
Skinning Characters using Surface-Oriented Free-Form Deformations

Karan Singh
karan@paraform.com

Evangelos Kokkevis
vangelisk@home.com

Alias|wavefront
210 King St. E., Toronto, Canada M5A 1J7

Abstract
Skinning geometry effectively continues to be one of

the more challenging and time consuming aspects of
character setup. While anatomic and physically based
approaches to skinning have been investigated, many
skinned objects have no physical equivalents. Geomet-
ric approaches, which are more general and provide finer
control, are thus predominantly used in the animation
industry. Free-form deformations (FFD) are a power-
ful paradigm for the manipulation of deformable objects.
Skinning objects indirectly using an FFD lattice reduces
the geometric complexity that needs to be controlled by
a skeleton. Many techniques have extended the origi-
nal box-shaped FFD lattices to more general control lat-
tice shapes and topologies, while preserving the notion
of embedding objects within a lattice volume. This pa-
per in contrast, proposes a surface-oriented FFD, where
the space deformed by the control surface is defined by
a distance function around the surface. Surface-oriented
control structures bear a strong visual semblance to the
geometry they deform and can be constructed from the
deformable geometry automatically. They also allow lo-
calization of control lattice complexity and deformation
detail, making them ideally suited to the automated skin-
ning of characters. This approach has been successfully
implemented within theMaya2.0animation system.

Key words: Character animation, skinning, deformers,
free-form deformations.

1 Introduction

A layered approach [1] to the modeling and animation
of articulated figures is a widely adopted methodology.
The layers may be broadly classified into skeletal, mus-
cle, underlying tissue and skin. These layers are largely
symbolic of their contribution to the visual appearance
of the animated character, since physical equivalents of
bones or muscles for characters modeled from inanimate
objects such as a lamp, need not exist. Hair, clothes and
accessories form further layers on many characters. Lay-
ers are often omitted, collapsed together, or further clas-
sified depending on the sophistication of the application.

The skin is particularly important since it largely es-
tablishes the visual appearance of a character. A num-
ber of techniques for the modeling and animation of the
muscleandskin layers have been investigated [1, 5, 10,
11, 13, 16, 17, 18]. The typical workflow for setting up
an articulated character involves building a model repre-
senting the geometric skin of the character in some pose.
An underlying skeletal structure comprising of reference
frames at joints is also constructed to control the move-
ment of the articulations. More sophisticated methodolo-
gies sometimes also model underlying bones and muscles
using geometry. The skinning algorithm is responsible
for deforming the geometric skin to respond to the motion
of the underlying skeleton. Skinning approaches can be
classified as geometric or physically based. While a num-
ber of physical models for muscle and skin [4, 11, 16, 18]
exist, techniques used in the animation industry continue
to be predominantly geometric [1, 5], because of their
generality and control.

Figure 1: Surface-oriented FFD overlaid on a character

It is worth noting that characters are often modeled us-
ing a number of adjacent parametric surface patches, for
reasons of smoothness and ease of modeling, texturing
and rendering. Animators, however, would rather deal
with a single contiguous skin surface since it obviates is-

sues of continuity between adjacent pieces of skin during
animation. A geometric skinning approach that presents
a single skin interface for setup and animation is thus de-
sirable. Subdivision surfaces provide the smoothness and
parameterization characteristics of surface patches while
presenting a single control mesh as an animation inter-
face [5]. We aim to provide the animation interface and
control of a subdivision surface to an underlying skin of
arbitrary geometric representation.

A good skinning algorithm needs to provide an auto-
mated attachment of points representing the skin surface
of a character to an underlying skeletal and muscle struc-
ture. Subsequently, it should be easy for an animator to
edit the default attachments, as it is difficult to univer-
sally predict how an arbitrarily shaped object is intended
to be controlled by its skeleton. Once pieces of skin are
attached to corresponding pieces of muscle and bone, the
strength with which pieces of the skin are deformed by
parts of the skeleton should be easy to control. The ef-
fect on skin from changes in underlying layers, such as
muscle shape or bone position should be easy to over-
lay. We avoid an explicit bone and muscle model since
the range of articulated deformable objects and skin de-
formation effects is as vast as the animator’s imagination.
Instead we emphasize a system where any localized de-
formation can be easily specified and controlled by un-
derlying skeletal motion. The resulting skin deformation
should be smooth and predictable. Finally, the approach
should be efficient allowing real-time interactivity for at
least a low resolution model of the geometric skin. Em-
pirical geometric approaches to skinning [1, 10, 13, 17]
have shown realistic results at interactive rates.

A number of techniques have advanced the box-shaped
lattices of the original FFD formulation [12], to allow
for greater generality in the shapes and topologies of the
control lattice. This is in accordance with the general
trend for the control structures of higher level deforma-
tion techniques to bear a visual correlation to the geome-
try they deform [5, 14]. Most FFD approaches, however,
preserve the notion of a volume enclosed by the control
lattice, within which objects are embedded.

In contrast, we propose here a deformation technique
that is surface-oriented. The region of space deformed by
the control point structure is not the volume enclosed by
the control points but is based on a distance metric from
a surface defined by the control point structure. Surface-
oriented deformation control structures provide a better
visual representation of the geometry they deform and
can typically be constructed from the deformable geom-
etry itself (See Figure 1). They allow better localization
of control lattice complexity and deformation detail as il-
lustrated by the results in our implementation.

Our surface-oriented FFD thus aims to represent and
control any underlying object by a single control poly-
mesh. Unlike subdivision surfaces the control polymesh
does not have a limit surface that represents the object.
Our goal instead is to allow the advantages of a single
control mesh to represent and control an object that has an
alternate surface model (such as a set of surface patches,
a different control mesh or even a subdivision surface).
The control mesh can be used to both visually represent
the surface model and to drive the deformation of the ob-
ject. The control mesh can be user created or automat-
ically synthesized from data, for example by tesselating
and stitching various surface patches that define the de-
formed skin. In addition to their application in skinning
characters, surface-oriented FFDs are a useful tool for the
multi-resolution modeling and animation of objects.

The remainder of this paper is organized as fol-
lows: Section 2 describes characteristics of existing
free-form deformation techniques and motivates the
surface-oriented free-form deformation approach. Sec-
tion 3 presents the surface-oriented deformation algo-
rithm. Section 4 provides an analysis of the properties
of the algorithm and describes an extension of it. Sec-
tion 5 describes the implementation of an automated skin-
ning workflow based on surface-oriented free-form de-
formations, within the modeling and animation system
Maya2.0. Section 6 concludes with a discussion of the
results obtained.

2 Free-form Deformation Techniques

In this section we present an overview of a number of
existing free-form deformation techniques and contrast
their properties with the characteristics of our surface-
oriented deformation algorithm described in Section 3.

Free-form deformations (FFD) were originally intro-
duced by Sederberg and Parry [12] as a general tech-
nique where objects are deformed by warping a volume
of space within which the objects are embedded. The vol-
ume of space is typically defined using a structure con-
necting a set of control points. Spatial deformations are
then accomplished by the manipulation of these control
points. A one-to-one correspondence is established be-
tween points within the original and deformed volumes
of space. Objects embedded within the original volume
are thus deformed by mapping the point-set representing
the object to their corresponding points in the deformed
volume. This process typically involves calculating a pa-
rameterization of the volume based on the topology of its
control point structure. The actual mapping of an unde-
formed point to a point in the deformed volume is then a
function of the deformed positions of the control points
for the given parameterization. Continuity of the corre-

spondence function is crucial to the smoothness proper-
ties of the deformed object.

Sederberg and Parry [12] used a parallelopiped lattice
of control points to define a trivariate Bezier volume. The
mapping of points within the parallelopiped volume to
a trivariate basis is straightforward. Evaluating the de-
formed point is simply a matter of evaluating the Bezier
equation for the deformed set of control points. Griess-
mair and Purgathofer [6] extended this technique to em-
ploy a trivariate B-spline basis. While these methods are
simple, efficient and in popular use they suffer from the
drawback of a restrictive original volume shape. Paral-
lelopiped volumes rarely bear any visual correlation to
the objects they deform and typically have a globally uni-
form lattice point structure that is larger than is required
for the deformations to which they are applied.

Coquillart [3] extended the box-shaped lattices to al-
low for a richer set of shapes (EFFD), constructed by join
operations applied to paralleloped lattices. The parame-
terization of a point within the original trivariate volume
is calculated numerically, making the technique less sta-
ble than the original FFD [12] in the general case.

Chang and Rockwood [2] present an approach where a
deCasteljau approach of repeated affine transformations
defines the deformable space around a Bezier curve. The
approach is intuitive and fast but restricted in the range
and local control of the deformations it can capture.

MacCracken and Joy [7] use a volume equivalent of the
Catmull-Clark subdivision scheme for surfaces to itera-
tively define a volume of space based on a control point
structure of arbitrary topology. This is a significant step
in increasing the admissible set of control lattice shapes.
The technique is powerful and its only real shortcom-
ing are the potential continuity problems of the mapping
function (a combination of subdivision and interpolation)
of points within the volume. The approach also suffers
from the same discontinuity problems as Catmull-Clark
surfaces at extraordinary vertices.

Dirichlet free-form deformations [9] is an approach
based on the Voronoi structure defined within the convex
hull of a set of points. While there is no restriction on
the shape of the volume, the deformations are controlled
solely by the parameterization defined by natural neigh-
bour interpolants. These interpolating functions have sin-
gularities that result in unwanted deformation artifacts.

All the above approaches are strongly volume-
oriented. The structure of the control points explicitly
defines a volume of deformable space. The deformation
functionD(P) for a pointP can be typically represented
byD(P) =

∑n
i=1Wi(P)Pi, wherePi is a control point

andWi a function that maps a pointP to a weight value
for the control pointPi. For FFDsWi(P) = Bi(s, t, u),

whereB is the Bezier basis function ands, t, u the pa-
rameterization ofP within the parallelopiped volume.

The property that affine transformations to the control
lattice are transmitted as such to the deformed points is
desirable. Suppose an affine transformationM were ap-
plied to the lattice.D(P) = PM =

∑n
i=1Wi(P)(PiM)

or P =
∑n
i=1Wi(P)Pi, wherePi are the positions

of the control points in the original lattice. Thus for
affine transformations to be captured by the deforma-
tion, the weighted average of control points for any point
in space point should be the point itself. Additionally∑n
i=1Wi(P) = 1 for the convex hull property of the de-

formation to hold. These properties can be verified for
the approaches described thus far.

Singh and Fiume [14] provided a different direc-
tion to free-form deformations by making them surface-
oriented, in that there was no explicit mapping of points
between two deformable volumes. Instead points in space
were associated with surface elements, parametric curves
called wires. Transformation of these associated surface
elements result in a deformation of space surrounding
the surface element. The control structure of a surface-
oriented deformer typically bears a strong visual corre-
lation to the object it deforms. Local control over the
deformation is easier and the arbitrary nature of the con-
trol point structure makes it possible to introduce detail
locally without a global change to the object. At the
same time it is harder to ensure continuity properties and
perfectly transmitted affine transformations for surface-
oriented deformations. This paper addresses these issues
for a polygon based deformer.

3 Surface-oriented deformations

The surface-oriented deformation algorithm described in
this paper, binds the surfaceS of a deformable object to
a deformer objectO. Manipulation ofO is then tracked
by S. Formally, we define the deformerO as a triple
〈D,R, local〉 whereD andR are surfaces, referred to as
thedriver surfaceandreference surfaceandlocal a scalar
value.R is a congruent copy of the deformer surfaceD,
that is made when surfaceS is bound toO. Subsequent
manipulation ofD causes a deviation relative toR that
drives the deformation of surfaceS. The parameterlocal
provides control over the locality of the deformation.

For the purpose of our algorithm we need to be able to
compute localized orientation and scaling information at
points on the surfacesD andR. We also require a unique
and intuitive correspondence between points onD andR.
This section treatsD andR to be polygon based surfaces
of matching topology, for which these calculations are
straightforward and efficient.

3.1 Overview of the Algorithm
There are three phases to the deformation process: The
bind phase, the registration phase and the deformation
phase. The bind phase takes place once whereas the reg-
istration and deformation phases are repeated as needed.
During the bind phase, the user-specified deformer sur-
face becomes the driver surfaceD. An identical copy of
it becomes the reference surfaceR, which along with a
user-specifiedlocal value define the deformer objectO.

Let the driverD, and reference surfaceR of a deformer
object be represented by a collection of enumeratedcon-
trol elements. These control elements are the triangular
facets of polygon based surfacesD andR (non-triangular
faces ofD are triangulated before the creation ofR dur-
ing the bind phase). There is thus a simple bijective cor-
respondence between the control elements ofD andR
based on element index.

The registration phase computes how much each con-
trol element of the deformer object affects the deforma-
tion of each pointP representing the surfaceS. This
scalar value, referred to as theinfluence weightof the
control element forP , is calculated using a distance met-
ric. Control elements closer toP have a higher influ-
ence weight, and therefore affect the deformation ofP
more than elements further away fromP . The registra-
tion phase typically takes place once, right after the bind
phase and needs to be repeated only if the position of the
reference surfaceR changes relative to the surfaceS.

The deformation phase follows the registration and is
repeated every time the deformer object’s driver surface
D is manipulated. The influence weights calculated in
the registration phase as well as the spatial difference be-
tween the control elements of the reference and driver
surfaces are used to determine the deformation of each
pointP on the surfaceS.

The registration and deformation phases are now de-
scribed in greater detail.

3.2 Registration
During the registration phase, the influence weights for
all the control elements and pointsP of the deformable
surfaceS are computed. Typically, the surfaceS is repre-
sented by the set of pointsPS that are necessary to con-
struct or approximateS. PS could therefore be a set of
vertices in a polygonal mesh, a set of control vertices in
a free form surface or an unstructured set of points in
space. The deformation is applied to pointsP of this
set. Of the two surfaces of the deformer objectO, only
the reference surfaceR is used in this phase. In our im-
plementation, a distance metric represented as a scalar
function f(d, local), is employed to compute the influ-
ence weights. The first parameter,d, is the distance ofP
from the control element. The second parameter,local,

controls the rate at which the functionf decays in value
with an increase in distanced. We define the function
f(d, local) for anyd, local ≥ 0 to be:

f(d, local) =
1

1 + dlocal
. (1)

We define the distance of pointP from a triangular
facet to be the length of the vector

−−→
PP ′ whereP ′ is the

point on the surface of the facet that is the closest to
point P . For each pointP and each control elementk
of the deformer object’s reference surfaceR we define
the corresponding weightwPk = f(dPk , local), wheredPk
is the distance of pointP from control elementk. The
influence weights for a pointP are normalized to pre-
serve the convex hull property described in Section 2.
The normalized weight vector for pointP is defined as
UP = {uP1 , uP2 , . . . , uPn }, wheren is the number of con-
trol elements of the influence object’s surfaces anduPk
is the normalized weight of control elementk for point

P defined asuPk = wPk∑n

1
wP
k

. Section 5 will show that in

practiceuPk is set to zero for all but a few control elements
making the approach quite efficient.

The control elements as used for this algorithm define
not only a local position in space but also a local coordi-
nate frame with axes−→e1 ,−→e2 ,−→e3 . In other words, each con-
trol element defines its own coordinate system that can be
represented compactly with a4×4 transformation matrix
Q. We denote transformation matrices of elements on the
driver and reference surface asQD andQR respectively.

Figure 2: The coordinate system of a polymesh face.

The position vector and the attached coordinate system
of a control element corresponding to a triangular facet of
a polygonal surface are derived directly from the vertices
and edges of the facet (See Figure 2). An arbitrary order-
ing may be assigned to the three vertices of the triangular
facet. Referring to these three vertices as verticesA, B
andC we define the coordinate system for the control

element with its origin atA and axes as :

−→e1 = −→B −−→A,−→e2 = −→C −−→A,−→e3 =
−→e 1 ×−→e 2

||−→e 1 ×−→e 2||
. (2)

In addition to the influence weights, the registration
phase computes a representation of undeformed points
P of surfaceS in the coordinate system defined by each
control elementk of the reference surfaceR. This opera-
tion can be easily carried out by inverting the transforma-
tion matrix QRk of the control element.PRk = P (QRk)−1,
wherePRk is the representation of the pointP in the local
coordinate system of control elementk of the reference
surfaceR.

During the deformation phase the pointP is deformed
to preserve its local position,PRk , in the coordinate frame
of the control elementk of the driver surfaceD.

3.3 Deformation
The deformation procedure maps each pointP in the set
of pointsPS defining the undeformed surfaceS to a point
Pdef . The setPSdef of all pointsPdef defines the de-
formed object surface.

As the user manipulates the driver surfaceD of the de-
former object, control elements onD change shape, po-
sition and orientation. Comparing the coordinate system
defined by the elementk on the reference surface and the
elementk on the driver surface makes it possible to cal-
culate the deformation effect of elementk on a pointP .
The effect of each control elementk is weighted by the
corresponding normalized weight factoruPk and is added
to the contributions of all the other control elements.

During the registration phase, the representation of
pointP in the local coordinate system of the control ele-
mentk on reference surfaceR was calculated to bePRk .
In the deformation phase, we deform the point to have the
same local representation in the coordinate system of the
corresponding driver surface control element. The world
space position of the pointP as deformed by control el-
ementk is thus,P defk = PRk QDk , where QDk is the trans-
formation matrix corresponding to the local coordinate
system of the control elementk of the driver surface. The
effect on pointP of each control element is weighted by
the corresponding normalized weight value stored in vec-
tor UP . The weighted effects are added to compute the
resulting pointPdef on the deformed surface:

Pdef =
n∑
k=1

uPk P
def
k . (3)

The algorithm can be adapted to allow parametric sur-
face patches to represent the driver and reference surface
by specifying control elements as a parametric sampling
of points. The sampling density is a trade-off between

computational efficiency and the fidelity with which the
surface is represented. Sampling at knot vector param-
eter values provides good local control on manipulation
of the control vertices of the driver surface. The local
coordinate system in Equation 2 at a sample pointG, is
defined as−→e1 = −→tu ,−→e2 = −→tv ,−→e3 = −→n , where−→tu and−→tv
are the tangents atG along two parameter curves, and−→n
is the surface normal atG.

4 Algorithm Analysis

The algorithm imposes no restriction on the topology
of the deformer object or its position relative to the de-
formable surfaceS. There are, however, implicit assump-
tions that greatly influence the quality and control that the
deformer object has over the resulting deformation.

For a control element to provide good local control of
the deformation of a region of the surfaceS, its spatial
position on the reference surfaceR should be closer to
the surfaceS than other control elements ofR.

Also for the deformation of the region of surfaceS to
appear intuitive it should be proximal to the control ele-
ment in absolute terms. Non-intuitive behavior may be
observed for points whose projection onto the plane of
the triangle does not lie within the triangle. A pointP
on the deformed surface can be visualised as being an-
chored to its projection pointP projk on the plane of the
trianglek offset at a fixed distance, normal to the plane.
The deformation ofP thus has a clear visual correlation
to the deformation of the triangle if and only ifP projk lies
within this triangle.

These observations place an implicit assumption on the
nature ofR relative toS, in that every pointP of S should
be proximal to some trianglek of R and have its projec-
tion onto the plane of trianglek lie within it. This is in ac-
cordance with the motivation for our deformer to provide
a lower resolution visual model of our original surfaceS.

4.1 Algorithm Properties
• The surfaceS does not deform upon being bound to

a deformer object. Since the driver and the reference
surfaces of the deformer object are spatially identi-
cal when bound,Pdef = P defk = P for all control
elementsk.

• The deformation of space defined by the algorithm is
continuous and intuitive. The parameterlocal pro-
vides good control over the localization of deforma-
tion effects.

• Rotations and translations applied to the entire
driver surface are imparted precisely to the surface
S, since the weight values used in equation 3 are
normalized.

• Warping of space normal to the plane of the con-
trol elements is captured as a constant offset from
the control element, since−→e3 is a normalized vector,
normal to the plane of the triangle in bothR andD.

4.2 Extending the Algorithm
We now look at shortcomings of the approach described
thus far. The first deals with non-intuitive deformations
resulting from a pointP being anchored to its projection
P projk on the plane of a trianglek of the reference sur-
face, whereP projk does not lie within the triangle. It is
conceivable to clampP projk to the closest point on the tri-
angle boundaryP closek and calculate the deformed point
as two offsets from the point corresponding toP closek on
the driver surface. The first offset isP projk −P closek in the
plane of the triangle and the second,P −P projk normal to
the plane of the triangle. While this addresses the short-
coming, the change introduces a first order discontinuity
of deformation asP projk for pointsP transitions across
the triangle boundary.

The second shortcoming deals with the fact that the al-
gorithm does not capture the warping of space in a direc-
tion normal to the plane of its control elements. Uniform
scaling of the driver surfaceD, for example will scale the
object precisely in the plane of the control elements of
D, but maintain a constant distance from the elements in
a direction perpendicular to them.

Both of these shortcomings can be attributed to the am-
biguities in the perception of the behavior of space around
the deformer object on manipulation of the driver surface.
There are infinitely many ways by which a user can de-
form space such that the discrete set of points of a driver
surface are manipulated to the same position. In each
case, however, the behavior of the spatial neighbourhood
of the points of the driver surface is different.

This ambiguity can be reduced by defining a coordi-
nate system by introducing three additional points for ev-
ery given point on the deformer surface. These points
form mutually independent axes with the point on the de-
former surface as the origin. The three points are subse-
quently subjected to the same manipulation function as
the corresponding point on the deformer surface. While
this coordinate system represents the space of a local
linear transformation accurately, non-linear deformations
are once again only approximated. This gives us some in-
sight into the nature of spatial deformations and solutions
to them by providing the user with additional control.

Every trianglek in our extended model has three local
coordinate systems instead of one, centered at each ver-
tex of the triangle and constructed during the bind phase.
We register the pointP by computing the local position
of the point within each of the three coordinate system as

described in Section 3.2. We also generate a deformed
point with respect to each of the three coordinate sys-
tems of trianglek. The three deformed points are then
weight averaged to a single resultantP defk . The weights
in this case are provided by the barycentric coordinates
of P closek (the closest point toP from trianglek). The
deformed result of the various control elements are com-
bined as in Section 3 to determine the final position of a
point. It is straightforward to see that the range of defor-
mation behavior captured above encompasses that of the
the algorithm in Section 3.

5 Skinning Workflow

It is a fairly common practice in the animation industry
to model articulated figures using a number of surface
patches. Joint regions such as the shoulder in Figure 3
are particularly problematic to skin. This is because the
range and degrees of freedom of the joint cause large vari-
ations in the motion of points. It is also the case that of-
ten a number of patches converge in the region around
a joint, making the problem of skinning the geometry
while maintaining smoothness and continuity across the
patches a formidable task.

Figure 3: Shirt skinned using surface-oriented FFDs

A single surface-oriented deformer can abstract this
underlying patch complexity so the user has to deal with
the more tractable problem of skinning a single lower res-
olution object that bears a close visual semblance to the
actual geometry. We prescribe a simple workflow that
largely automates the entire skinning process. The shirt
in Figure 3 was skinned with such a deformer.

The basic skinning workflow involves the construction
of a single surface-oriented deformer around a character.
This deformer is essentially a low-resolution representa-
tion of the character (See Figure 1). More importantly
the resolution is adaptive, to allow a greater resolution of
control points in the region of character joints.

Figure 4: Skinning workflow: polyhedral deformer
bound to skeleton(left), deformed surface (right)

Geometric representations such as parametric surface
patches and implicit functions have well established tes-
selation algorithms. Polymesh decimation algorithms
have also been well studied [8, 15]. For the common
case where the underlying geometric skin comprises of
a number of surface patches, the patches are tesselated
independently and then stitched together to form a single
deformer object. The stitched mesh represents all or a
large section of the skin of an articulated character. The
underlying geometry is bound to and controlled by the
deformer object using the algorithm described in Section
3. The deformer object is bound to the underlying skele-
ton using any number of techniques [1, 14, 18]. We find
that in practice it is often worthwhile to define the motion
of individual points by keyposing them against various
joint angle positions. The reduced point complexity of
the deformer object makes this a reasonable task that al-
lows complete customizability to be layered over the ba-
sic motion of the points of the deformer object as dictated
by the basic binding technique used (See Figure 4). Finer
local control may also be achieved at any point of time by
subdividing triangles in a problematic region to generate
a larger number of control elements. Non-triangular de-
former polymeshes are internally triangulated, so as not
to subject a user to unnecessary visual clutter.

A common problem with techniques that use Eu-
clidean distance to determine correspondence between
the deformed and deformer object, is that quite often re-
gions of the deformer object will strongly influence re-
gions of the deformable surface which happen to be spa-
tially proximal but are quite distinct in the eyes of the
user. A clear example of this can be seen in Figure 5
where the deformer region of the right thigh pulls on part
of the left thigh geometry even though it should not affect

it at all. Our implementation, therefore constructs, for
each pointP , a subset of contributing control elements
CP , from the set of control elements of the deformer ob-
ject for a given point. As can be seen from Equation 1 the
functionf rapidly decays in value with distance such that
the normalized influence weights are likely to be signifi-
cantly larger than zero for only a small number of control
elements. By default the control elements with a signif-
icant non-zero influence defineCP . The set, however, is
under user control and may be edited if necessary. Thus
by removing the control elements of the right thigh from
the contributing control element sets for points of the left
leg we can get the desired behavior.

Figure 5: Deformation using a surface-oriented FFD

The algorithm described in this paper has been imple-
mented as a general deformation technique within our
modeling and animation systemMaya2.0. The skinning
of geometry has been automated as summarized below.

1. Polygonize surface patches or other geometric rep-
resentation of objects to be skinned. Decimate and
weld polygon objects as required to generate a few
low resolution deformer objects.

2. Bind the deformer driver surface points to the skele-
ton. Points are rigidly attached to the Euclidean
closest limb by default.

3. The control points of the deformer can be then key-
posed against various skeletal and muscle attributes
to generate custom skinning behavior.

4. The various parameters of the surface-oriented free-
form deformation and the contributing element sets
for various points may also be edited.

6 Results and Conclusion

We find in practice that surface-oriented free-form defor-
mations address many requirements of geometric skin-
ning. The deformer object itself provides a reasonably ac-
curate low resolution representation of the skinned geom-
etry, making it perfectly suitable as a stand-in for highly
interactive animation tasks. The process is largely auto-
mated and may be all an animator needs for a quick setup.
More importantly, however, the animator still has control
at the finest level, through increasing degrees of detail.
An analysis of the algorithms in Section 3 and 4, show
them to be robust, efficient and of predictable deforma-
tion behavior and continuity. This is corroborated by the
practical results shown in this paper and on a few of the
characters of the animation short Bingo.

Our implementation combines multiple deformers on
an object as described by Singh and Fiume [14]. Surface-
oriented FFDs have also been used as a compelling mod-
eling and animation tool with much of the appeal and
control of a subdivision surface. Figure 6 shows the phys-
ical simulation of a polymesh deformer draping over a
table top controlling a NURBS surface rendered with a
checker texture.

Figure 6: Physical simulation of a polyhedral mesh con-
trolling a superposed NURBS tablecloth

While the extended algorithm in Section 4 gives us
greater control and the property that all affine transforma-
tions to the deformer object are imparted perfectly to the
underlying geometry, we find the algorithm of Section 3
to be simpler for an animator to understand and sufficient
for the skinning application discussed in this paper.

Acknowledgements

We thank Barbara Balents and theMaya team for their
help in the design and implementation of this technique
and Paul Thuriot for providing us with invaluable case
studies of character setup using surface-oriented FFDs.

References

[1] J. Chadwick, D. Haumann and R. Parent. Lay-
ered construction for deformable animated charac-
ters.Computer Graphics, 23(3):234–243, 1989.

[2] Y.K. Chang and A.P. Rockwood. A generalized
de Casteljau approach to 3D free-form deformation.
Computer Graphics, 28(4):257–260, 1994.

[3] S. Coquillart. Extended free-form deformations: A
sculpting tool for 3D geometric modeling.Computer
Graphics, 24(4):187–196, 1990.

[4] D. Chen and D. Zeltzer. Pump it up: Computer ani-
mation of a biomechanically based model of muscle
using the finite element method.Computer Graphics,
26:89–98, 1992.

[5] T. DeRose, M. Kass and T. Truong. Subdivision sur-
face for character animation.Computer Graphics,
85–94, 1998.

[6] J. Griessmair and W. Purgathofer. Deformation of
solids with trivariate B-splines. Eurographics 89,
137–148.

[7] R. MacCracken and K. Joy. Free-form deformations
with lattices of arbitrary topology.Computer Graph-
ics, 181–189, 1996.

[8] A. Lee, W. Sweldens, P. Schroder, L. Cowsar
and D. Dobkin. MAPS: Multiresolution adaptive
parametrization of surfaces.Computer Graphics, 95–
105, 1998.

[9] L. Moccozet and N. Magnenat Thalmann. Dirichlet
free-form deformations and their application to hand
simulation.Computer Animation, 93–102, 1997.

[10] N. Magnetat-Thalmann, D. Thalmann. Human
body deformations using Joint Dependent Local Op-
erators and Finite Element Theory.Making Them
Move, Morgan Kaufmann, 243–262.

[11] F. Scheepers and R. Parent and W. Carlson and S.
May Anatomy-Based Modeling of the Human Mus-
culature.Computer Graphics, 163–172, 1997.

[12] T. Sederberg and S. Parry. Free-form deforma-
tion of solid geometric models.Computer Graphics,
20:151–160, 1986.

[13] K. Singh, J. Ohya and R. Parent. Human figure syn-
thesis and animation for virtual space teleconferenc-
ing. IEEE VRAIS, 118–126, 1995.

[14] K. Singh and E. Fiume Wires: A geometric de-
formation technique.Computer Graphics, 405–414,
1998.

[15] G. Taubin, A. Gueziec, W. Horn and F. Lazarus Pro-
gressive forest split compression.Computer Graph-
ics, 123–133, 1998.

[16] Y. Lee, D. Terzopoulos and K. Waters. Realistic
modeling for facial animation.Computer Graphics,
55–62, 1995.

[17] M. Walter and A. Fournier. Growing and animating
polygonal models of animals.Eurographics, 151–
158, 1997.

[18] J. Wilhelms and A. Van Gelder. Anatomically
Based Modeling. Computer Graphics, 173–180,
1997.

	Introduction
	Free-form Deformation Techniques
	Surface-oriented deformations
	Overview of the Algorithm
	Registration
	Deformation

	Algorithm Analysis
	Algorithm Properties
	Extending the Algorithm

	Skinning Workflow
	Results and Conclusion

