
nd

b
nt
 in
for
n
nd

er.
ers
ts
h
h
ly

ce
e
 the
of

e
d
m

ap-

D
h
e

ed
 the

ss

A

ion
n

Abstract
This paper discusses navigation issues in large-scale
databases and proposes hypermap visualizations as
effective navigational views. We describe the ZTree, a
technique that allows users to explore both hierarchical
and relational aspects of the information space. The
ZTree uses a fisheye map layout that aids the user in
current navigational decisions and provides a history of
previous information retrieval paths.
Key words: Information visualization, interactive
techniques.

1 Introduction
Complex information systems demand different
interface approaches from the usual desktop paradigm.
People increasingly get lost in electronic space.
Navigation is a familiar activity in the real world but a
bewildering process in abstract information spaces
which lack analogous cues and tools to situate and guide
the user along desired routes. The challenge facing us is
how to facilitate navigation in such systems without
imposing extra cognitive overhead.

Complexity in these spaces is a function of size,
scope and organisation. One taxonomy defines
informat ion s t ruc tures as anarch ic (a rb i t ra ry
organization) vs. moderated (imposed organization) and
known (fully defined) vs. unknown (constantly
changing) [16]. However, even well-structured and
fully-defined spaces can be “unknowable”. In man
applications it is the relationships between elements
information that are as interesting as the informati
itself, and these relationships may be both fixe
(imposed by the information model) and dynam
(created by the user as part of the informatio
assimilation task). Further, in many complex spaces i
the user ’s path through them (the trace of th
information retrieval “dialogue”) that is of interes
rather than individual nodes. We use Tweedie’s conc
of derived [24] rather than fully known structure to
express this accumulated set of retrieval paths. A u
may der ive di fferent structures from the sam
y
 of
on
d

ic
n

t is
e

t
ept

ser
e

underlying space in the context of different searches a
problem-solving tasks.

While much work in information navigation has
been in the well-known domain of the World Wide We
([6,9,10]), many other information spaces prese
equally challenging problems. The project described
this paper concerns large-scale databases
engineering applications in which the informatio
submits to a defined structure but is of such a size a
scope that it cannot be fully known by any one us
Simple query-based approaches are insufficient: us
need to understand the information in given contex
and quickly find relevant relationships to other suc
contexts. We are interested in discovering whic
elements of information visualization techniques app
well to navigational support in such systems.

Navigational approaches in large information spa
visualization tend to fall into two categories. Multiscal
interfaces such as Pad++ [5] and EPS [7] operate on
information space directly and allow variable levels
exploration. More common are structure views:
abstractions of the underlying structure which provid
the user with selectable points to deliver detaile
information in another display area (such as file syste
views). Our research focuses on the use of explicit m
based representations as structure views.

This paper describes the ZTree, a fisheye view
based on the Continuous Zoom [3] which provides a 2
navigational map. A major issue in applying suc
techniques as mapping tools is the layout of th
structure. An automatic layout algorithm was develop
to accommodate dynamic structure accumulated as
user moves through the information space.

The paper is organized as follows. We discu
general issues of navigation and define the hypermap,
an effective navigational tool for complex spaces.
overview of related work follows. We then briefly
describe a large-scale engineering logistics applicat
(SiLog) and the issues in navigating the informatio
space as context for the description of the ZTree
Navigating Complex Information with the ZTree

Lyn Bartram Axel Uhl Tom Calvert
School of Computing Science

Simon Fraser University
Burnaby, BC, V5A 1S6

CANADA

ABB Corporate Research†

Heidelberg

GERMANY

Technical University of British Columbia
Surrey, BC, V3R 7P8

CANADA
lyn@cs.sfu.ca axel.uhl@io-software.com calvert@techbc.ca

† Current address: InterActive Software Objects GMBH, Freiburg, GERMANY

g
ms
ls
].
one
by
r
f a
].

of
 the
by
g

nt
s
sily
he

h
y
b-
hat
xt.

to
 in
of
D
of
he
ks.
 in
all

-
than
ing
he
he
ure

h
us
e
es,
ely
e
ve

 an
er
y
r
e
ly

t

interface based on the CZ and the Grid automatic
layout algorithm. We conclude the paper with some
open research questions and suggestions for further
investigation and development.

2 From Structure Views To Hypermaps
How do people find information in a complex space?
Furnas def ines navigation as “moving oneself
sequentially around an environment, deciding where
go next based on the task and the parts of t
environment seen so far” [16] . Effect ive view
navigation requires small v iews and short an
discoverable paths [13]. Users need support
constructing an overview of the information space [16
This helps them construct a mental map of th
information structure and topology. In addition, the
need history: where they’ve been and the set
connections and traverses they have made. A study
WWW navigation found that visualizing the entir
structure was less important than being able to re-fi
interesting pages one had previously visited and retr
associations [10]. Finally, because navigation is
cognitive activity that requires context, users need
persistent representation of the overall space.

Humans rely on maps to navigate in the physic
wor ld. We bel ieve that graphical maps of th
information structure which elicit the familiar process o
map-based navigation will be most useful in ou
complex environment. We extend the definition of
GIS hypermap [18] to be any 2D or 3D structure view
which evokes three key aspects of paper-based ma
persistent overview of navigation possibil it ies
identification and retrieval of key features; an
identification of how features relate to one another.

A 2D fisheye map of a WWW space was found to b
useful because it evoked two key characteristics
paper-based maps: identification of key features, a
identification of relationships between those featur
[10]. Map layouts exploit human spatial cognitio
abilities, and it appears that substantial distortion can
applied as long as relative positional constraints a
respected [11].

3 Related Work
Many approaches use t ree models to organi
information space hierarchically and variants of tre
structures to display them. TreeMaps [2] used a 2
space-filling approach to lay out a tree-structure,
which higher nodes in the tree got more space in the t
map. The resulting display gave effective contextu
information and elicited the immediate perception
distribution in the tree, but individual features wer
difficult to discriminate once the tree was reasonab
populated. Cone Trees [21] are a 3D extension
traditional 2D tree layouts, allowing a much great
amount of information to be concurrently shown at th
cost of some occlusion. The user may have to rotat
node to get access to a subtree, but smooth anima
 to
he

d
in
].
e
y
of
 of

e
nd
ace
 a
 a

al
e
f
r
a

ps:
;
d

e
 of
nd
es
n
 be
re

ze
e
D
in
ree
al
of
e
ly

 to
er
e

e a
tion

greatly reduces the cognitive transition of re-orientin
the tree. Several database visualization syste
incorporate Cone Tree approaches. WINONA mode
class-object structure in a Cone Tree view [20
LyberWorld, a hypertext document database, uses C
trees to represent the information retrieval history
building up a view of query paths [14]. Of particula
interest is PadPrints [5], a 2D multiscale hypermap o
user’s path through the WWW based on Pad++[6
PadPrints dynamically builds up a tree structure
nodes corresponding to pages accessed which allows
user to maintain as much context as desired (
zooming in and out of the structure view) while viewin
detail in the standard browser window.

All of the above are constrained by an inhere
limitation of tree views: relational information that doe
not correspond to hierarchical structure cannot be ea
shown. Thus there is great interest in exploring t
flexibility and extensibility of graph visualizations. Both
OFDAV [9] and NicheWorks [25] are examples of grap
layouts for WWW navigation that manage arbitraril
large graphs. OFDAV does so by only rendering a su
graph around a current focus node and giving cues t
lead “off-screen”: the user never sees the entire conte
NicheWorks employs specialized layout algorithms
cluster related elements in a graph closely together
perceptual clumps, highlighting only a few elements
interest. Design Gallery Browser [1] uses 2D and 3
graphs to layout semantically organized clusters
similar images. Thumbnails of the images surround t
graph and are connected to their relevant node by lin
Users navigate to a cluster by panning and zooming
the space to select full size image views, so over
context can be lost.

The lack of hierarchical structure in such graph
based approaches makes them harder to navigate
trees. Moreover, moving around the graph and add
nodes results in often disorienting reconfiguration of t
layout which seriously perturbs any perceptual map t
user may have had of the space, complicating feat
retrieval.

A detail-in-context approach which models bot
hierarchical and relational structure is the Continuo
Zoom [3] (CZ). Parts of the information space ar
summarized by being contained in closed cluster nod
while the user can open other clusters to successiv
examine f iner leve ls o f de ta i l . Such f i shey
approaches[12] have been generally shown to ha
advantages whenever users find themselves in
information space which is too complex to easily rend
on one small display or window [23]. However, the
tend to suffer from problems of distortion [15,22]. Ou
intuition is that such techniques may hold mor
potential as hypermaps than for their previous
exp lo red app l ica t ion s o f d i rec t in fo rmat ion
visualization.

Most CZ app l ica t ions have been to d i rec

r
The
 that
ic.
nd

ce.
p
nd
 be
g
ee
ot
s

as
ng
n-
the
is a
n a
re
e
he
ck
th
hy

is
d

his
the
om

el
at
s

ture
n
ate

in
 1
n

st
ser
ve

xt.
en
ot
visualization of the underlying information space in
which detail was mapped onto the leaf nodes. The
resulting screen space issues limited the technique.
However, recent approaches which use a CZ basis as
structure views for network management and the WWW
[10,11] have proven successful. A sample visual
programming application built with the Hyper Mochi
interface [27] (a CZ-based technique) suggests that the
combination of hyperlinks and hierarchy provides an
intuitive navigational model.

4 The Silog Project: Large-scale Logistics
Building turnkey power generation installations is an
enormously complex logistical undertaking, requiring
the coordination of hundreds of suppliers, thousands of
shipments and millions of parts within tight time and
quality constraints. An important aspect is the flow of
information between all participants along the supply
chain. The ABB SiLog (Site Logistics) application is
designed to streamline processes on-site. These include
handling on-site material delivery and reception,
purchase requests, providing feedback on missing and
broken parts and communicating changes in due dates.

Visualization and navigation of the complex
logistical data must support different information
retrieval and management strategies for people in
different roles. For example, the project manager puts in
a request like “by when do we have all parts fo
assembly group #123?”, whereas the material handl
manager might ask “where in our outdoor storage is
crate with ID #987?”. Role needs are modeled as use
cases, each with differing requirements for how the da
is visualized, grouped and arranged. Not only is there
enormous amount of object data, there are also a var
of relationships between the different entities lik
delivery items, purchase orders or transport items. A
of them are one-to-many relations where, for example, a
purchase order knows the set of all delivery items
subsumes. At the same time, each delivery item perta
to a particular shipping bill of materials, which, in turn
belongs to a purchase order. Thus entities can
reached in a variety of ways. This makes visualizing t
available information and streamlining the navigation
challenging task for two reasons. First, the scope a
size of the information space exceeds the scope of
individual user (complexity), so the space is essentia
“unknowable”. Second, users need to see only th
subset of the information in context to their roles. Th
standard query-filter-requery approach provides det
but quickly strands them in space. Thus they nee
graph of both entity and structural information; mor
precisely, they need the derived structure [24] of t
information space that fits their roles and expands
accommodate information retrieval activities.

Because large graphs are inherently difficult fo
humans to navigate [13,25], SiLog maps the obje
graph onto a hierarchy, interpreting certain edges a
r
ing
the

ta
 an
iety
e
lot

 it
ins
,

 be
he
 a
nd

any
lly
e
e

ail
d a
e
he
 to

r
ct
s a

containment relation. Hierarchical views tailored fo
particular use cases are defined for the object graph.
hierarchies are arranged so that the user gets a view
corresponds with the use case’s terminology and log
This lets us present the graph as a familiar tree view a
gives the user a simplified representation of the spa
Tree views allow the user to drill down and roll u
specific branches of the tree (by expanding nodes a
collapsing subtrees) and are generally considered to
an effective navigational tool when the underlyin
structure is moderately balanced [13]. However, the tr
model is problematic because the structure is n
exclusively hierarchical, but is also a graph with link
that are not modeled by containment in the hierarchy.

To handle this problem SiLog models canonical
paths. Each object contained in a hierarchy view h
exactly one canonical path associated with it leadi
from the root of the hierarchy to that object. Other no
canonical paths may exist in the hierarchy leading to
same object. This conceptualizes the fact that there
way to reach an object that is more usual to a user i
given context than any other way, but that there a
other potentially relevant paths to that information. W
use this concept to handle links that run across t
hierarchy. Tracing a selected node in the tree view ba
to the root of the tree results in the navigation pa
leading to that node. Whenever a node in the hierarc
offers a link to an object whose canonical path does not
start with the current navigation path, traversing th
link will expand the canonical path for the reache
object in the tree view and display the object there. T
way, each object is represented at most once in
whole tree, but can be related to and accessed fr
many other parts of the tree.

While this approach provides a more tractable mod
of the underlying information space, it is problematic
the interface. The original SiLog interface comprise
two views: a detailed content view, usually tables and
lists of data at each node, and a tree-based struc
view. The structure view supports “coarse” navigatio
to the node required: the user can see appropri
attributes and details in the content view. Selecting
items in the content view is analogous to exploring a
relationship (a cross-hierarchy link) and may result
new paths being opened in the structure view. Figure
shows the initial design of the structure view: a
indented scrolling list akin to familiar file system
viewers, called the JTree after the Java widget used to
implement it.

The JTree is inadequate for visualizing and
navigating even small prototype projects. The li
rapidly gets large and is awkward as soon as the u
needs to manipulate or discover entries that may ha
scrolled off the page. The user quickly loses conte
Moreover, there is no clear way to emphasize or ev
detect re lat ions between ent i t ies that are n
hierarchical. In the prototype of Figure 1, the user

ed
es
ks
ly
 the
ed
e

-D
er
ed
 in
ng
le,
 of
 a
ail
re
 to
an
gh
the
een
 is
ar
d

k
g
Z
d
al
er
er

ion
jor

ts
of

e
Z

ial

d,
gh

or

Z
s

nd
nd/
explored the Shipments subtree to reach Transport
Item 803257983. Selecting a delivery item from the
accompanying content view resulted in an abrupt
change to the structure view: a path was opened in the
Purchase Order subtree to the related element and the
focus “jumped” to it with no accompanying visual cu
to indicate the relationship and explain the sudd
change to the structure view.

Our goal was the design of better navigation supp
for the SiLog application by combining the power o
hypermapping techniques with the flexibility of detail
in-context offered by multiscale approaches. W
identified the following criteria for a SiLog structure
view.
• Effective view traversal and navigation: users didn

want to expend too much effort tracking down info
mation.

• Preservation of context: information can be reached
by several paths.

• Explicit visualization of relations between informa-
tion elements. Derived structure must involve both
paths (tree descents) and relationships (cross-hierar-
chy traverses).

• Automatic layout. Users do not need to see the entire
space but only the subset of interest. Thus the struc-
ture view gets populated “on the fly” by user querie
and needs to be dynamically reconfigured in such
way that the transitions are easily followed. Sinc
the user’s task is to find information and not to re
organize the view, this reconfiguration should n
require user intervention.
Because it supports simultaneous detai l a

contextual views, hierarchical and associative structu
and spatial cognition [11], these criteria led us to sele
the Continuous Zoom as a basis for a hypermap.

Figure 1. The Jtree SiLog interface
e
en

ort
f
-
e

’t
r-

s
 a
e
-

ot

nd
re,
ct

5 The Ztree: A Continuous Zoom Hypermap
CZ models a hierarchical data structure with add

links between arbitrary nodes in the hierarchy. Nod
represent discrete points in the information space: lin
represent relationships. Therefore CZ can effective
represent combinations of trees and graphs. Parts of
information space are summarized by being contain
in closed cluster nodes while other clusters can b
opened to successively examine finer levels of detail.

As described in [3], CZ manages a rectangular 2
display space by recursively breaking it up into small
rectangular areas, creating a hierarchy of nest
rectangles. The user controls the amount of detail
different areas of the display by opening and closi
clusters. The contents of an open cluster are visib
allowing one to see the deeper (more detailed) levels
the hierarchy. Closing a cluster effectively prunes
portion of the tree from the display, reducing the det
shown for that part of the system. Open clusters a
allocated more space than closed clusters. In addition
this automatic resizing of cluster nodes, the user c
enlarge or reduce any node on the display. Throu
opening and closing clusters, and resizing nodes,
user has complete control over the amount of detail s
in each part of the display. Since the entire hierarchy
visible at all times, the detailed portions always appe
in con tex t . Mu l t i p le a reas can be zoome
simultaneously.

Our previous experience with the CZ in networ
visualization [4] indicated it was effective for navigatin
large, hierarchically structured graphs. The C
effect ively supports both the hierarchical an
associative (topological) thinking which are essenti
components of information searching [17,19]. Anoth
reason is the explicit support the CZ provides the us
for recognizing and understanding her present locat
in the information space, a feature targeted as a ma
need in other complex, multiply-linked information
spaces such as hypertext [26]. Finally, CZ layou
appear to exploit the spatial cognition aspects
graphical maps [11] without suffering from the
excessive distortion drawbacks of other 2D fisheyes. W
have hypothesized two reasons for this. First, C
layouts do not violate relative layouts: that is, essent
“left of”, “inside”, “on top of” relationships which are
fundamental to cognitive consistency [11]. Secon
smooth animations perceptually guide the user throu
the view transition.

5.1 ZTree Description

The ZTree is a general-purpose widget responsible f
specifying an in it ial CZ layout, responding to
application-specific events and defining how the C
view controller interacts with other application view
(in the SiLog application, the content view.) It
renders some subset of the data model up to a
including the entire data model based on the user's a

lly
r’s
ion
cts

the

s

nd
ing
he
ed
).
at
: the
ce or

le
re
ly
es
ode
”

ter
ely
a

In
or programmer’s specification. When the information
space is too large, application-defined heuristics can
control what subset of the space is initially presented. In
the SiLog case, the initial structure view only contains
nodes with less than 10 children to reduce the starting
complexity. This prunes large branches of the tree.
Users build up a richer derived structure view through
subsequent queries and browsing in the detailed view.

When the SiLog application is launched two
windows appear: one with the standard SiLog view, and
one with the initial ZTree view. Using the ZTree is
somewhat similar to using the JTree. The user can
open and collapse parts of the tree view; can select what
to display in the Content pane from the tree view; and
can select something in the content view which will
add an open path to the tree view (perhaps dynamically
changing the structure of the tree itself). The ZTree
expands in 2D rather than in 1D, and zooming and
shrinking interactions can be applied to make individual
nodes larger and smaller. However, when the user
causes a node to be opened, a degree-of-interest
algorithm (DOI) tracks the user’s attention and devot
more size to the most recent node. Thus manual sizin
possible but not necessary: desirable behaviour from
user’s point of view as indicated in the Hyper Moch
study [27].

Items can be selected in the ZTree to view in more
detail in the Content Pane. The ZTree node whose
contents are currently displayed in the content view
is considered to be the current focus node and its title
bar is highlighted. Items selected in the content view
affect the ZTree view in different ways. If the item has
already been rendered (i.e., it has been laid out a
specified), then the ZTree is opened along the relevan
path in the tree structure to that item. However, if th
appropriate item has not been specified and rendere
will be dynamically added to the ZTree structure and
the ZTree layout will change to reflect the new node. I
the item’s canonical path is different from the path b
which it was selected, the canonical path will be open
as well and a link drawn between the two relate

Figure 2. Expanding the ZTree structure through
detail selections.
es
g is
the
i

nd
t
e
d it

f
y
ed
d

elements. This behaviour causes an incrementa
derived structure view to be accumulated over the use
session as she explores other parts of the informat
space. In the current example, when the user sele
item di0203 in the content view, the ZTree will open
up the associated path for that item and indicate
relationship between the two with a link (Figure 2).

It is important to note that this behaviour i
supported by the ZTree but must be programmatically
invoked: that is, the ZTree has no concept of a
“canonical path”, but it does have methods to define a
render links based on related path criteria. The result
view both explicitly renders the relation and reduces t
navigational overhead required to explore the relat
context (in this example, the Purchase Order
Occasionally a diagnostic message will indicate th
there is not enough space to actually open the nodes
user can then close some other nodes to free up spa
can resize the ZTree window.

Previous versions of the CZ supported only simp
links, which could cross levels of the hierarchy but we
always rendered in detail. The resulting web quick
grew too cluttered. In the ZTree, links are themselv
hierarchical and selectable objects.When a cluster n
is closed, any links to its children will also be “closed
and rendered as a single virtual link. Just as one can drill
down into the space by successively opening clus
nodes, one can also explore relations in successiv
more detail by opening the virtual links. Figure 3
shows a a ZTree view with virtual links: opening the
links results in the more detailed view in Figure 3b.

(a)

(b)
Figure 3. Virtual links in the ZTree.

 in

n)

e.
ent

ot
to
he

e
e is

y
int
ce
t

t

rs,
The
 is
is

tes
t in
This
ed
in

s

d
ll
g
ic
re
out
or
in
 is
uilt
o
to

y
ike
the interface these links are rendered in magenta and
blue respectively. Finally, links also have a DOI which
influences how much space they can have. This ensures
that important links never get “squashed” betwee
adjacent nodes.

The ZTree and CZ libraries support saving an
restoring views. The derived structure displayed in t
graphical map represents a composited history of
user’s information forays (a graphical map of the
information retrieval and problem-solving strategies
Users can thus recall their contexts over sessions,
can in fact share the maps with other users to highlig
aspects of the information.

Layout: The Grid algorithm

The CZ algorithm has two inputs: the initial layout o
the space, or normal geometry, and a set of scale factors
(one for each node). The normal geometry and the sc
factors are combined to produce the zoomed geometry,
which is then displayed. In previous applications th
normal geometry has remained constant (i.e., the sp
has been fully defined at runtime.) However, i
hypermap applications such as the ZTree and CzWeb
[11], the information structure can change over time
the user builds up successive paths through t
information space. One approach would be to model
entire space and only render subsets of it. Indeed,
original CZ approach required the layout of the 2D
space to be defined in an external map file. This
generally undesirable, as it restricts flexibility an
introduces computational overhead. Instead w
recalculate the normal geometry at each reconfigurat
using an automatic grid-based layout algorithm.

2D automatic layout is an open research area
graph visualization (see [8] for an review). Force
directed (spring) layouts are common. However, in t
ZTree, nodes are not necessarily fully connected
edges, necessi ta t ing a la t t ice s t ruc ture to
superimposed to use a spring approach. Moreov
force-directed layouts cannot avoid overlap in all cas
and do not distribute nodes aligned well with the axes
a bounding box. Instead, the ZTree layout problem can
be seen as a variant of the bin-packing problem wh
the sizes of the bins are not known until the children a
laid out.

We separate logical layout (topology and locatio
from pixel (x,y) layout. The CZ normal space consis
of hierarchically organized clusters of nodes. We bre
this problem down into sub-problems of automatical
laying out each group of siblings within a larger paren
Our logical layout approach (the Grid algorithm)
partitions space into a rectangular grid of cells in
which each cell is one logical unit. This grid is initially
as close to square as possible, as we have observed
most reasonable layouts are achieved in grids that are
either or units.

Grids can contain other Grids and have a 2D array
x x× x x 1+()×
n

d
he
the
ir
).
and
ht

f

ale

e
ace
n

as
he
the
the

 is
d
e

ion

 in
-

he
by
be
er,
es
 of

ere
re

n)
ts
ak
ly
t.

 that

of cells, a capacity (how many cells can be occupied
total), a weight (where)
and an orientation, since a Grid may need to be rotated
to fit in the parent’s available space. Each grid is
optionally associated with some external (domai
object.

Child Grids can be added to the parent at any tim
Children are sorted by size and inserted into the par
in a modified first-fit algorithm. Adding a child Grid to
a parent may cause a “refit” of the parent: if there is n
enough space in the parent, it will resize itself
accommodate the child and so on recursively up t
hierarchy of Grids. If there is enough space in the
parent to incorporate a rotated child, the child Grid will
be rotated, and so will its children recursively down th
tree. Nodes can be deleted in a similar fashion. Ther
no restriction on the size or number of Grids in a tree.
Although theoretically this algorithm is potentially ver
costly, in practice the “close-to-squareness” constra
and the hierarchical partitioning of the solution spa
render it tractable, producing automatic layou
calculat ion of ZTree spaces with no apparen
performance lag.

We apply this in the ZTree by giving each node in
the tree a Grid, laying out the space logically by
recursively adding the child Grids associated with the
ZTree node’s children to that Grid, and then mapping
the logical layout to pixel space (to account for borde
gaps between nodes, and other rendering issues.)
resulting layouts seem extremely workable. Overlap
impossible. All the layouts in the screen images in th
paper were generated by this approach.

One potential disadvantage of this approach rela
to the sorting of child nodes on size, since it can resul
changed relative locations as new nodes are added.
can violate the consistency principle of maps discuss
earlier. We are investigating variants which mainta
relative layouts wherever possible.

6 Discussion, Issues and Future Work
At first inspection the ZTree seems to address the issue
we ident i f ied for th is appl icat ion.I t supports
navigational maps which include both hierarchical an
relational information (Figure 5). It allows users to dri
down in the information space without sacrificin
context using both node-centric (entity) and link-centr
(relation) access. View traversal and navigation a
aided both by persistent context and an automatic lay
which preserves relative positioning necessary f
effective perceptual processing. User intervention
resizing views or in re-arranging the automatic layout
supported but unnecessary. Composite graphs are b
up of user information retrieval allowing the user t
recall higher-level problem solving contexts and
share them with other users.

However, this is very preliminary work, and man
questions remain. The obvious one is: Do the users l

weight childCapacities∑=

d

-

y
5,

.
e
-

r-
-

it? Is it useful? We have added the ZTree as an
alternative user interface technique to the existing SiLog
application based on initial user feedback. We are
hoping to arrange more detailed studies with field-based
IT managers in the future. In the interim, we raise some
open questions about the extent of ZTree utility.

Node representation and DOI: Each object (node
or link) has an interest measure associated with it which
is altered by user attention or by application specific
factors. The DOI affects an object’s chances of getting
screen space. In previous CZ applications that has been
useful since we use the node i tself to contain
information. However, as a structure view, it may make
more sense to tune the DOI to other measures such as
how many elements it contains, or how important it is
with respect to the application, or how many times the
user has visited it. Moreover, it introduces the potential
for using the object space to convey information about
the detailed view. How can we exploit this in a database

Figure 4. JTree and ZTree maps for the same paths.
application, and would it be useful?
Space requirements: As Figure 5 shows, the Ztree

can accommodate more contextual information than a
scrolling list. Eventually, however, it requires more
screen space than is available.Thus previously accessed
nodes and links may have to be pruned from the view.
There are issues to be decided in how we go about this.
Do we automatically prune the view based on factors
like age (least recently accessed), DOI, or distance from
current focus point? Do we prompt the user to free up
space and let her make the decision? This will have to
be tested.

Representing links : While we feel that link
manipulation and representation has great potential for
facilitating database navigation and comprehension,
there is as yet little knowledge and experience on how
best to approach this. We hypothesize that in many
complex information worlds, relations between entities
are more interesting than the entities themselves. We
anticipate much interesting research in this area.

7 Acknowledgments

This work was supported by a research grant from ABB
Corporate Research, Heidelberg. We are indebted to our
colleagues Anne Tissen at ABB and Dr. Thomas
Strothotte at the Technical University of Magdeburg for
their interest and feedback.

References
[1] Andalman, B.A., Ryall, K., Ruml, W., Marks, J.

and Shieber, A. “Design Gallery Browsers Base
on 2D and 3D Graph Drawing”, in Proceedings of
the 5th International Symposium on Graph Draw-
ing, ed. DiBattista,G. , Springer, 1997, pp. 322
329.

[2] Asahi, T., Turo, D., Shneiderman, B. “Using
Treemaps to Visualize the Analytic Hierarch
Process”, Information Systems 6(4), Dec. 199
pp. 357-375.

[3] Bartram, L., Ho, A., Dill, J. and Henigman, F
“The Continuous Zoom: A Constrained Fishey
Technique for Viewing and Navigating Large In
formation Spaces”, in Proceedings of UIST
‘95,ACM, NY 1995, pp. 207-214.

[4] Bartram, L., R. Ovans, J. Dill, J. Dyck, A. Ho and
W. Havens. “Contextual Assistance in User Inte
faces to Complex, Time-Critical Systems: The In
telligent Zoom.” Proceedings of Graphics
Interface ‘94, pp. 216-224, May 1994.

[5] Bederson, B.B. and J.D. Hollan. “Pad++: A
Zooming Graphical Interface for Exploring Alter-
nate Interface Physics,” Proceedings of UIST ‘94,
November 1994.

of
s,

z-
h

-
e”

.
r-

or

.,
i-
e
n
.

l-

e
,

i
g
a

-

[6] Bederson, B. B., Hollan, J.D., Stewart, J., Rogers,
D., Druin, A., and Vick, D. “A Zooming Web
Browser”, SPIE Multimedia Computing and Net
working 2667, 1996, pp.260- 271.

[7] Carpendale, M.S., Cowperthwaite, D and Fra
chia,F.D. “Editing in Elastic Presentation Spaces
Submitted to UIST ‘99.

[8] di Battista, G., Eades, P., Tamassia, R. and Tol
I. Algorithms for Drawing Graphs: An annotated
bibliography.” Computational Geometry Theory
and Applications, 4(5):235-282, 1994.

[9] Eades, P., Cohen, R.F., and Huang, M.L. “Onlin
Animated Graph Drawing for Web Navigation”
in Proceedings of the 5th International Symp
sium on Graph Drawing, Springer, 1997, pp. 33
335.

[10] Fisher, B., Agelidis, M,. Dill, J., Tan, P., Collaud
G., and Jones,C. “CZWeb: Fish-Eye Views for V
sualizing the World-Wide Web”, in Proceeding
of HCI International ‘97.

[11] Fisher, B. and Dill, J. “Application of theories o
indexical cognition to a Web-based workspace
American Association for Artificial Intelligence
Symposium on Smart Graphics, May 2000.

[12] Furnas, G.W. “Generalized Fisheye Views.” Pro-
ceedings of ACM SIGCHI’86, pp. 16-12, April
1986.

[13] Furnas, G. “Effective View Navigation”, in Pro-
ceedings of CHI ‘97 Human Factors in Computin
Systems, ACM/SIGCH, N.Y., 1997.

[14] Hemmje, M., Kunkel, C., and Willet, A. “Lyber-
World - A Visualization User Interface Supporting
Fulltext Retrieval”. in Proceedings of ACM SIGIR
94, ACM Press, New York, 1994.

[15] Hollands, J.G., T.T. Carey, M.L. Matthews an
C.A. McCann. “Presenting a Graphical Network
A Comparison of Performance Using Fisheye a
Scrolling Views.” In Designing and Using Hu-
man-Computer Interfaces and Knowledge-Based
Systems,. G. Salvendy and M. Smith (Eds), Elsev
er, pp. 313-320, 1989.

[16] Jul, S. and Furnas, G. “Navigation in Electron
Worlds”, Report on the CHI 97 Information Nav-
igation WorkshopI. A CM/SIGCHI 1997.

[17] Lai, Y. and Waugh, M. “The Effects of Three Dif-
ferent Hypertextual Menu Designs on Various In
formation Searching Activities”. Journal of
Educational Multimedia and Hypermedia, 4(1),
March 1995.
-

c-
”.

lis,

e
,
o-
0-

,
i-
s

f
.”

g

d
:

nd

i-

ic

-

[18] Laurini, R. and Thompson, D. Fundamentals
Spatial Information Systems. Academic Pres
London 1992.

[19] Mukherjee, S., Foley, J. and Hudson, S. “Visuali
ing Complex Hypermedia Networks Throug
Multiple Hierarchical Views.” Proceedings of
CHI ‘95, pp. 331-339, 1995.

[20] Rapley, M. H.and Kennedy, J. B. “Three Dimen
sional Interface for an Object Oriented Databas
in Interfaces to Database Systems. Lancaster
1994, Sawyer, P., Ed.; Springer: 1995, 143.

[21] Robertson, G.G., Mackinlay, J.and Car, S.K
“Cone Trees: Animated 3D visualizations of hie
archical information.” Proceedings of CHI ‘91
Human Factors in Computing Systems, ACM/
SIGCHI, 1991, pp. 189-194.

[22] Sarkar, M., S.S. Snibbe, O.J. Tversky and S.P. Re-
iss. “Stretching the Rubber Sheet: A Metaphor f
Viewing Large Layouts on Small Screens.” Pro-
ceedings of ACM UIST, pp. 81-92, Nov. 1993.

[23] Schaffer, D., Z. Zuo, Greenberg, S., Bartram, L
Dill, J. Dubs, S and Roseman, M. “Navigating h
erarchically clustered networks through fishey
and full-zoom methods. ACM Transactions o
Computer-Human Interaction, 3(2):, 1996, pp
162-188.

[24] Tweedie, L. “Characterizing Interactive Externa
izations”, in Proceedings of CHI ‘97 Human Fac-
tors in Computing Systems, ACM/SIGCH, N.Y.,
1997, pp. 375-381.

[25] Wills, G.J. “NicheWorks - Interactive Visualiza-
tion of Very Large Graphs”, in Proceedings of th
5th International Symposium on Graph Drawing
Springer, 1997, pp. 404-414.

[26] Nielsen, J. “The Art of Navigating Through Hy-
perText”. Communications of the ACM, 33(3),
March 1990.

[27] Toyoda, M. and Shibayama,E. “Hyper Moch
Sheet: A Predictive Focusing Interface for Editin
and Navigating Nested Networks Through
Multi-Focus Distortion-Oriented View”. Proceed-
ings of CHI ‘99 Human Factors in Computing Sys
tems, ACM/SIGCHI, 1999, pp. 504-511.

	Abstract
	1 Introduction
	2 From Structure Views To Hypermaps
	3 Related Work
	4 The Silog Project: Large-scale Logistics
	5 The Ztree: A Continuous Zoom Hypermap
	5.1 ZTree Description

	6 Discussion, Issues and Future Work
	7 Acknowledgments
	References

