselves merge
with distance. It is thus tempting to replace the indistin-
guishable data by a fuzzy primitive that would reproduce
the same photometric behavior that the group of geome-
try it represents. In this paper, we propose such primitives
at several scales for the particular case of the pine-tree or
fir-tree. This approach can certainly be extended to other
kind of trees, or to other objects for which an a priori
knowledge on the shape distribution exists.
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2 Previous Work

Which aspects matter in the photometric behavior of a
group of shapes ? The cumulated local illumination, the
cumulated shadows, and the cumulated opacity. An a
priori knowledge on the matter distribution will help to
compute them. Conversely, the exact shape and location
of single parts are unimportant as soon as they introduce
no correlation in the visibility of parts that is not already
captured in the a priori knowledge. We survey now the
existing models which purpose is to represent the effects
of the small scales and the rendering models of trees.

Surface shaders

Some primitives have been proposed early to figure small
surface details without rendering explicitly their geom-
etry: Blinn has introduced textures of Phong parame-
ters [3] and bump-mapping [4] in this purpose.

Kajiya has introduced the idea of hierarchy of models
[11]. In this paper, he suggests to switch from geome-
try to mapping of Phong parameters, then to reflectance
model' according to the distance. Transitions from ge-
ometry to bump and from bump to reflectance have been
proposed in [1,5,7].

Several reflectance models based on the surface micro-
geometry have been developed [11, 24, 8, 17, 6, 10, 9].
Most of these models consist in proposing a representa-
tion of the matter distribution, then to integrate the local
illumination while addressing the visibility of the details
for the viewer and for the light (i.e. self-shadows).

Volume shaders

All the models above are designed for surface details. In
the scope of 3D matter distributions, Blinn has early pro-
posed a reflection model for volumes of dust [2] repre-
sented by micro-spheres. Stam has developed in [21] a
stochastic model which allows the analytical integration
of the stochastic distribution of matter to represent details
in clouds. Kajiya introduced the volumetric textures [12]

Ireflectance models are also named shaders.



in the scope of fur rendering. A shader (i.e. a local illumi-
nation model) is derived to integrate the light reflected on
hairs represented by cylinders. This cylinder shader has
been improved in [8] and Neyret has extended the volu-
metric textures representation in [14, 15] by introducing
a shader able to integrate at one scale the shaders repre-
senting a thinner scale.

Contrary to the models of surface details, most of the
3D models presented above fail to address analytically
the visibility of the details from the viewer or from the
light. For instance the representation of the 3D micro-
geometry by a normal distribution in [14] cannot capture
the visibility (otherwise the normal distribution should
depend on the point of view), whereas the stochastic
model of [22] can.

Dedicated tree rendering models

On the other hand, several models dedicated to an ef-
ficient representation and rendering of trees and forests
have been proposed, using ray-tracing or real-time tech-
niques [16, 23].

Reeves introduced the particles systems [19, 20]. This
representation is dedicated to objects made of a huge
amount of small long primitives that are drawn as sim-
ple strokes, well suitable for modeling trees. In his paper,
the shadows are faked using a priori simple laws such as
proportionality with depth inside a tree.

Max proposed in [13] a hierarchical representation of
trees based on color-depth textures following the natural
hierarchy of trees.

Early conclusions
To conclude at that point, we can tell that:

e shaders based on a normal distribution function dif-
ficultly account for the shadowing inside the small
scale.

e shaders consisting in a sampled BRDF are more accu-
rate, but cannot easily be parameterized.

e shaders consisting in analytical BRDF can be both
visibility-compliant and parameterized but are not
easy to derive.

Our key idea is that such analytical BRDF can be de-
rived when strong a priori knowledge on the matter dis-
tribution is available. We think that the matter in trees
is structured enough to offer such a possibility. In this
paper we address needle-based trees such as pine-tree or
fir-tree, as the a priori knowledge on needles distribution
is strong.
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Figure 1: Our hierarchical description of a tree.
3 Contributions
3.1 Our model of pine-tree (see Figure 1)

e A tree is a set of branches and needles that we describe
using an L-system [18].

e Branches are classical geometry (i.e. cylinders).

e Needles are cylinders, whose angle [] with the branch,
length [, radius r, density (i.e. distribution) [] change
slowly along a branch so that they can be considered
locally constant.

e The needles layer around the branch (i.e. the bough)
is thus a cylinder of radius R = I'sin([]).

o We assume that needles are spreaded on cones, with N
needles per cone. The distance between cones along a
branch is dh. As the gap between two needles end is

%%,5 and the gap between two cones is dh, it is reason-
able to chose dh = %ﬁ = /[l. Whether it is the case

or not, we have the relation dh%ﬁ =1

3.2 Multiscale rendering

Depending on the distance, the smallest primitive we con-
sider is either the needle (level 1), the cone (level 2), or
the bough (level 3). We render the scene using a simple
cone-tracing: the conic ray is used to estimate the ap-
parent size of primitives and to compute their coverage
alpha to the pixel. We also use this cones for the shadow
rays, assuming point light sources.

The main issue is to compute the global reflectance and
opacity of a considered primitive, including the internal
shadows. Since we use only conic rays, the rendering is
processed with no oversampling at all.

Thus the main contributions of this paper are the multi-
scale representation that we detail in the next section, the
three shaders we derive (detailed in sections 4, 5 and 6),
and the method we use to solve the illumination integrals,
in particular the geometric interpretation of the visibility
and shadows in the level 3 model.

3.3 What we need to compute

In this section we estimate the requirement for the ana-
Iytical computation of the three shaders. The results and
the details of these successive integrations are the object
of the three next sections. The I and V vectors are con-
sidered constant because light source and the viewer are
far.
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Figure 2: Left: the continuous cone model. Right: the continuous
bough model.
Level 1 (needles)

To shade a needle, we need the amount of diffuse and
specular light I; and I reflected by a cylinder [12]. In
[17] the integral is correctly expressed in pixel space. We
use this form, with different bounds and a cheaper ap-
proximation for the specular integral.

We never compute explicitly the intersection of the
needles with the cone-ray. We compute instead the inter-
section of a cone of needles, and we consider the needles
that are on the visible part of the cone. Then we sum their
illumination.

Level 2 (cones)

We consider that shading a cone of needles is equivalent
to shading a continuous semi-opaque cone whose each
point reflects the light as a local needle would (see Figure
2 left). The opacity A is the amount of the cone surface
covered by needles, so is defined by A = % . The illumi-
nation is A times the integral in pixel space of the cylinder
illumination on the visible part of the cone. The front and
rear part are considered separately, and only a portion of
these parts may be visible in a pixel. This integration is
not trivial and requires several approximations.

Level 3 (boughs)

We consider that a bough to be shaded is equivalent to a
semi-opaque anisotropic volumetric cylinder made of im-
bricated cones (see Figure 2 right). The illumination and
opacity of front and rear parts of the cones correspond to
the level 2 shader already derived (the front part of all the
cones are equal, same for the rear parts). The volume
model is both continuous and anisotropic: the opacity
has to reproduce the same effect as the number of cones
traversed by a ray while rendering at level 2, which is
strongly dependent of the angle of the ray. The difficult
part is the analytical volumetric integration of it, taking
into account the visibility and the shadows. Assuming
we can use a linear approximation 2 of the opacity com-
position law, i.e. (1 —A)" & (1 —n.A), we transpose this
integral into a geometric form.

4 Cylinder illumination

We have to integrate the diffuse and specular components
into screen space (i.e. we sum the contributions to the

2which is valid for nA < 1, i.e. if the bough is not too dense
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Figure 3: A single needle.

pixel color and opacity). Either reflectance or illumina-
tion can be derived; one can trivially convert one into the
other since we also compute the opacity.

o The diffuse reflectance toward the viewer is

Sestinder IN-L) Ly £50) (N.V) L.y 50)-dS
Joivet NV) Ly ys0)-dS

eyl _
R; =

Let ¢, and ¢; be the projections of V and L on the
cylinder axis d, ie. ¢, = (d.V) and ¢; = (d.L) (see
Figure 3).

Let V), and L, be the projections of V and L on the plane
orthogonal to the cylinder, and s, and s; be their norm.

Jl 016050~ D)3 c05(0 - 0v)
e g sveos(@—Ov)dD

with [Jy and []; the angles between a reference in the
plane and respectively V), and L,,. The bounds of visibility

o and [1; are [y — D and DL+ Jif L x V has the same
direction than d. We 1ntroduce [l[l |Ov — .| and then

eyl
Rd

R = % (sin(0) + (0~ D) eos(0D) | m

o The specular reflectance toward the user is

Sostinder N-H)" Ly 110y (N.V) Ly y50)dS

RO =
Joivet N-V) Ly y50)dS

with the half-way vector H = % and n the specularity
exponent.
Let Hp, c, s, and [Jy be defined like for L and V. Then

fl]D=]IZ|o sZcos"([l—DH)svcos([l—Ijv)dlj
ST g svcos(— Dv)dD

cyl __
RO =

. . .. n.2
It is well known that cos” (x) is very similar to e~ 2*" for n
large (which is the case). Moreover the density of this
function is concentrated on x = O (the standard devia-

tion is 1/4/n, and n is generally greater than 100), so that
cos” (x —xp) f(x) & cos™ (x — xp) f (x0)

Thus, we have
R ~ (s, cos((u —[lv)fD 0o € ~3@-0n’4n) /25,
Since LDD 2@ = v/2[[, the integral above equals



./%] if Ou € [do,01] which is always the case. Thus
R~ Lsfcos(Tn ~Ov) /2 @

e The opacity is the proportion of the needle apparent
rectangle that falls in the pixel. If the needle is totally
covered by the pixel, then
alpha®! = %! 3)

pix

where S ,;, represents the surface of the ray-cone section
at the primitive’s distance. Thus the diffuse and specular
illumination are I; = alphaR; and Iy = alphaR;.

5 Cone illumination

As discussed in section 3.3, we consider that the cone is
a continuous semi-opaque surface of opacity A, whose
each point of the surface reflects the light as a cylinder.
Thus, we need to integrate the cylinder illumination into
a cone of aperture [] for all the valid needle axis positions
ap. In the polar coordinate system associated to the cone,
we denote L = ([,,,[1.), such that [J;, is the angle between
L and the cone axis. Similarly we denote V = ([Iy,[Iv).

e The diffuse illumination is given by:

e 1A (D048
1[(10)16 _ : SISy (Sln(l:“:l) +

4 Jo—g -0 (0-00) cos(00))

where Is, is the apparent length of a needle.

We cannot integrate analytically this formula. As such,

we approximate s;s, (sin((J[) + (0 — 00) cos(J0)) by us-
ing the function

F =sp8,(1/24cos(00)/2) (2 + (0—2) cos(00))

which has the same values and derivatives in O, g and []
and which maximum error is less than 1%.
Since cos([J[]) = LpVp)  (LV)aes ey

(LpLVpD) = sisy
JF =LV +sisy—ciey) (24 (0 2)(LV —qev)/sisv)

Figure 4: Left: An example of F curve, for L= (0,1.2),V = (1,1.5)
and [] = .5. It is very smooth, despite its factors are quite more chaotic.
Right: the FFT of this curve. Notes that the energy is clearly concen-
trated on the frequencies 0, | and 2, thus the motivation to fit F with a
linear combination of 1, cos([]—[h), cos(2(0—[k)). NB: the values at
the extreme right are the mirroring due to the FFT.

When tracing this function with Maple for many val-
ues of the parameters L, V and [], it appears that the curve
is very smooth (Figure 4 left), and looks like a linear
combination of 1, cos([J—[) and cos(2([]— [k)). The
FFT evaluation on discretized curves shows that there is
practically no energy out of the frequencies O, 1 and 2
(Figure 4 right). As such, we try to fit such a curve to
F from the location and value of its extrema. The first

factor capture most of the variations of F and is more
easy to analyze, so to fit the curve we approximate F' by
(L.V) + s;sy — cjc, which seems to have its extrema at
the same [] value than F. P e
The term c;c, — s;5, equals cos(AL + AV) with AL the
angle between the vectors d and L , and X\\/ the an-
gle between the vectors d and V. These angles vary
smoothly between a minimum and a maximum while d
rotates along the cone, so we model the variation of AL
by the form Ay + By cos([J—[}.) with A, = max([J.,[),
B, = min([J;,[]). We do the same for AV .

If we develop AL+ AV with this approximation we obtain
the expression Ag + Brcos([] — [f) with

Ag=Ar+Ay, Bj=B]+B} +2B.Bycos(L—[v),
cos([ly) = (Brcos([.) + By cos([v))/Bn,
sin([) =

(Bsin([r) + By sin([v))/Bq

Figure 5: The two aspects for the curve cos(A + B+ cos(0—[T)),
depending whether A+ Bp* cos([]— ) crosses [] (right) or not (left).

We can now search for the extrema of F ~ (L.V) —
cos(AL + AV) They correspond either to the extrema of

AL +AV or to the location for which AL + AV crosses
0 If AL+ AV does not cross 0, F looks like a cosine
function. If it does, F' has a hat shape and looks like the
combination of a cosine and a cosine at double frequency
(see Figure 5). The similarity is high if [, and [}y are not
very close to []. Thus, we can now obtain explicitly the
extrema of the curve.

As we are precisely trying to fit F' to the form

(L.V) = (0o +Oi cos(0 = On) + Do cos(2(0—On)))

we just have to set the parameters from these extrema:
let M = cos(Ag — Bp) and m = cos(Ag+ Bp) -

Then [0, =y, Oi = @52, [h=2 _ 3, with

[ = 0 if no crossing of [ occurs (both Apg + Bp and
Apg — Bparein [0,[]]),

b = 4(2%9@ in case of crossing of [] (Ag+Bg >[] >
Ap — Bp), Now we can easily obtain the integral of F :

I‘(i-wle — TA (D(LV Eb) 20 COS(DV - D:l)) ‘ 4)

By, cos([0)+Bv
\/B2+B% +2B By cos([)

where cos(y —[I7) = and00=0.-0v.

e The specular illumination is given by

Ov+9
Iscone — /D S/ShCOS DH DV)

with s, the apparent length of a needle. Once again, s}, is
a function which density is concentrated on the location
where s, = 1, which occurs when ¢, =0, i.e. when H
is orthogonal to the needle direction d. Such a location

[0 only exists if [y € [9 — D’g +[], otherwise I = 0



If [1; exists, we have again that s f([1) ~ s.f ((;)-
Since sysp cos(Qu —[Ov) = (V.H) — cpey, we finally have

e~ B8 ®)

where [|=1if[} € [g — [:I,g| + ] otherwise []= 0.
Note that if both locations where H is orthogonal to d
occurs on the same face (front or rear), we have that[] = 2.

cone __ AfDV+2

e The opacity is given by alpha lsv

Since s, = sin(g\\/), we approximate AV by
Ay + Bycos(J—[J) in the same way that for the
diffuse component. That is,

‘ alpha®™ = [.A(cos([) cos([d,) — 2sin([]) sin([})) ‘ ©)

6 Bough illumination

As stated in section 3.3, we consider that the bough is
a volume having a cylindrical shape and an anisotropic
opacity (as illustrated in Figure 6). We have to proceed to
the analytical volume rendering of this cylinder.

Since the opacity A is not constant along the ray and
the shadow ray, we have:

I 1 / /far A, fo 0, f,\hudl:l @
Spn (x.y)€pixel Jz=near

with e™0 = T = (1 — A) the anisotropic transparency,
[, the length of the ray within the volume and [, the
length of the shadow ray within the volume.
We need now to explicit the opacity and to do some ap-
proximations to make the integral tractable.

6.1 Traversal of a 2D bough

Given an infinite 2D vertical field of parallel needles hav-
ing a direction [] relatively to the top (see Figure 7 left).
Let R be the field width, and dh the vertical distance be-
tween the needles. A ray in the direction [J. relative to the
top crosses the field.

The length of the ray within the field is R/sin([J.)

The step between the intersections is [] = dh—m -~ sin([)

sin0- I:H

The average number of intersections is - %

We denote k([J.,[]) the quantity Sl;‘“‘%m(% = ey — |

The opacity of the field along this ray is 1 — T 0-0)
Let denote for short k, = k([.,[]) and &, = k([J,,0 — )
k, corresponds to the traversal of a field which is sym-
metrical to the first relatively to the vertical.

A 2D bough is composed of two adjacent such fields,
the right one with needles of orientation [], and the left
one with needles of orientation [] — [] (as illustrated on

Figure 7 left).

The total number of intersections along aray is
(k +k ) _ R sin|[—0|+sin|0+0] _ 2

dh sin([J) sin([}.) dh tan(mm(l] )

This means that as long as the ray remains outside the

Figure 6: Left : We model a bough by a semi-opaque volumetric
cylinder, which opacity is anisotropic in order to reproduce the vari-
ation of the number or intersection between a ray and the sub cones.
Right : Intersection of the plane P, with one cone. We approximate
the hyberbols by their asymptotes.
R
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Figure 7: Left: 2D field of parallel ‘needles’. Right: 2D bough.
Note the variation of the opacity with the ray direction (mostly on left).

cone aperture (i.e. [J- € [[1,[0—[]) the total opacity along
the ray is constant, despite it is balanced differently be-
tween the front and the rear part. This is true either for a
ray or a shadow ray: similarly for the light, in such con-
dition the shadow casted by the bough is constant, while
the light enters more easily in one side than in the other.
If the ray is inside the cone aperture (above or below), the
opacity increases up to 100% for []. = 0 or [J.

6.2 Extension to a 3D bough

Let us now come back to our regular bough. In 3D, if a
ray crosses the axis of the bough, the situation is equiva-
lent to the 2D situation above. But generally the ray does
not cross the axis. Let consider the plane parallel to the
cone axis and that contains the ray. Let x be its distance
to the axis, thus we name the plane P,. The intersec-
tion of the volume of the bough made of cones with the
plane gives a set of hyperboles. We approximate these
hyperboles by their two asymptotes (we can see on Fig-
ure 6 right that it is reasonable). In that way, the plane
contains ‘needles’ having the same orientation [] and off-
set dh than in 3D, in a field of shrieked thickness 2R,
with Ry = VR? —x%. So we can compute the number
of intersections using the 2D formulas. To estimate the
amount of light reaching a point on the ray, we consider a
shadow ray starting at that point. Similarly, we introduce
the plane parallel to the cone axis and that contains the
shadow ray (Figure 8). The number of intersections can
be obtained as for the main ray.

6.3 Traversal of a 3D bough
We can now come back to the volumetric integral 7. We
choose the (x,y) pixel-surface parameterization so that



the X axis is orthogonal to the cylinder. Thus x indexes
the plane Py (i.e. x is coherent with the previous section).
In consequence we no longer need to integrate along the
¥ axis, since the cylinder is homogeneous in this direc-
tion. Note that the albedo A in the equation should be
corrected to A/[], since no energy is gathered in the gap
between two cones. Similarly on a differential length dl,

the opacity is 04 = 79!/0 We proceed to a variable
change from (x,z) to (x,7’) in the plane orthogonal to the
cylinder. This means that we index a point on the ray by
its projection on the orthogonal plane. The Jacobian of
the transform is ; ( ik The opacity associated to a differ-

_dl' _ )
ential length dI’ on the plane is 750 = 74 i i

6.4 Splitting the integral into regions

We know from the 2D case that the opacity along the ray
is constant on the front half and on the rear half of the
traversal ( These two halves correspond to the two orien-
tations of the needles in the plane P).

The disk has been split into two regions Fy and Ry,
the front and the rear relatively to V. On each region k()
is constant. In section 5 we have also split the cones into
a front face and a rear face, to evaluate the illumination.
Let assume that /%" is constant in each of the two regions
of the volume and let approximate it by the mean value

cyl c .
I, and I$2%-. The integral becomes:
shad k() had k()
1= s 1 (R 10 7 B L R L R

In order to get rid of the remaining integral in the expo-
nent, we are now going to split again the disk to separate
the front and the rear areas F; and Ry relatively to L.
However the shadow ray length that will appear depends
on z on a complicated way, which makes the exponential
tricky to integrate analytically.
In order to make the integral tractable, we use the linear
approximation of the opacity composition law,

e. (1 —A)" =~ (1 —nA) which is valid if nA < 1, i.e. if
the bough is not too dense.
Then (1 —A)"(1—A)"2 ~ 1 —njA—npA , which ensures
the separation of the factors. Thus the integral is defined
as 1 = I, +Ixy = s (Ifouckoliy, + iRl ) with
Iy = Jp, 1-AJR, %(
IRQ/ = va 1 _AfRV (%Rx+ an< ) AfRV xRy, shad R, dh Ava xFp, Zshad%
with Fy x R the region in Ry covered by shadow rays
which origin is in Fy, and so on for the other composed
regions (see on Figure 8 the representation of these
surfaces).

ki
+ Z) A fFv xRy Zshad Jj, dh —A fFv xFp, Zshad gj,

6.5 Geometric integration
We can arrange this as:

_nR k2p3_ qk k
IF‘} —DT *Ad;, $R°— d_hfvaRLZshad*Ad_h fvaFLZshad

Ak»Z

R? k 4 p K ki
I, =0% —Ag 2 3R —Agh Jry xR, Zshad —A gy Jry <y Zshad

dh3

The four remaining integrals sum the length of the
shadow rays starting in each point along the ray and in-
cluded in the region in subscript, for each ray. Let con-
sider for the moment only the integral along the ray. The
shadow-ray sweeps an area while its origin follows the
ray. The integral of its length value along the main ray has
a strong connection with this surface: it is proportional to
it, with a factor qm(z ) where /, is the angle between the
projections Lp and Vp of L and V in the orthogonal plane.
The proof is that if Lp is orthogonal to Vp, then the in-
tegral of the length is the regular surface measurement.
Otherwise one can come back to this case with a change
of variables, which the Jacobian is qm( oL So, to compute
the integral along the ray, we have to measure the surface
of each swept region S1,S57,53,54 using some geometric
and trigonometric relations. Then we have to integrate
the result for each ray. After some long and unpleasant
derivations showing quite complicated formulas in the in-
termediate stages, we surprisingly found very simple and
symmetric results (without any approximation):

JSi = (1+cos(ly)) ; sin(l)

I8 =(1 fcos(lv))g sin(ly)

IS5 = (1+cos(L,)/3)R3sin(1,)

JSs = (1—cos(L,)/3)R3sin(1,)
The sin(/,) factors disappear when multiplying by the Ja-
cobian.

6.6 Resulting bough illumination
The opacity is derived trivially:

_ 1 (R Rk AR[]
1 =0 = g5 fe AR a 1= 480k,
. AR
ie.|lr =ak,, lr, = ak, |with a = %E

We introduce similarly the opacity for the light
point of view: [Jr, = ak; , [lg, = ak; and finally have
1= IFV "‘IRV with

Try =15y (1= 5 (208, + (1 = cos(19)) ey, + (3 = cos())OFL) )

Ig, = ,?3;,.[|RV (l - %7 (40r, +20r, + (1 +cos(1v)) g, +(3+cos(lv))|:|FL))

We leave this formula into two separated parts, which
allows to render a branch between them.

7 Results

Some resulting images are presented of Figure 9 and Fig-
ure 10. We have also compute an animation of the forest
scene showing no aliasing artifact.

A major property of our model is the evolution of the
cost when the number of needles vary, i.e. the complexity
analysis in function of the number N of needles per cone
and of the number ﬁ of cones on a branch per unit of
length (these two numbers are proportional to the square




root of the density of needles)®. The cost of one shadow
ray should evolve the same. However a classical ray-
tracer launches a shadow ray for each sample, while for
our model the part of the shadow ray that is outside the

bough is factorized.
A
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Figure 8: Left: The volume intersected by the vertical plane con-
taining the ray looks like a 2D bough. Similarly for the shadow ray.
Right: The volume of the bough cylinder seen in an orthogonal sec-
tion. The surface of the four regions (see left Figure) S| = Fy X R,
S> = Fy x Fr, S3 = Ry X Rr, S4 = Ry X Fy, are proportional to the in-
tegral of the length of the shadow rays for each possible origin on the
ray (only the generic case is figured here). We have to integrate these
surfaces for all x.
We have compared the efficiency to a classical ray-

tracer, Rayshade. On Rayshade side, it is important to
know that there is a maximum amount of ray per pixel
(which is 64), so that when a tree is far (i.e. less than 100
pixels high), Rayshade does not launch enough rays. It
might seems efficient, but this is at the price of quality.
The fact is that for a image with a lot of high frequen-
cies as image of trees are, the aliasing is not very visible
on a single image because it is hard to distinguish noise
and information. But the aliasing is obvious during an
animation.

The test scene consists of 80 fir-trees that are about 127
pixels high for the closest and 64 for the farthest (Figure
11).

——

Figure 9: Three fir-trees, from a very close to a far point of view.

3if N is multiplied by 2, the number of intersections for level 1 and
the number of samples per pixel a ray-tracer should launch are multi-
plied by 2, while level 2 and level 3 are not affected at all. The same
deduction could be done if dh is divided by 2

Figure 10: Trees on a hill.

Figure 11: The scene used for the benchmark.

Figure 12: The colors represent the level that is used in our method:
red for level 1, green for level 2 and blue for level 3.



One fir generally contains 300 branches and about
28700 needles, thus the scene contains about 2 million
of needles. Concerning one bough, a cone is 3.94 high,
has a radius of 1.6cm, an aperture of []/8, and the offset
between cones is 0.9cm. There are only 12 needles per
cone for this tree, whose radius is 0.05cm and length is
4.25cm. On average 4.37 cones are imbricated, so that a
ray passing through the axis and orthogonal to the branch
would traverse on average 8.75 layers. We run our tests
on an SGI Onyx2. The rendering time is 65.3 minutes
with Rayshade and 8.1 minutes with our models. Thus
our method is about 8 times faster than Rayshade. For
landscapes, whose farthest trees are very small, rayshade
cannot avoid aliasing due to its 64 samples per pixel lim-
itation. If it could override this limit, the gain would
greatly increase in the favor of our method.

8 Conclusion

We have introduced a set of three shaders able to repre-
sent at various scales the cumulated effects of the smaller
scales without having to sample them, comprising the in-
ternal shadows, and taking the visibility into account. As
all the required integrations are analytical, this provides
at the same time efficiency and image quality (in partic-
ular, free of aliasing). However on the theoretical point
of view, we would like to improve some of the approx-
imations that have been done. Relaxing the low albedo
hypothesis would be interesting either, e.g. using a poly-
nomial law instead of a linear approximation.

The parameters of the shaders allow us to simulate
various kind of pine-trees and fir-trees, and to modulate
the characteristics inside a single tree (these modulations
could be driven in time as well, e.g. to simulate the ef-
fects of the wind in a tree). We were able to derive these
shaders because the objects we were interested in are
very structured. Due to the extended use of the a priori
knowledge, these three shaders can simulate nothing but
trees made of needles. However, many objects in nature
present one kind of structure or another, and even some
similarities of structure, so it should be possible for each
to derive shaders able to represent analytically each kind.
The next step for us will be the simulation of other kind of
trees, for which the structure is more stochastic (concern-
ing the distribution and orientation of the leaves). Then
it will be also interesting to handle larger scales, explor-
ing larger structures than boughs inside and outside the
trees...
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