
A Fast, Space-Efficient Algorithm for the
Approximation of Images by an Optimal Sum of Gaussians

Jeffrey Childs Cheng-Chang Lu Jerry Potter

Department of Mathematics and Computer Science
Kent State University

Abstract

Gaussian decomposition of images leads to many prom-
ising applications in computer graphics. Gaussian
representations can be used for image smoothing, mo-
tion analysis, and feature selection for image recogni-
tion. Furthermore, image construction from a Gaussian
representation is fast, since the Gaussians only need to
be added together. The most optimal algorithms
[3, 6, 7] minimize the number of Gaussians needed for
decomposition, but they involve nonlinear least-squares
approximations, e.g. the use of the Marquardt algorithm
[10]. This presents a problem, since, in the Marquardt
algorithm, enormous amounts of computations are re-
quired and the resulting matrices use a lot of space. In
this work, a method is offered, which we call the
Quickstep method, that substantially reduces the
number of computations and the amount of space used.
Unlike the Marquardt algorithm, each iteration has
linear time complexity in the number of variables and
no Jacobian or Hessian matrices are formed. Yet,
Quickstep produces optimal results, similar to those
produced by the Marquardt algorithm.

Key words: Gaussian approximations, geometric
algorithms, surface fitting.

1 Background

In the Gaussian decomposition of an image, we wish to
find a minimum number of Gaussians whose sum ap-
proximates the image with a certain tolerance. Each
Gaussian G

i
 has the form:

)1(),(
222 2/])()[(iii yYxX

ii eAYXG σσσσ−−−−++++−−−−−−−−====
where (X,Y) are pixel coordinates, A

i
 is the amplitude of

G
i
, (x

i
, y

i
) is the mean (or position) of G

i
and σ

i
 is the

standard deviation (or scale) of G
i
. Thus, an image can

be represented by an array of these four parameters.
Gaussian representations have many promising

applications. Gaussian parameters are promising for
image transmission, since the Gaussians only need to be
added together to reconstruct the image. In image
transmission, they can be used for low to high
resolution display, where the largest Gaussians are
transmitted, added and displayed first, forming the
basic structures of the image, while the smaller
Gaussians are being transmitted. The smaller
Gaussians, when added, fill in the details of the image.
Hence, this type of representation allows simultaneous
transmission and display from low to high resolution.

For motion analysis applications, Gaussian repre-
sentation of objects can simplify computation, because
a moving object can be simulated by adjusting the
Gaussian parameters which represent it. In addition,
Gaussians may be used to represent features of images,
needed for image matching and recognition.

Once a Gaussian representation of an image is
found, the Gaussians can be used, from then on, in a
variety of ways. Finding the Gaussian representation,
however, is not a trivial problem, and literature in the
Gaussian decomposition of images is rather scarce.
The greatest advances in optimality were made by
Goshtasby and O’Neill [6, 7]. However, their method
involves the Marquardt algorithm [10], a nonlinear
least-squares approximation algorithm which requires
enormous amounts of computations for practical image
problems.

A further improvement in optimality was made by
Childs et al. [3], by bounding Gaussian parameters in-
trinsically. In their work, which also uses the
Marquardt algorithm, intrinsic boundaries were applied

to 1D signals to reduce the number of Gaussians used to
represent them. Intrinsic boundaries for position are
useful in this work, also, but those for amplitude and
standard deviation are not used. The boundaries for
position are set beyond the edges of a square image, at
one quarter of the distance of one dimension, in pixels,
of the image. In other work on Gaussian
decomposition, Ben-Arie and Rao developed two very
fast algorithms [1]. However, these methods are
focused on speed rather than optimality. In contrast,
this work attempts to improve the speed without
sacrificing optimality. In the appendix of their work, as
well as in a comment by Ferreira [5] on Wiener’s
earlier work, it was shown that any practical signal can
be decomposed into a sum of Gaussians, given a
tolerance.

In this work, a novel algorithm is introduced,
which we call the Quickstep algorithm. It takes a
global optimization approach to the number of
Gaussians as originated by Goshtasby and O’Neill [6],
yet it has a lower time complexity than the Marquardt
algorithm.

2 Introduction

If we let a function f be defined as a sum of m
Gaussians, such that

)2(),(
222 2/])()[(

1

iii yYxX
m

i
ieAYXf σ−+−−

=
�=

where the parameters are as defined in Equation 1, our
goal is to find a function f with minimum m such that
the signal is approximated by the sum of m Gaussians,
i.e.

)3(},...,3,2,1:|),(),(|{max ε<=− NjYXfYXP jj

where N is the number of pixels, P(X,Y)
j

is the data

value at the j
th

pixel, f(X,Y)
j
is the value of the function

of Equation 2 at the j
th

pixel, ε is a prescribed tolerance,
and pixel j has coordinates (X,Y).

Let us define a vector b of length n, composed of
Gaussian parameters, such that

b
[n] = (A

1
, α

1
, β

1
,σ

1
, A

2
,

 α
2
, β

2
,σ

2
,..., A

m
, α

m
, β

m
,σ

m
). (4)

where α
i
and β

i
 are the intrinsic boundary counterparts

to x
i
 and y

i
, respectively

[3]. The Marquardt algorithm

attempts to make corrections to b to meet the prescribed
tolerance by combining Newton’s method [8] with the
gradient method [4]. The gradient method determines
the direction of correction, while the Newton method
determines the amount of correction.

In every iteration of the Marquardt algorithm, a
partial derivative of function f is taken with respect to
every component of the b vector, at every point (X,Y),
to form a Jacobian matrix of dimensions N x n. The
transpose of the Jacobian is multiplied by the Jacobian
to form a Hessian matrix. The Hessian is used, along
with the gradient vector to solve a linear system of
equations. The solution, with some modification, is
used as the correction to the b vector to form a better fit
between the sum of the Gaussians and the image being
decomposed. A more detailed description is found in
Marquardt’s paper [10].

Hence, two major problems with the Marquardt
algorithm are that (1) the number of computations
within an iteration can consume much time and (2) the
size of the matrices can consume much space for image
decomposition. For example, in a small 16 x 16 image
that may involve as many as 50 Gaussians, the Jacobian
matrix would have over 50 thousand entries, making
matrix multiplication time-consuming. Furthermore, if
the reasonable method of Gaussian elimination is used
to solve the linear system of equations, it would involve
over eight million calculations. It would clearly be im-
practical to use the Marquardt algorithm for even larger
images involving more Gaussians.

The decomposition method involves (for both Mar-
quardt and Quickstep) selecting an initial Gaussian for
the b vector first, and then letting the algorithm iterate,
adjusting the b vector to minimize the error between the
Gaussian and the image. If the tolerance ε is not met
(see Inequality 3), another Gaussian is selected, con-
catenated to the b vector, and the algorithm runs again,
refining all Gaussians in the set further. This continues
until the tolerance is finally met. If many Gaussians are
added to the set at once, there will probably not be a
good initial fit between the Gaussian mass and the im-
age, and it is more difficult for the algorithm to find an
optimal fit, due to the high energy of the Gaussian
mass. When the Gaussians are allowed to settle one
by one, they have lower energy. This method was used
in previous work [3, 6, 7] for optimality.

This problem is classified as a large-scale nonlinear
least-squares approximation problem, for which the

Marquardt algorithm is not considered suitable for the
reasons above. Current large-scale methods [2, 11] fo-
cus on approximating the Hessian matrix by other faster
methods than matrix multiplication. For our
application, however, we still find this unacceptable, as
the formation of the Hessian matrix still requires at
least O(n

2
) time, and the linear system of equations,

which takes O(n
3
) time, does not benefit. It will be

shown in the results section, that even if the formation
of the Hessian matrix were instantaneous, the Quickstep
method is still faster for practical image problems.

The contribution of this work is to provide a
method which reduces the number of computations sig-
nificantly, yet produces results that are similar in opti-
mality to those produced by the Marquardt algorithm.
The Quickstep algorithm is linear in the number of
Gaussian parameters on each iteration. Each iteration
takes a crude step towards the solution, requiring more
iterations. However, each iteration is very fast so that
the overall time is reduced substantially. The
Quickstep method also has the advantage that it does
not require large amounts of space to reach the solution,
as the formation of the Jacobian matrix, the formation
of the Hessian matrix, and solving the linear system of
equations are all eliminated.

3 The Quickstep Algorithm

In practically any nonlinear least-squares
algorithm, the initial selection of parameters is an
important issue. A recent method for selecting initial
parameters, which has proven quite successful, is the
selection method used by Childs et al. [3]. It has been
shown in their work, that for a signal composed of a set
of Gaussians, a smaller set of Gaussians can often be
found to approximate the signal, using this Gaussian
selection method. Therefore, this selection method is
also used in this work. To avoid computation inaccu-
racy, however, the selected standard deviation is no
smaller than 0.4 and no larger than 100.0. The initial
parameters, when determined, are concatenated to the b
vector of Equation 4.

Quickstep makes use of the idea that these Gaus-
sians can be truncated. Since a Gaussian decays so
rapidly as the distance from its position increases, it
makes sense to eliminate the insignificant computations
at a certain distance from its position. The criterion
that is used here is not the standard deviation, but the
function value of the Gaussian, because this function
value should be considerably less than ε (see Inequality
3). Therefore, the effective distance ξ from the position

of the Gaussian is defined as

)5(ln2 2

�
�

�

�

�
�

�

�
=

δ
σξ

A

where δ is an absolute function value tolerance. This
equation is easily derived from the 1D Gaussian func-
tion, setting its function value to δ and solving for
 ξ = |X - x|. The ceiling is used here since pixels
have integral coordinates. For ease of implementation,
computations are confined to a square of dimensions
2ξ instead of a circle of radius ξ. The notation ESA is
used to refer to this “effective square area” of the
Gaussian. The choice of δ for Equation 5 can be
critical to how well this truncation method works. If
δ is too small, no gain may be realized from using it. If
δ is too large, it will prevent the algorithm from using a
significant part of the Gaussian, increasing the number
of Gaussians required. A good choice for δ seems to be
 δ = 0.05ε, determined experimentally.

In the Quickstep algorithm, the gradient method [4]
is used to determine the direction of correction for the b
vector. Therefore, in an iteration of the Quickstep al-
gorithm, the gradient vector g is created as

[] []

)6(.,,2,1

,
),,(

),(),(

n

b
bYXf

YXfYXP j

ESAj
jj

n

��

�

�

�

=

∂
∂

−= �
∈

g

where f and P are as defined in Equation 2 and
Inequality 3.

The choice of scale is a very important problem.
Without a properly chosen scale, the number of Gaus-
sians to decompose a problem will increase sharply.
The Quickstep method uses the diagonal of the Hessian
that would be formed in the Marquardt algorithm to de-
termine a scale, since this provides some important in-
formation without increasing the time complexity of an
iteration. In Marquardt’s original paper, the standard
deviations of the parameters are used [10]. However, in
Quickstep, when the diagonal Hessian is scaled, it be-
comes the identity matrix. Hence, the gradient vector is
the solution. Since the scale is applied to both the gra-
dient vector and the solution, it can be applied to the
gradient vector twice. Hence, in Quickstep, the scale is
used only on the gradient vector, and the variances of
the parameters are used instead of the standard devia-
tions, which avoids an expensive call to a square root

function. Hence, a scale vector s is created as

n
b

bYXf

ESAj

j 1,2,3,...,,
),,(2

=�
�
�

�
�
�
�

�

∂
∂

= �
∈

][
�

�
�

�ns

which should be computed at the same time as Equation
6, in order to prevent storing or recalculating the de-
rivatives. The scale is then applied to the gradient
vector g:

n
s
gg ,,2,1ˆ ��

�

�

�
==

The refinement correction to the b vector is now
computed and stored to a trial vector t:

)7(,,2,1
ˆ

ngbt ��
�

��
=+=

η

where

v
λη += 1

where λ is initially 0.01 when the Quickstep algorithm
starts up for a set of Gaussians, and v is more or less an
arbitrary value, set to 10.0 in this work.

The trial vector t is processed a little more, depend-
ing on the type of element. Nothing is done to
amplitude parameters. However, position parameters
are normalized to equivalent values between 0 and
2π (for the sine function [3]); otherwise, their valid
adjustments can be quite large, leading to inaccuracy in
computations. In addition, the standard deviation is set
to its absolute value (since it may become negative in
the algorithm) between 0.3 and 100p, where p is the
number of pixels in one dimension of a square image.
If the standard deviation adjusts outside these
boundaries, it is set to the appropriate boundary value.

The next step is to calculate a sum-of-Gaussians
matrix of the same size as the image or image section
being decomposed (only the ESA’s of the Gaussians
need to be used here). This matrix is used as function f
to calculate the sum-of-squares error Φ:

[])8(),(),(
2

1
)(�

=

−=Φ
N

j
jjk YXfYXP

where P was defined earlier in Inequality 3, and Φ
(k)

denotes the error Φ on the k
th

 iteration of Quickstep. If
Φ

(k)
 < Φ

(k - 1)
, then t becomes the new b vector, the new

value λ is set as λ / v, and the Quickstep iteration
repeats. If Φ

(k)
 is not lower, however, the search for a

trial vector continues until Φ is lowered (assuming that
Φ is not at the minimum error). If the search must con-
tinue for a suitable trial vector, the algorithm proceeds
to adjust λ as in Marquardt’s paper [10].

The test for convergence and other stopping condi-
tions, as used in Marquardt’s paper [10], are used as
stopping conditions for Quickstep also. However, a
stopping condition which needs further elaboration is
when the number of iterations has reached a certain
limit. Optimality seems to level off when 40 iterations
has been reached. Many iterations, in both Quickstep
and Marquardt, are idle iterations, in which
insignificant decreases to error are made without any
benefit in optimality, and putting a limit on the number
of iterations removes many of the idle ones.

There is a stipulation in setting such a limit, how-
ever. Although the limit removes many idle iterations,
it is difficult to predict when idle iterations eventually
lead to significant iterations. In such cases, the
algorithm “breaks new ground”, that is, finds a steep
path downhill. If the algorithm “breaks new ground”,
the count of iterations is restarted at 0, since such a
steep path can lead to significant progress. New ground
is considered to have been broken when Φ

(k)
 < 0.8Φ

(k-1)
,

determined experimentally.
The Quickstep algorithm assures convergence if no

iteration limit is set, for three reasons: (1) the gradient
method is used, (2) a trial vector is not accepted unless
it leads to lower error, and (3) if no trial vector is ever
accepted, eventually η reaches a number so large that,
due to Equation 7, the trial vector approaches the b
vector until the convergence test [10] is met.

The Quickstep algorithm uses the gradient method,
like most nonlinear least-squares algorithms, but the
Newton component [8] is reduced. The Newton com-
ponent determines the amount of correction to the b
vector very well, but it is responsible for the enormous
amount of calculations in one iteration. In this work, a
way is provided to quickly determine the correction
size, which, though crude compared to the Newton cor-
rection size, still makes decent progress towards the
solution. The result is that Quickstep requires more
iterations to reach the solution, but an iteration of
Quickstep is so fast that the overall time is dramatically
reduced. Using the Quickstep method, the complexity

of each iteration is reduced to O(N + nρ), where ρ is
the average number of pixels in an ESA of a Gaussian.

It may be worth commenting that truncation of
Gaussians can also be applied successfully to the Mar-
quardt algorithm to increase the speed. In particular
this does much to reduce the time for the matrix
multiplication, since only the intersections of the ESAs
need to be multiplied. However, the system of linear
equations does not benefit from such truncation in the
Marquardt algorithm, and therefore, the complexity of
an iteration is not reduced as in Quickstep.

When the standard deviation of a Gaussian
becomes the imposed minimum 0.3, the Gaussian can
be used to approximate a pixel without having any
significant effect on other pixels. Thus, a 16 x 16
image section, in the worst case, requires 256 “mutually
exclusive” Gaussians for approximation. Though this
type of approximation is undesirable, it shows that arbi-
trarily high frequencies can be approximated discretely.
It also shows that noise in images will be included in
the approximation. It is possible to use Gaussian
decomposition for image smoothing, by eliminating
Gaussians with small standard deviations, but this will
remove some detail as well.

4 Results

The results in this section are limited to digital im-
ages. The use of the algorithm for continuous images
would require that the image be first represented by a
function, which is the goal of Gaussian decomposition
in the first place (see Equation 2 and Inequality 3).

In this section, the performances of Quickstep and
Marquardt will be compared. Therefore, the implemen-
tation of the Marquardt decomposition algorithm is de-
scribed next. In this implementation, intrinsic bounda-
ries are used as in Quickstep, for optimality, and the
selection of initial parameters is the same as in Quick-
step. The same adjustments on trial parameters (see
previous section), are used to ensure accurate computa-
tions. In the Jacobian matrix multiplication, we make
use of the fact that the resulting Hessian is symmetric,
and therefore, only roughly half of the entries need to
be computed. The system of linear equations was
solved using Gaussian elimination with maximal
column pivoting. The stopping conditions are the same
as for Quickstep, except that the iteration limit is set at
10 for Marquardt and 40 for Quickstep (the reason for
this will be explained later). However, if “new ground
is broken”, the iteration count is reset to 0 (see previous
section). The tolerance ε is set at 10.0 for both

methods, which usually produces a good SNR rms;
most of the points in the Gaussian approximation are
usually well under the tolerance when the algorithms
complete. The rest of the Marquardt algorithm is im-
plemented as in Marquardt’s original paper [10]. All
experiments in this section were conducted on a 300
MHz PC.

In an initial experiment involving 30 random 16 x
16 images, Marquardt attained a total of 558 Gaussians
for the image sections, requiring a total time of 5150
seconds, while Quickstep attained a total of 563 Gaus-
sians in a total of 168 seconds. Each case usually had a
different number of Gaussians for both Marquardt and
Quickstep. Quickstep had increased the number of
Gaussians in 9 of the cases, but decreased the number
of Gaussians in 10 cases.

As mentioned earlier, in comparisons of Marquardt
with Quickstep, the iteration limit is set at 10 for Mar-
quardt, while it is set at 40 for Quickstep. The reason
for setting an iteration limit in the first place is that it
removes idle iterations which produce insignificant de-
creases in the error, and most of these occur in the later
iterations. Since Quickstep requires more iterations to
reach the solution, its iteration limit cannot be set to 10
without degradation of optimal performance. This is
unfortunate because the lower the iteration limit is set,
the faster the algorithm runs. For example, if the itera-
tion limit is set at 10 for Quickstep, it requires a total of
only 49 seconds instead of 168 seconds; however, the
total number of Gaussians increases substantially to
596, an average increase of 1.1 Gaussians per test case.
It is worth mentioning also that if the iteration limit is
set at 40 for Marquardt, its total number of Gaussians
only decreases by 3 to 555, yet its total time increases
to a painful 15932 seconds. For these reasons, we feel
that these different iteration limit settings allow for a
fair comparison of the algorithms.

Current large-scale methods still try to speed up by
approximating a Hessian matrix without doing a matrix
multiplication [2, 11]. The Marquardt algorithm can
also be sped up by using Gaussian truncation , done in
our earlier experiments, which has a large effect on the
matrix multiplication time. However, these methods do
nothing to speed up an accurate solution to the linear
system of equations. The total time spent in solving
linear systems of equations in the Marquardt algorithm
for the initial experiment was 470 seconds, about 2.8
times higher than the total time for Quickstep.

In a second more extensive experiment, the Lena
standard image was divided into 16 x 16 sections and
completely decomposed yielding 256 test cases of a
variety of image sections, including high and low con-

(a)

(b)

(c)

(d)

Figure 1: (a). The original Lena image. (b). Lena
constructed with Gaussians, decomposed with the Mar-
quardt algorithm in 16 x 16 sections. (c). Lena con-
structed with Gaussians, decomposed with the Quick-
step algorithm in 16 x 16 sections. (d). Lena con-
structed with Gaussians, decomposed with the Quick-
step algorithm in 32 x 32 sections (shows a reduced
blocking effect).

 Marquart Quickstep Quickstep

section size 16 x 16 16 x 16 32 x 32
iteration limit 10 40 20
total Gaussians 4617 4693 4332
maximum Gaussians
 in a section 61 62 197
total time for
 decomposition 95448 s 1561 s 3516 s
trial acceptance
 percentage 44.9% 47.7% 46.5%
average iterations
 per section 151 611 1234
SNR rms 30.7 29.8 32.3

Table 1: Comparison of decomposition methods.

trast, detailed and smooth. Figure 1a shows the original
Lena image, while Figures 1b and 1c show the results
for Marquardt and Quickstep, respectively. Table 1
shows how the decomposition methods compare. Al-
though Table 1 shows slightly more Gaussians for
Quickstep than Marquardt, Quickstep had a smaller
number of Gaussians than Marquardt in 77 sections,

with an average decrease of 1.7 Gaussians, while
having a larger number of Gaussians in 89 sections,
with an average increase of 2.3 Gaussians. Note, in
Table 1,that the average trial acceptance percentage
shows that Quickstep has a good ability to come up
with trial vectors which reduce the error. Note,
however, that Quickstep takes four times as many
iterations to reach roughly the same optimal solution as
Marquardt (to be expected from the iteration limits).
It is apparent that while Quickstep takes steps to reduce
the error, the steps it takes are rather crude compared to
Marquardt. In spite of this increase in iterations, a
striking feature of Quickstep is that it was sixty times
faster in decomposing the image, giving rise to the
name “Quickstep”. For those sections which require
few Gaussians, Quickstep and Marquardt had nearly the
same speeds, but for those image sections requiring 50
or more Gaussians, Quickstep often achieved a speed
100 times faster than Marquardt, to be expected from
the differences in the time complexities. Finally, the
quality of results, SNR rms, is similar between the algo-
rithms.

Note that there is a substantial blocking effect in
Figures 1b and 1c, occurring mainly in the smooth
regions of the image. This effect is largely due to our
visual systems, which can perceive slight distortions in
smooth regions much more easily than in detailed
regions. Figure 1d uses 32 x 32 blocks in the Quickstep
method, reducing the blocking effect. The price paid
for this reduction, of course, is the increase in time
shown in Table 1, in spite of the fact that the iteration
limit was set lower at 20. The results in Figure 1d were
produced for demonstration purposes only; the
Marquardt algorithm was not used for this, since it
would be hundreds, if not thousands, of times slower.

In spite of the reduction in the blocking effect in
Figure 1d, note that some visual distortions still exist in
the smooth areas. One way to improve the image qual-
ity would be to lower the tolerance ε (see Inequality 3),
which was set at 10 gray scales for the results of Figure
1. This would, however, increase the number of Gaus-
sians. Perhaps a better approach would be to decrease
the tolerance for only smooth regions. It also appears
that the tolerance can be increased for the detailed re-
gions, providing a balancing effect in the number of
Gaussians. This is to be a subject for future research.

Figure 2 shows a 128 x 128 BRDF image [9],
which was interesting because of its smoothness and
points of brightness. Figure 2a shows the original
image while Figure 2b shows the Quickstep
decomposition using a tolerance of 10 gray scales with
the entire image block size. Note that the Gaussians

(a) (b)

(c) (d)

Figure 2: (a) Original BRDF image. (b)-(d). Con-
structed with Quickstep Gaussians at different toler-
ances. The solution for part (b) used a tolerance of 10
gray scales for 39 Gaussians, an SNR rms of 62.9, and
a time of 325 s. The solution for part (c) used a toler-
ance of 8 for 46 Gaussians, an SNR rms of 93.2, and a
time of 502 s. The solution for part (d) used a tolerance
of 5 for 67 Gaussians, an SNR rms of 125.7, and a time
of 850 s.

(a) (b) (c)

Figure 3: (a) Original solid triangle. (b) Marquardt
solution, 26 Gaussians in 279 seconds. (c) Quickstep
solution, 22 Gaussians in 4 seconds.

(a) (b) (c)

Figure 4: (a) Original line triangle. (b) Marquardt
solution, 18 Gaussians in 183 seconds. (c) Quickstep
solution, 20 Gaussians in 3 seconds.

(a) (b) (c)

Figure 5: (a) Original checkerboard. (b) Marquardt
solution, 43 Gaussians in 1194 seconds. (c) Quickstep
solution, 42 Gaussians in 20 seconds.

 A x y σ

42.274208 12.203599 6.583468 7.200311
43.400757 12.005547 6.820785 7.372244
70.441765 11.396811 8.395815 10.301986

266.132111 7.506141 1.496234 0.570001
-163.423981 11.431159 7.452995 8.088238
318.471039 1.500715 7.505594 0.523438
105.653259 9.611252 7.463912 1.520774
182.185608 7.993632 9.074813 1.588626
141.002945 15.503941 1.484623 1.454900
176.595016 1.502229 15.495743 0.845721
174.587067 15.493904 9.499632 0.893617
313.620148 11.507056 15.504231 0.523847
455.373016 11.532457 5.467762 0.416167
511.010590 13.470234 3.530351 0.400589
381.775269 11.592936 7.508440 0.394871
465.260345 5.475596 11.524047 0.422260
508.425995 3.507012 13.492288 0.423976
441.056396 5.423644 9.497160 0.390403
431.503571 3.502404 7.502584 0.452811
396.376526 13.446114 9.497159 0.442155
329.314117 3.506291 5.498511 0.515609
317.646271 5.494154 3.509284 0.522677
417.074951 7.498525 11.584785 0.391672
418.942352 9.497097 13.497495 0.458514
320.169495 11.502256 13.491319 0.524116
302.156281 13.483729 11.508123 0.537596
315.037018 7.505332 3.510144 0.524875
358.022034 9.490659 5.400075 0.404291

-212.223663 7.749088 7.731223 0.668982
-213.701141 9.200408 9.267549 0.695086
418.416382 1.501172 13.449910 0.432953
381.748230 15.498572 3.603220 0.386795
-58.661896 6.072452 7.875461 0.715204
329.980164 1.496699 5.494276 0.510028
370.436798 13.395384 1.502107 0.390808
358.394714 3.556432 15.498575 0.460700
-63.836678 9.177217 11.012353 0.681923
314.962189 5.487666 1.494551 0.521280
308.281555 9.492308 15.499116 0.533067
288.189209 15.502576 11.565727 0.508811

-134.192871 15.503010 8.184283 0.300000
-53.650463 7.808944 5.910851 0.627661
-60.838818 10.877752 9.168189 0.699867

Table 2: The Gaussians in the Marquardt solution used
to form the checkerboard of Figure 5b. A tolerance of
10 gray scales is used, so a summation that is slightly
negative should be set to 0 for image reproduction.

 A x y σ

-138.774292 1.533950 1.532053 1.135911
-144.186066 15.474975 15.534304 1.752688
153.853256 9.906965 9.721567 15.381313

-226.461365 7.516838 15.506108 0.696704
-169.637299 1.508797 9.492138 0.976500
-127.458023 7.247541 7.248353 1.094320
-164.261551 9.473604 9.484006 1.845971
-258.263092 9.489571 1.491194 0.592394
-233.087234 15.504033 7.516286 0.683021
-280.434479 7.506627 13.478838 0.556137
-276.227295 5.489450 13.484420 0.590671
-265.548615 9.494089 11.634647 0.420271
-268.916412 3.532081 11.522730 0.590058
-266.030731 3.611399 9.485515 0.533130
-284.022095 5.370478 7.518034 0.481777
-318.762756 11.554947 11.554553 0.464486
-368.327332 13.454527 13.452782 0.442399
-261.482300 5.456026 5.456465 0.584261
-345.473083 3.530949 3.530430 0.485007
-271.530792 7.518799 5.366188 0.493460
-263.843109 9.481397 3.522405 0.603679
-269.478210 11.517205 3.518836 0.596757
-277.096405 13.483739 5.491963 0.594079
-301.062653 13.482814 7.507129 0.536386
-251.241989 11.640913 9.494258 0.430138
226.632263 7.685505 9.437407 0.475072
208.890335 9.425779 7.682054 0.502574

-301.843292 3.607900 1.504779 0.449477
-272.315552 15.494983 13.369817 0.420588
-289.918518 1.505110 3.611056 0.456856
-280.464020 11.514410 1.492916 0.556433
-252.680649 13.359729 15.491117 0.425132
-267.772858 5.464641 15.510127 0.573313
-268.120422 15.511187 5.466878 0.578068
-257.250610 1.495238 11.602804 0.522109
110.602249 1.484623 7.847948 0.378529

79.193634 11.295532 7.749356 0.510608
79.568695 7.753181 11.298998 0.527986
55.679623 6.479113 9.261699 0.437128
39.449394 9.199624 6.398310 0.464254

-18.759287 14.871377 10.357703 0.783934
-16.998495 10.361329 14.967628 0.722080

Table 3: The Gaussians in the Quickstep solution used
to form the checkerboard of Figure 5c. For image re-
production, Gaussians should be truncated using Equa-
tion 5, with δ set to 0.5. A tolerance of 10 gray scales
is used, so a summation that is slightly negative should
be set to 0.

line up in the bright regions, producing a noticeable
rounding effect. In this case, 10 gray scales is
probably not an acceptable tolerance. Figures 2c and
2d show the results when tolerances of 8 and 5 are used,
respectively. This was also done for demonstration
purposes; Marquardt was not used for this because of
the enormous amount of time it would take on a 128 x
128 block size.

Finally, Figures 3 through 5 show comparisons be-
tween Marquardt and Quickstep on some 16 x 16 artifi-
cial images. From these few results, we can conclude
that Quickstep will sometimes attain smaller Gaussian
solutions for artificial images. Tables 2 and 3 show the
Gaussian solutions achieved by Marquardt and Quick-
step, respectively, for the checkerboard image in
Figure 5. In viewing these Gaussian solutions, one
should keep two things in mind: (1) Gaussians with
negative amplitudes will partially cancel Gaussians
with positive amplitudes in summation, producing
special surfaces, and (2) since the Gaussian
approximations are used only for the discrete pixels, the
Gaussians can do “whatever they want” between the
pixels; it is not unusual for thin Gaussians to peak very
high between pixels, with only its lower points being
used in the discrete approximation. Note that, although
the two solutions differ by only one Gaussian, the two
Gaussian solutions are quite different. One suspects
that there may be many such solutions. In a work by
Childs et al. [3] it was shown that, for a signal com-
posed of Gaussians, the same Gaussian solution is often
not recovered. In fact, quite often, a smaller Gaussian
solution is found.

Care should be taken to be taken to follow the
directions under Tables 2 and 3, if the reader wishes to
reproduce the results.

5 Conclusions

In Gaussian decomposition of images, Quickstep
offers a much faster method to achieve optimal
Gaussian representations than other methods currently
available. The optimal Gaussian decomposition of
images, previously considered a problem for
supercomputers, is now within the grasp of the PC.
This is due to a large reduction in the time complexity
of an iteration. Newton’s method can achieve very
good steps towards the solution. In contrast, Quickstep
takes rather crude steps towards the solution, but it
takes them so quickly that the overall time is
dramatically reduced.

Quickstep is based largely on the gradient method,

but incorporates many components of the Marquardt
algorithm to avoid the long convergence times charac-
teristic of the gradient method. By using an appropriate
scale and trying for larger step sizes, it is possible to
reach the solution much faster.

Quickstep not only saves time, it also saves a great
deal of memory space. Hessian matrices, in an applica-
tion like this, can have up to hundreds of thousands of
entries. Intermediate matrices are also often formed
when solving a linear system of equations.

Quickstep also has the advantage of having less
roundoff error for very large problems than Marquardt.
One problem in solving large linear systems of
equations is in the accumulation of roundoff error,
which leads to inaccuracies of the solution and poor
convergence. Quickstep, in comparison, can be
expected to perform basically the same for even larger
problems.

Gaussian representations have promising applica-
tions in computer graphics. Although it takes time to
find a Gaussian representation of an image, once a
Gaussian representation is achieved, the Gaussians can
be added together quickly to reconstruct the image.
Gaussians can be transmitted one at a time, from the
most significant Gaussian to the least significant. The
Gaussians that have been transmitted can be added to
start constructing the image while the other ones are
being transmitted. This allows low-to-high resolution
display of images across the Internet, resulting in faster
image recognition. Truncated Gaussians can be used to
construct images even faster, because they only need to
be added to the image in the truncated area. This is an
important speedup since many Gaussians that fill in
details of an image are small. Furthermore, moving im-
ages can be handled more easily, since it is only neces-
sary to adjust the parameters, especially position
parameters, of the Gaussians which represent them.
Gaussians also make very good features for the coarse
structures of an image, aiding in image recognition.

Practitioners are usually most interested in three
areas: optimality, time, and quality of results. Regard-
ing optimality, Marquardt may have a slight, though
subjective, edge over Quickstep. However, in any
event, it is justifiable to classify Quickstep as an
optimal algorithm, since it can often achieve smaller
Gaussian solutions than Marquardt. In fact, from the
results in this section, Quickstep achieves a smaller
solution than Marquardt about 30% of the time
(Marquardt achieves a smaller solution than Quickstep
about 34% of the time). Therefore, for those
practitioners where optimality is most important (and
time is not), it is recommended to use both Marquardt

and Quickstep, and take the smaller Gaussian result of
the two. The Gaussian solution can also be reduced by
increasing the tolerance ε (see Inequality 3), to the point
where the quality level is just acceptable.

Regarding time, Quickstep is unquestionably
faster for large problems. However, one may want to
consider the Marquardt algorithm if one has access to a
parallel computer. The iterations cannot be put in
parallel, and Marquardt takes less iterations to achieve a
solution. It is currently not known how a Marquardt
iteration will compare to a Quickstep iteration on a
parallel machine. If Quickstep practitioners care little
about optimality, the time can be further reduced by (1)
decreasing the iteration limit and (2) increasing δ (see
Equation 5). However, one should use care in adjusting
these parameters; eventually, the algorithm will slow
because of the sheer increase in the number of
Gaussians.

Regarding quality, Marquardt and Quickstep are
very close. For those practitioners for which quality is
much more important than the number of Gaussians,
the tolerance ε can be lowered. However, one should
note that it is never necessary to set the tolerance below
0.5. When the tolerance is set at 0.5, the summation of
the Gaussians result for a pixel can be rounded to
produce the exact integral pixel value. Hence, such a
Gaussian representation is lossless. However, one
should also note that the number of Gaussians should
increase substantially from a tolerance of 1.0 to a
tolerance of 0.5, due to quantization effects. Using a
tolerance of 0.5, even a very smooth image will have a
blocked effect at the pixel level, due to its integral pixel
values.

Quickstep is still in its early stages and there are
many possibilities for improving the time further.
Future research efforts should focus on reducing the
time to form a sum-of-Gaussians matrix, as this process
accounts for more than half of the time for the current
implementation of Quickstep with truncation. This is
presumably because the formation of the initial vectors
does not need to be repeated when a trial vector fails,
but the calculation of the sum-of-Gaussians matrix does
repeat to check the error of other trial vectors. Reduc-
tion of the number of iterations, possibly by using a
dynamic iteration limit, is another possibility for
decreasing the time involved.

References

[1] J. Ben-Arie and K. R. Rao. Nonorthogonal signal
representation by Gaussians and Gabor functions. In

IEEE Transactions on Circuits and Systems, Part II:
Analog and Digital Signal Processing, Vol. 42,
pages 402-13, June, 1995.

[2] A. R. Conn, N. I. M. Gould, and P. L. Toint. A
globally convergent augmented Lagrangian algorithm
for optimization with general constraints and simple
bounds. In SIAM J. Numer. Anal., Vol. 28, No. 2,
pages 545-72, April, 1991.

[3] J. Childs, C. C. Lu, and J. Potter. Intrinsic
boundaries in Gaussian decomposition. In
Proceedings of IASTED, pages 64-8, 1999.

[4] H. B. Curry. The method of steepest descent for
non-linear minimization problems. In Quarterly of
Applied Mathematics, pages 258-61, 1944.

[5] P. J. S. G. Ferreira. A comment on the approxi-
mation of signals by Gaussian functions. In IEEE
Transactions on Circuits and Systems, Part II: Ana-
log and Digital Signal Processing, Vol. 45, No. 2,
pages 250-1, February, 1998.

[6] A. Goshtasby and W. D. O’Neill. Curve fitting by
a sum of Gaussians. In CVGIP: Graphical Models
and Image Processing, Vol. 56, No. 4, pages
281-84, July, 1994.

[7] A. Goshtasby and W. D. O’Neill. Surface fitting
to scattered data by a sum of Gaussians. In Computer
Aided Geometric Design, Vol. 10, pages 143-56, 1993.

[8] H. O. Hartley. The modified Gauss-Newton method
for fitting of nonlinear regression functions by
least-squares. In Technometrics, Vol. 3, No. 2,
pages 269-80, 1961.

[9] J. Kautz and M. McCool. Interactive rendering with
arbitrary BRDFs using separable decompositions. In
10th Eurographics Workshop on Rendering, Springer-
Verlag, Rendering Techniques ‘99, pages 247-60,
1999.

[10] D. W. Marquardt. An algorithm for least-squares
estimation of nonlinear parameters. In J. Soc. In-
dust. Appl. Math., Vol. 11, No. 2, pages 431-41, 1962.

[11] P. L. Toint. On large scale nonlinear least
squares calculations. In SIAM J. Sci. Stat. Comput.,
Vol. 8, No. 3, pages 416-35, May, 1987.

