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Figure 1:Mars elevation map: (a) raw data, (b) smooth version after anisotropic diffusion. Notice how, with our non-uniform diffusion, the
aliasing due to poor quantization is suppressed without altering the general topography of the surface (both pictures are flat-shaded).

Abstract

In this paper, we present an efficient way to denoise bivariate data
like height fields, color pictures or vector fields, while preserving
edges and other features. Mixing surface area minimization, graph
flow, and nonlinear edge-preservation metrics, our method general-
izes previous anisotropic diffusion approaches in image processing,
and is applicable to data of arbitrary dimension. Another notable
difference is the use of a more robust discrete differential operator,
which captures the fundamental surface properties. We demonstrate
the method on range images and height fields, as well as greyscale
or color images.

CR Categories: I.3.7 [Computer Graphics] Three-Dimensional
Graphics and Realism; I.4.3 [Image Processing and Computer Vi-
sion] Enhancement.

Keywords: Anisotropic diffusion, Re-parameterization, Surface
flows, Edge preservation, Image processing, Surface fairing.

1 Introduction

The problem of smoothing surfaces in computer graphics is closely
related to the smoothing of images in computer vision. In both
cases, we wish to smooth a 2-dimensional dataset, while preserv-
ing important features such as discontinuities. The discontinuities
represent cliffs in height fields, and edges in images (edges in im-
ages arise when the associated height-field values—intensities of
the image—change sharply with position).

To reduce the noise in images, early research has advocated the
use of the laplacian as a local differential operator. Diffusing the
signal using laplacian smoothing will reduce high frequency noise.
Unfortunately, an unintended consequence is that the noise is dif-
fused uniformly in screen space. Sharp edges and other fundamen-
tal features of an image are then lost, blurred away by the uniform
diffusion. Consequently, anisotropic operators have been proposed.
They can diffuse the signal non-uniformly to better preserve edges,

while reducing noise in the signal.
The concept of noise removal with preservation of edges can be

used for denoising textures acquired from images, or generalized
for meshes to preserve features while removing small bumps, or
even for reducing quantization effects in height fields. In this paper,
we propose a technique for all these applications. Using robust dif-
ferential geometry tools developed in the discrete domain for com-
puter graphics, we define a non-linear anisotropic diffusion operator
valid for any bivariate data (height fields, greyscale images, color
images, tensor images). We explain the relations between our ap-
proach and previous work in image processing, and show results to
demonstrate its reliability.

1.1 Anisotropic Diffusion in Image Processing

The first inhomogeneous diffusion model was introduced by Per-
ona and Malik [PM90]. The idea was to vary the conduction spa-
tially to favor noise removal in nearly homogeneous regions while
avoiding any alteration of the signal along significant discontinu-
ities (see [TT99] for an intuitive explanation of this technique). The
change in intensityI over time was defined as:

It = div( g(||∇I||) ∇I) with: g(x) =
1

1 + x2

α

. (1)

Many different variations on the conduction functiong have been
proposed [ROF92, ABBFC97, ALM92], and recently a higher or-
der PDE has been introduced by Tumblin [TT99] in the context
of displaying high contrast computer graphics pictures. Similar
techniques have been used to visualize complex flow fields, as
in [PR99]. All of these approaches rely on isophotes of the im-
age (see Figure 2(a)): the anisotropic diffusion equation can be in-
terpreted as a diffusion mainly in the direction tangential to each
isophote. Therefore, discontinuities present in the orthogonal direc-
tion are not lost, as explained in [KDA97]. Typically, finite differ-
ence schemes are used to discretize the differential operators used.



Some of these approaches also use an inverse diffusion process or-
thogonal to the isophotes to enhance edges; this process, being very
unstable by nature, requires a pre-smoothing of the gradient for the
well-posedness of the problem.

However, in general, relying only on isophotes to restore a noisy
image is questionable: non-uniform lighting (glares, specularity
effects) often enhance our understanding of a scene while signif-
icantly affecting isophotes in complex ways. Other anisotropic dif-
fusion models are therefore desirable.

1.2 Overview of Our Approach

In the remainder of this paper, we will develop a geometric frame-
work for the denoising of images using asurface-basedapproach
inspired by [DMSB99]. We will show how:
• a careful examination of the smoothing problem for surfaces in

computer graphics,

• a straightforward adaptation to graph flows through reparame-
terization, and

• a penalization along edges
will allow us to define asimple and very general denoising tech-
nique based on surface area minimization. This will lead to 3D
curvature-based models, mimicking diffusion with respect to the
metric induced by the image itself instead of the usual screen space
metric. Moreover, the numerical method to implement this tech-
nique will use this very nature of surface area minimization over
the discrete data, ensuring a natural, accurate operator to integrate
the resulting flow.

The generality of our framework enables us to use this technique
on data of any dimensionality, such as greyscale or color images,
with an overhead only linear in the dimension. We will also demon-
strate how range images can be treated naturally with this method,
offering better smoothing of a scanned surface than previous meth-
ods. More complex data, like flow fields or tensor images, can be
treated in the exact same way by extending the concept of curvature
for bivariate data in higher dimensions.

This paper is organized as follows: Section 2 establishes the
main notation and discusses related work about surface flows.
In Section 3, we derive a parameterization-independent flow for
greyscale images before generalizing the approach to higher dimen-
sional data such as color images (Section 4). We present a robust
numerical scheme to integrate our flow in Section 5, then show re-
sults in Section 6 and conclude in Section 7.

2 Background on Surface Flows

A number of approaches for denoising in image processing
research consider an image as a 2-manifold embedded in 3D: the
image I(x, y) is regarded as a surface(x, y, I(x, y)) in a three
dimensional space, as depicted in Figure 2(b). Embedding the
image in a higher dimension allows us to use richer and more
meaningful differential operators. In this section, we review the
different methods based on this idea, and give general definitions
that we will build upon later.

2.1 Intensity as a 2-manifold

An imageI(x, y), usually considered as a function on a 2D plane
(x, y), can also be regarded as a surface(x, y, I(x, y)) in a three
dimensional space as depicted in Figure 2(b). The surfaceS =
(x, y, I(x, y)) is sometimes called a Monge surface, or simply a
height fieldas the intensity represents an elevation along thez di-
rection of the(x, y, z) space. As we will see in the remainder of this
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Figure 2:The intensity mapI(x, y) of an image can be thought of
as (a) a set of isophotes, or (b) a height field(x, y, z = I(x, y)).

paper, considering an image as a surface, will allow us to use some
well known differential geometry properties to design appropriate
differential operators.

We will denote byn the normal of the surfaceS, and will use
W, the square root of the first fundamental form determinant of
the surface [DHKW92, Gra98]. This latter quantity measures at a
given point on the surface the area expansion between the parameter
domain and the surface itself: a surfacedA on the screen (parameter
domain, also called screen space in our context) will then represent
a surface area ofW dA on the height field. Due to the simplicity
of a height field, we can write:

W =
√

1 + I2
x + I2

y (2)

n =
1

W (−Ix,−Iy, 1), (3)

whereIx (resp.Iy) is the first derivative ofI with respect tox (resp.
y).

2.2 Laplace-Beltrami Operator

As mentioned earlier, many recent approaches have focused on dif-
fusing 2D isophote curves. For an image regarded as an embedding
in 3D, a natural extension of this idea is to considersurface dif-
fusion. The 2D curvature operator is then replaced by the mean
curvature in 3D, denotedκ hereafter. A differential operator mea-
sures this mean curvature: theLaplace-Beltrami operator. Tradi-
tionally denoted∆g [DHKW92], this operator gives the mean cur-
vature normal of the surfaceS:

∆gS = 2κn.

Commonly used in differential geometry [DHKW92, Gra98], it is
often referred as the natural generalization of the laplacian from
flat spaces to general manifolds, as it uses the induced metric of the
surface itself, not the metric of the parameter domain.

Almost all surface flow techniques consider this mean curvature
normal for edge-preserving denoising, albeit in significantly vary-
ing ways. We briefly review these different flows used in image
processing and vision, along with their motivations:

• Malladi and Sethian [MS96] proposed:It =Wκ to implement
the geometrically natural mean curvature flow. Contrary to the
conventional laplacian filtering, it is an anisotropic flow more
appropriate for a scale-space. They also derive a min/max flow,
thresholding the curvature locally depending on local averages.

• Extending the Perona-Malik formulation for an intensity height
field, Ford and El-Fallah [FEF98] proposed an inhomogeneous
diffusion with a coefficient inversely proportional to the gradient
magnitude:

It = div(
1√

1 + I2
x + I2

y

(−Ix,−Iy, 1)t).



Since this expression is actually the divergence of the unit nor-
mal n to the surface, we can reformulate it as:

It = −2 κ.

They show how this flow provides good experimental results
for noise removal with edge preservation, and give a FD (finite
difference) algorithm to implement it using the Sobel operator
for the evaluation of derivatives.

• Finally, Kimmel, Malladi and Sochen [KMS97, SKM98] pro-
posed a framework for non-linear diffusion where equations
are derived by minimizing a functional. Using the extended
Polyakov action, which reduces to the surface area functional
for 2D greyscale images, they obtained the Beltrami operator
as the associated parameterization-independent Euler-Lagrange
equation. To introduce an edge preserving flow, they proposed
the following technique, called Beltrami flow:

It = −∆gS · ez =
1

W κ

whereez is the unit vector in thez (intensity) direction. We
will come back to this derivation in more detail in Section 3.2.1,
as our derivation follows similar lines, although resulting in a
different flow.

2.3 Discussion

In all previous methods, the mean curvature plays a central role.
Curvature normal flow has a known connection tosurface min-
imization: Lagrange already noticed thatκ = 0 is the Euler-
Lagrange for the surface area functional [DHKW92], meaning that
the curvature normal flow minimizes surface area. But, to the au-
thors’ knowledge this property has not been used to derive a robust
numerical scheme. We present in this paper both a geometrically-
sound denoising flow based on surface area minimization and a dis-
crete integration scheme following the geometric interpretation of
the flow in a natural way. The next section explains the foundations
of our new approach using greyscale images, while the rest of the
paper will extend this method to color images and higher dimen-
sional data.

3 Denoising of Greyscale Images

In this section, we present our first contribution in which we care-
fully derive a way to denoise greyscale images using surface con-
siderations. We will show how it relates to previous work, and will
demonstrate that this approach has desirable properties. Although
we restrict ourselves to greyscale images in this section, the follow-
ing derivation will be the backbone of our generalization to higher
dimensional data.

3.1 Denoising Flow of a 3D surface

For better insight, we first explore the different methods to denoise
a 3D surface. As we are about to see, crucial geometric properties
have to be satisfied to achieve accurate results.

3.1.1 Curvature Flow of Arbitrary 3D Meshes

Recent work in computer graphics has demonstrated the efficiency
of the mean curvature flow in removing undesirable noise from
arbitrary 3D meshes [DMSB99]. Creating high-fidelity computer
graphics objects using imperfectly-measured data from the real
world requires an adequate smoothing technique. Earlier smooth-
ing techniques, using a simple laplacian diffusion of the mesh, in-
troduced large distortions in the geometry. In contrast, following

the mean curvature normal2κn at each vertex of the surface is ro-
bust with respect to differences in sampling rate, as even highly
irregular meshes can be smoothed appropriately (see Figure 3(c)).
Even if diffusion is a close relative of curvature flow in terms of dif-
ferential equations, practical experience demonstrates undeniable
advantages in using curvature flow over simple diffusion.

(a) (b) (c)

Figure 3:Smoothing an irregularly sampled mesh: (a) Initial mesh,
(b) Result of a laplacian smoothing assuming regular parameteriza-
tion, (c) Result of a mean curvature flow as described in [DMSB99].

3.1.2 Smoothing Shape vs. Parameterization

The reason for the superior performance of curvature flow over dif-
fusion is theparameterization-independentnature of the Laplace-
Beltrami operator. The laplacian of a mesh is always described with
respect to a particular parameterization. The same geometric sur-
face defined using another parameterization will result in a different
laplacian vector. However, the notion of normal vector to a surface,
or of mean curvature, is purely geometric, and as such, does not de-
pend on the parameter space. The directions of the Laplace opera-
tor and of the Laplace-Beltrami actually coincide for theconformal
parameter space [DHKW92]. This allows us to interpret the mean
curvature normal2κn as a special laplacian: it is a laplacian for a
parameter space naturallyinduced by the surface itself.

These arguments explain a posteriori why any component in the
tangent plane during the smoothing process would create distortion
or local alteration of the shape of the triangulation [DMSB99]. An-
other insight into the nature of the tangent component can be gained
if one considers a locally flat piece of a tesellated surface: any tan-
gential component will introduce undesirable drift of the tessela-
tion. The standard laplacian in effect fairs the parameterization of
the surface as well as the shape itself. On the other hand, a purely
geometric (i.e., parameterization independent) smoothing will pro-
duce the intended result ofsmoothing only the shape(notice that
in Figure 3, the shapes of the initial triangles are preserved in the
smoothed version).

3.2 Edge-Preserving Denoising

Starting with the denoising technique described above, we can eas-
ily introduce weights on vertices in order to preserve steep slopes
of the height surface, important characteristics of the original im-
age. Particular care must be taken to preserve the parameterization
independent nature of the flow. This section explains how simple
geometric considerations can be used to create a parameterization-
independent, scale-invariant, edge-preserving smoothing.

3.2.1 Beltrami Flow

In the context of images, edges (i.e., sudden intensity changes) are
fundamental. In denoising, any edge or boundary between different
objects should be mainly preserved, while almost homogeneous re-
gions should be smoothed quickly. Since edges in the image result



in cliffs in the z direction for the corresponding height field, a first
idea is to define the following flow (see Figure 4(a)):

It = 2κn · ez
The normal to the surface near edges will be almost parallel to the
screen, leading to little smoothing in those regions while more uni-
form regions will be denoised as before. Remembering Equ. (2)
and (3), we find:

n · ez =
1

W , (4)

At this point, we recognize the Beltrami flow [KMS97]:It =
2κ/W. However, in the rest of this section, we construct a more
general approach by deriving a feature-preserving flow step by step.

3.2.2 Graph Flow

As we have briefly seen in Section 2.3, the Laplace-Beltrami opera-
tor is in a direction which minimizes surface area. Unfortunately, in
the context of images, we can not easily “move” the sample points
along the normal direction as it is generally not aligned with the
image parameter directions. We would have to re-sample the sur-
face back onto the pixel grid. Producing ageometrically-equivalent
flowby only evolving the intensity field (therefore, constraining the
sampling to remain the same) is then easier, and significantly faster.
We will now introduce such a flow, referred to as “graph flow.”

Suppose we have a surfaceS(t) evolving in time, starting with
a shapeS0. Let us define a potentialf(X(t), t) in space such that
the zero isosurface off corresponds toS at every timet. As the
evolving potential characterizes a moving isosurface, we can derive
a simple differential equation satisfied byf . The path of a point
X(t) during the evolution of the surface satisfiesf(X(t), t) = 0 for
any timet, yielding:

∂f

∂t
(X(t), t) +∇f(X(t), t) · dX(t)

dt
= 0 (5)

Note that with this equation (the typical PDE used in the level-set
literature) only the normal component ofdX(t)/dt matters since it
is dotted with the gradient off , which is along the normal to the
surface. An important consequence is thatonly the normal compo-
nent of a surface flow really affects the shape: since any tangential
component will not be accounted for in the PDE, the potentialf
will only evolve according to the normal component. Adding an
arbitrary tangent component to a flow field will not perturb the evo-
lution of a surface, just modify its parameterization (as mentioned
in Section 3.1.2). The preceding remark allows us to construct dif-
ferent particle paths that lie on the same surface family. Note that
in the case of mesh smoothing, we did not wish to allow the ver-
tices of triangulated meshes to slide. Indeed, if the triangle vertices
slide tangentially in the same surface family, the interior points of
the triangle faces are not guaranteed to remain close to the surface:
the triangles could cut deeply across the surface.

Since we want to obtain a mean curvature flow, the graph flow
needs to match the mean curvature flow after projection onto the
normal, as depicted in Figure 4(a). Sinceez projected onto the
normal introduces a factor1/W (see Equ. (4)), we can obtain the
equivalent graph flow:

It = −2Wκ (6)

This flow is the exact geometric equivalent of the mean curvature
flow, but adapted for graphs (equivalent to the usual flow, followed
by a re-sampling of the surface at the original pixel locations).
Consequently, it satisfies the property of parameterization indepen-
dence.

However, this flow still behaves inappropriately for height fields
since edges will be smoothed significantly. No less it is an interest-
ing anisotropic smoothing operator compared to standard laplacian
smoothing (as noted by [MS96]).

κn
Intensity field

Screen

Intensity field

Screen

(a) (b)

Figure 4:(a): The left side indicates how normals are perpendicu-
lar to the screen in homogeneous, noisy areas, while parallel to the
screen plane for edges. The right side shows how the graph flow is
built out of the mean curvature flow by having the same magnitude
once projected along the normal. (b):W measures the surface ex-
pansion between the parameter space (screen pixel) and the surface
of the height field.

3.2.3 Edge-Preserving Weighting

To further improve this flow and make it edge-preserving, we can
now use a smoothing weight, dependent on the metric of the sur-
face, in order to penalize the edges more than the flat regions. This
corresponds to the soft constraints smoothing technique developed
in [DMSB99], but this time, the appropriate smoothing factors are
computed automatically, instead of being hand-chosen by the user.

Consider the termW (square root of the determinant of the sur-
face metric): it measures the surface expansion between the pa-
rameter space (screen) and the surface itself (intensity field consid-
ered as a height field). Therefore, this term will be infinite along
edges, while equal to one in flat regions as depicted in Figure 4(b).
Its inverse is therefore a good candidate for an edge “indicator”.
This holds for any positive power ofW as well. SinceW is unit-
less this edge indicator is also scale-invariant. The complete edge-
preserving flow can now be expressed as:

It = − 2κ

Wγ
(7)

The coefficientγ ≥ 0 determines the relative penalization of small
jumps in intensity versus large jumps. Values less than one only pe-
nalize large jumps, while values larger than one penalize even small
jumps. It controls the linearity of our edge-preservation metric: as
such,γ can be described as anedge contrast parameter.

The flow derived above is quite general. Forγ = 0, we find the
same flow used by El-Fallah and Ford [FEF98]. Forγ = 1, our
formulation leads to the Beltrami flow, mentioned in Section 2.2.
Other values ofγ offer a whole new family of denoising flows,
all having the properties of parameterization-independence, scale-
invariance, and feature-preservation. In the next section, we pro-
pose to generalize the above derivation tonD data. In Section 5 we
will present a natural and robust numerical scheme for this PDE,
which will preserve the surface area minimization nature of the
flow.

4 Denoising of Arbitrary Bivariate Data

Two-dimensional data often has more than one channel of informa-
tion. Color images for instance have three channels per pixel: red,
green, and blue. Although a straightforward channel by channel
smoothing is easily achieved by the previous method, it may not
lead to optimal smoothing. Independent changes in the red, green,
and blue channels result in perceptually-strong color variations in
the smoothed image. Therefore, smoothing in color should be per-
formed in thergb space where coupling between channels results
in more natural color smoothing [Sha96]. Similarly, higher dimen-
sional data should be smoothed in its respective space, not channel-
by-channel. This section demonstrates that our previous approach



can be extended easily to provide a denoising technique for higher
dimensional data.

4.1 Graph Flow for Mean Curvature Smoothing

We now consider our bivariate multi-dimensional data as lying
on 2-manifold embedded innD. We can still define the Laplace-
Beltrami operator as being the generalization of the mean curvature
normal, or the generalization of the (parameterization-independent)
surface area gradient. For the sake of simplicity, we will denote the
Laplace-Beltrami operator asB from now on:∆gS = B. To make
this flow a graph flow, we have to project this vector onto the sub-
space of free parameters, such asr, g, b in the case of color images.
The orthogonal projection ofB onto this sub-space is the vectorB.
It consists of the same coordinates asB, except for the first two
components (corresponding to thex andy axes of screen space) set
to zero. Therefore, we need a vector in the direction opposite toB
to ensure a graph flow, but such that its projection ontoB has the
same magnitude asB to ensure the geometric equivalence:

−B · B
B · B

B. (8)

Applied to color images (5D space (ex, ey, er, eg, eb)), the graph
flow geometrically equivalent to a mean curvature flow is therefore:

d

dt

(
r
g
b

)
= −B · B

B · B

(
B · er
B · eg
B · eb

)
. (9)

4.2 Edge-Preserving Flow

Following the same arguments as in Section 3, we now want to
weight the features to favor smoothing of almost uniform regions.
Thus, we need to find a way to measure discontinuities. Based
on the same idea as in the greyscale case, we can use the ratio
of surface expansion between the screen and the surface. It is di-
rectly measured by the ratio between the magnitudes ofB andB,
as cliffs are characterized by a normal parallel to the screen plane.
Our multi-dimensional scale-invariant edge indicator can be written
as: ||B||/||B||: the edge indicator will be valued0 on sharp edges,
and1 in homogeneous regions. Adding an edge contrast param-
eterγ (slightly different than the previously definedγ, purely for
aesthetic reasons), our feature-preserving flow becomes, for color
pictures for instance:

d

dt

(
r
g
b

)
= −

(
||B||
||B||

)γ(B · er
B · eg
B · eb

)
. (10)

Notice thatγ = 0 simplifies greatly to a Beltrami flow. The cre-
ation of higher dimension feature-preserving smoothing flows fol-
lows naturally.

4.3 Incorporating Perceptual Bias for Color

The (r, g, b) color space is not necessarily the most perceptually
sound. Put simply, the human eye is not similarly sensitive to a
change of red, green, or blue: what we visibly consider as a major
color edge may not be considered as such in this color space, and
vice-versa. Therefore, smoothing a color image in such a space
may not lead to the most pleasant visual results.

Instead, we use the(L∗, U∗, V ∗) color space to take some of
the human color perception biases into account. This model has the
advantage of being almost perceptually uniform for the human eye,
and therefore, will appropriately define edges. Note that any other

model and/or linear combination of existing models is straightfor-
ward to implement in our framework as only the input has to be
changed.

4.4 Tuning of Global Contrast

The framework defined so far has an additional degree of freedom:
the scaling of intensity/colors. Colors are usually rescaled between
0 and 1, but the real color spectrum of the image is undetermined.
Unless radiometric values of the image are available, we can arbi-
trarily choose a scale factorα to define the global contrast of the
image. Note that our surface functional for a large value ofα will
be equivalent, forγ = 0, to a regularized version of theL1 norm of
the intensity: therefore, our flow will be equivalent to the total vari-
ation denoising approach of [ROF92]. On the other hand, a small
scale factor will tend to create a flow based on theL2 norm [Sha96]
for the sameγ [KMS97].

4.5 Discussion

We have defined a scale-invariant anisotropic flow to denoise any
bivariate data while preserving features. It is based on surface area
minimization, well-known in 3D to provide good denoising. As
this method tends to minimize surface area innD, the smoothing
between data samples is treated in a non-linear way, significantly
different from a channel-by-channel smoothing. In the special case
of color images, color smoothing will induce an alignment of the
gradient of each channel, which does not appear in a channel by
channel smoothing. Our method also applies to higher dimensional
data such as tensor or vector fields, providing an interesting frame-
work to simplify complex fluid flows or MRI tensor images. How-
ever, a discrete implementation must be defined in order for the
method to be practical. The next section addresses this point.

5 Implementation of our Flow

We now turn our attention to a practical and robust implementation
of our feature-preserving flow. In this section we will derive a sim-
ple discrete form of the PDE and use it to reliably integrate the flow
in time. The discretization is designed to preserve the surface area
minimization nature of the flow.

5.1 Usual Implementation with FD

One can approximate the mean curvature directly by finite differ-
ences. Since the mean curvature is defined as:

κ =
Ixx(1 + I2

y)− 2IxyIxIy + Iyy(1 + I2
x)

(1 + I2
x + I2

y)3/2
,

a quick FD implementation can be derived for greyscale images.
Kimmel [KMS97] also derived a FD numerical scheme for color
images, but the complexity of the computations involved increases
rapidly with the dimensionality of the data. Moreover we prefer
to use a more natural discretization of the mean curvature, since it
will guarantee good behavior as the discrete operator mimics the
continuous case perfectly. We will also see that it can easily be
extended tonD with a modest computational overhead.

5.2 Definition of Mean Curvature Normal

In differential geometry, the mean curvature normal is sometimes
described as a geometric property of a surface. Around a pointP,
the limit of the surface area variation with respect toP as we take



a smaller and smaller piece of surface turns out to be the mean cur-
vature atP. Therefore, the mean curvature normal can be defined
through the following property [DMSB99]:

2κn = ∇A/A, (11)

whereA is a small area aroundP, and∇ is the derivative with re-
spect toP. Similarly, the vectorB, generalizing the mean curvature
normal innD, can be expressed as:

B = ∇A/A. (12)

5.3 Definition of a Robust Discrete Operator in 3D

In [DMSB99], the authors showed a formulation of the surface area
gradient of a piecewise linear 3D surface approximation (i.e., a tri-
angle mesh) with respect to a given vertex. A direct derivation of
the continuous case to the discrete case yields the formula:

∇A =
1

2

∑
(cot αij + cot βij)(Xi − Xj), (13)

whereXi is a vertex of the mesh,Xj an immediate neighbor, and
αij , βij the two opposite angles to the edgeXiXj , as sketched in
Figure 5. Notice that this gradient is zero for any flat piece of sur-
face, regardless of the shape or the number of triangles in it.

X

j-1

Xj+1

X
X

i

jX

i

Xj

Xj+1

Xj-1
j

j-1

i

X

X

j+1

β j

X
αj

X

(a) (b)

Figure 5: A vertexxi and its neighbors on the screen and on the
surface (a), and one term of its curvature normal formula (b).

The discrete operator has been proven robust and reliable even
on irregular meshes. Fig. 6(a) and 6(b) exhibit two irregular meshes
and their curvature plot using the previously discussed discrete
curvature normal derivation. We observe a significantly reduced
amount of noise compared to previous methods of approximating
the mean curvature.

We believe that the good properties of this discrete form of the
mean curvature are due to the preservation of the fundamental prop-
erty of the operator: surface area minimization. This formulation

(a) (b)

Figure 6:Curvature plot (pseudo-colors representing magnitude of
mean curvature normal) of two irregular meshes, proving the ro-
bustness of the discrete operator. (a) Model of a horse, and (b)
piece of a unit discrete sphere, where the mean curvature approxi-
mation is equal to 1+/-2%

is conservativein that sense. Hence, such a discretization will pro-
vide better results than regular FD schemes in the context of image
denoising since area minimization is involved. Moreover, the ex-
tension to higher dimensional data spaces is straightforward as we
are about to see.

5.4 Discrete Beltrami Operator in High Dimensions

Since the previous formulation for the surface area gradient is only
valid in 3D, we must start with an extension for higher dimensional
data spaces. For generality’s sake, we will treat thenD case, and
the color image case will only be a particular example.

5.4.1 Surface Area in nD

First, we must derive the expression for a surface area innD. The
area of a triangle formed by two vectorsu andv in 3D is2A = ||u×
v||. Being proportional to the sine of the angle between vectors, we
can also express it as:

A(u, v) =
1

2
||u||||v||sin(u, v) =

1

2
||u||||v||

√
1− cos2(u, v)

=
1

2

√
||u||2||v||2 − (u · v)2.

This latter expression is now valid innD, and is particularly easy to
evaluate in any dimension.

5.4.2 Derivation of the Area Gradient

Given the expression for the surface area of a triangle, we can for-
mally derive the gradient of the area with respect to one of its ver-
tices. We refer the reader to the appendix for the detailed derivation
of the formula. It is shown there that the cotangent Equ. (13) is
actually still validif we extend the definition of cotangent innD as
being:

cot(u, v) =
cos(u, v)

sin(u, v)
=

u · v√
||u||2||v||2 − (u · v)2

.

With this definition, the implementation innD space is straightfor-
ward and efficient, as dot products require little computation.

5.5 Practical Implementation for Denoising

The implementation of our scheme is now straightforward with the
discrete operator we have just described. We will explicitly give
the discretization forγ = 0 since these formulae are particularly
simple. In the case of greyscale images, we change the intensity
valueIi for every pixel according to:

dIi

dt
=

1

2A
∑

(cot αij + cot βij)(Ij − Ii), (14)

where the total areaA around a vertex is just the sum of the areas of
all the triangles adjacent to this vertex. As in FD schemes, we sum
the contribution for all eight immediate neighbors. The cotangent
is implemented efficiently by computing the two adjacent 3D vec-
tors forming the angle considered, and computing their dot product
divided by the norm of their cross product.

For color images our edge-preserving flow becomes:

dri

dt
=

1

2A
∑

(cot αij + cot βij)(rj − ri)

dgi

dt
=

1

2A
∑

(cot αij + cot βij)(gj − gi)



dbi

dt
=

1

2A
∑

(cot αij + cot βij)(bj − bi)

Note that the coupling between channels is incorporated in the
cotangents. For data of different dimensionality the “feature-
preserving” flow will be very similar to this previous set of equa-
tions.

5.6 Integration of the Flow

The implementation of the flow is done by integrating the last set of
PDEs in time using either an explicit or implicit Euler scheme. The
user can stop the smoothing when the data is sufficiently denoised.
El-Fallah and Ford proposed an improvement on the integration by
computing the time step to use according to the variation of the
global area [FEF98]. Indeed, if the area of the whole image changes
significantly during a time step, a lot of noise was present in the
image, and it is safe to take a larger time step. When the area change
starts to decrease, the image structure may be significantly affected
by too large a time step, thus the time step should be reduced.

5.7 Discussion

We have derived a new discrete version of our differential denois-
ing model. Building upon a classic curvature normal flow, we
weight this smoothing process in order to preserve significant fea-
tures of the data while still suppressing high frequency noise. This
anisotropic smoothing flow is then implemented in a discrete set-
ting with simple discrete-geometry tools. This numerical technique
has two main advantages: it preserves the nature of the flow in a
discrete way, and is easy to implement in any dimension. By vary-
ing the exponentγ, we can re-create existing flows or create en-
tirely new flows. Additionally, we can easily extend these flows
to arbitrary dimensions. The next section presents our first results
obtained with the above numerical scheme.

6 Results

We tested our method on several datasets. We first used computer
generated images with artificially added noise. In Figure 7(a-c) we
can see that our method removes the noise from a simple greyscale
image while retaining the edges present in the original image. Sim-
ilarly, Figure 7(d-e) shows a smoothing for a simple color picture
in the presence of large amounts of noise.

Next, we tested the method on “real world” images. The denois-
ing technique performs well on classical test images, as demon-
strated for instance in Figure 8. In Figure 10, we display a noisy
image of a clock and its restored version, along with the height
field representation of the images.

We also tried our technique on different depth data. Rather than
using a 3D smoothing as in [DMSB99], we can take advantage of
the fact that the error is only in thez direction. While former meth-
ods [Tau95, DMSB99] would make the assumption of an isotropic
noise in space, our method applies better to this depth field as the
noise (measurement error) mainly resides along thez axis. To
demonstrate this advantage, we smoothed an elevation map of a
section of Mars. Due to measurement errors and poor quantization
of the original data, the height field is noisy as shown in Figure 1(a).
After an anisotropic smoothing, we suppress the noise and most of
the quantization effects, resulting in a smooth surface even with a
flat-shaded rendering.

Finally, we demonstrate how our method behaves on range im-
ages in Figure 9. Given a noisy range image of a face, we can
smooth the range image to reconstruct the face without visible noise
while keeping the features in place. Once again, previous methods
would have altered the shape since the assumption of isotropic noise
in the data does not apply for range images.

(a) (b) (c)

(d) (e)

Figure 7:Examples of denoising for computer-generated greyscale
and color images (a&d: noisy images, b&e: denoised output, c:
close-up of a and b).

(a) (b)

Figure 8:(a) Noisy color image, (b) Denoising flow applied to (a),
in 300 explicit iterations withdt = 1, γ = 0.

7 Conclusions and Future Work

We presented a general framework for denoising of 2D data. De-
rived from smoothing of meshes in 3D, our approach proposes an
anisotropic diffusion of data with convenient features: our method
is robust, stable, feature-preserving, scale-invariant, and easily im-
plemented for greyscale and color images, but also any forms of
multi-channel bivariate data. We demonstrated how this approach
provides an elegant way to smooth height fields and range images
by taking into account the way these data were acquired: knowing
that the noise is mainly in the depth approximation, our method pro-
vides more accurate results than previous 3D smoothing algorithms
where the noise is treated as isotropic in space.

Our current work includes more testing of these previous de-
noising flows for different form of data (such as tensor images from
MRI data), even for volumetric data, and irregular grids. We are
also working on a denoising flow based on principal curvatures for
the same applications.
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(a) (b) (c)

Figure 10: Clock example: The initial image (a, top) contains a significant amount of noise as its height field (b) shows. Our denoising
technique significantly reduces this amount of noise (a, bottom) while keeping the features in place (c).

(a) (b)

Figure 9: (a) Head model obtained from a noisy depth image. (b)
Reconstructed model after denoising (flat-shaded).
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Appendix: Area Minimization in nD

In this appendix, we use Einstein summation notation for concise-
ness. For an introduction, see [Bar89].

Consider 3 points(P,Q,R) in a space of arbitrary dimension
n > 2. As mentioned in Section 5.4.1, we can write the area formed
by the triangle(A,B,C) as follows:

A2 =
1

4
(PQiPQiPRjPRj − PQiPRiPQjPRj) .

Differentiating term by term with respect toP we get:

4
∂A2

∂Ak
= −δikPQiPRjPRj − δikPQiPRjPRj

−δjkPQiPQiPRj − δjkPQiPQiPRj
+δikPRiPQjPRj + δikPQiPQjPRj

+δjkPQiPRiPRj + δjkPQiPRiPQj

= −2PQkPRjPRj − 2PQiPQiPRk + PRkPQjPRj

+PQkPQjPRj + PQiPRiPRk + PQiPRiPQk

= 2 [PQk(PQ · PR− PR · PR) + PRk(PQ · PR− PQ · PQ)]

= 2 [PQk(QR ·RP ) + PRk(PQ ·QR)]

Additionally, we also have:

∂A2

∂Pk
= 2A ∂A

∂Pk

Therefore, using Equ. 14, and if we define the cotangent of an angle
between twonD vectorsu andv as:

cot(u, v) =
u · v√

||u||2||v||2 − (u · v)2
,

the gradient of the surface area can be expressed exactly as in
Equ. (13), extending nicely the 3D case tonD.


