
Aiding Manipulation of Handwritten Mathematical Expressions
through Style-Preserving Morphs

Richard Zanibbi
Department of Computer Science

Queen’s University
Kingston, Ontario, Canada

zanibbi@cs.queensu.ca

Kevin Novins
Department of Computer Science

University of Otago
Dunedin, New Zealand
novins@cs.otago.ac.nz

James Arvo
Department of Computer Science
California Institute of Technology

Pasadena, California
arvo@cs.caltech.edu

Katherine Zanibbi
Department of Psychology

Queen’s University
Kingston, Ontario, Canada
zanibbi@psyc.queensu.ca

Abstract

We describe a technique for enhancing a user’s ability
to manipulate hand-printed symbolic information by au-
tomatically improving legibility and simultaneously pro-
viding immediate feedback on the system’s current struc-
tural interpretation of the information. Our initial ap-
plication is a handwriting-based equation editor. Once
the user has written a formula, the individual hand-drawn
symbols can be gradually translated and scaled to closely
approximate their relative positions and sizes in a cor-
responding typeset version. These transformations pre-
serve the characteristics, orstyle, of the original user-
drawn symbols. In applying thisstyle-preserving morph,
the system improves the legibility of the user-drawn sym-
bols by correcting alignment and scaling, and also reveals
the baseline structure of the symbols that has been in-
ferred by system. We performed a preliminary user study
that indicates that this new method of feedback is a use-
ful addition to a conventional interpretive interface. We
believe this is because the style preserving morph makes
it easier to understand the correspondence between the
original input and interpreted output than methods that
radically change the appearance of the original input.

Key words: formula entry, math recognition, mental map,
morphing, pen-based computing, user feedback.

1 Introduction

Traditional interfaces require the user to enter input in
an unambiguous machine-readable form. While this ap-
proach is highly effective for text and numeric entry, it
can become a substantial burden in the the case of di-
agrammatic input. For rough sketches, users often pre-

fer to explore their ideas using pieces of scrap paper
rather than powerful software packages [1]. Recently,
researchers have begun working to retain the appeal of
pencil and paper by adding interpretive layers to their in-
terfaces [2, 3, 6, 7, 11, 14, 15]

Automatic interpretation will always be subject to mis-
takes. An essential feature of an interpretive interface is
therefore to provide feedback to the user and to allow for
correction of the inevitable recognition errors. Success of
the interface depends on three factors: (1) the accuracy of
interpretation, (2) the quality of the feedback, and (3) the
ease of error correction.

High quality feedback conveys information clearly
without undue disruption. In this paper, we focus on the
problem of providing unobtrusive feedback from a recog-
nition engine. We chose the entry and editing of mathe-
matical expressions using handwritten input as an appli-
cation area. We use this context to introduce the notion
of style-preserving morphs, which are gradual transfor-
mations of the user’s input that communicate informa-
tion about the recognition process without obliterating
the user’s writing style. We hypothesize that stylistic cues
can be helpful in maintaining the user’s mental map of the
input.

We performed a preliminary user study that compares
three versions of a handwriting based equation editor –
one with a conventional typeset feedback mechanism,
one with a style-preserving morph, and one with both.
We found that equation entry times were statistically in-
distinguishable with the first two interfaces. Most users
felt that the style-preserving morph was a useful addition
to a conventional interface.



2 Style-Preserving Morphs

Pen-based computer systems such as the Apple Newton
and the Palm Pilot provide feedback by instantaneously
replacing handwritten input with a typeset interpreta-
tion [10]. Often, the typeset version is displaced from
the original input. Such changes in layout can seriously
disrupt a user’smental map, which is an essential ingre-
dient of inferred semantics. Within the graph drawing
community, for example, it has been observed that when
a user’s mental map of the information is degraded, as
when the drawing is changed, subsequent understanding
of the drawing is hindered [9, 12].

In order to minimize disruption of the user’s mental
map, researchers have recently explored the use of mor-
phing to provide smooth transitions of raw input to clean
typeset representations [2, 3]. By forcing all changes to
be gradual, the user can easily keep track of what is hap-
pening. Surprisingly, introducing inertia into the system
makes the interface feel more comfortable despite the re-
duced response time.

Transformation to a clean typeset representation pro-
vides useful feedback from an interpretation process. Un-
fortunately, it also has the effect of destroying the char-
acter of the original input. This is unfortunate since users
have been shown to prefer rough-looking sketches dur-
ing the design phase of a project [5, 7]. They state that
clean typeset output connotes authority and immutabil-
ity. Systems that output CAD models using a hand-
drawn style [7, 11] and systems that preserve hand-drawn
strokes via reprojection [15] are emerging.

In a style-preserving morph, we restrict feedback to
the gradual repositioning and scaling of individual input
strokes. Handwritten input is still easily recognizable af-
ter such transformations (see Figure 2). Yet they are pow-
erful enough to provide feedback from the recognizer to
the user on its sense of which symbols should be aligned,
and which symbols should be the same size.

3 Interpretation of Handwritten Equations

We chose online handwritten equation entry and editing
as an application domain in which to examine the feasi-
bility of the style-preserving morph. This domain is at-
tractive in that the 2D nature of mathematical notation
makes it a prime candidate for freehand input [14].

Our experimental prototype for online equation entry is
an extension of Smithies et al.’s Freehand Formula Entry
System (FFES) [13, 14]. This system combines online
character recognition and parsing with a graphical user
interface that contains modules for feedback and correc-
tion of interpretation errors at the level of individual sym-
bols. FFES converts handwritten input into LATEX nota-
tion and can display a typeset result.

Xa+b2 + 2
3

EXPRESSION

SUPER

X

ABOVE BELOW

2 3a + b

+

SUBSC

2

Figure 1: An expression and its baseline structure tree.

FFES’ major weakness is that its graph rewriting
parser is slow and unreliable [14]. Parsing can take tens
of seconds, and in the case of input that is outside the
range of FFES’ grammar, the only feedback is the largest
grammatically correct unit that the parser was able to lo-
cate.

We have replaced the original parser with the Diagram
Recognition Application for Computer Understanding of
Large Algebraic Expressions (DRACULAE) [16, 17, 18]
implemented in the tree-rewriting language TXL [4].
DRACULAE takes as input a set of symbols with bound-
ing boxes and produces abaseline structure treewhich
describes the hierarchical decomposition of baselines in
an expression (see Figure 1). Symbols sharing a base-
line are represented as left-to-right ordered siblings be-
low a node labeled with the baselines’ associated region.
EXPRESSION represents the region containing an entire
expression, while the remaining region labels represent
a region relative to their parent symbol node. Complex
formulas can be processed by DRACULAE in under a
second on a 200MHz machine. Also, DRACULAE al-
ways produces a baseline structure tree containing all in-
put symbols, making it possible to provide feedback to
the user even if an expression has syntax errors. DRAC-
ULAE can translate a baseline structure tree to TEX , or
to an operator tree [16, 17].

4 Morphing Algorithm

We have introduced a style-preserving morph into FFES
as part of a new operation, which we callAlign. An ex-
ample of the result of the Align operation is shown in
Figure 2. The symbols of the expression are aligned on
detected baselines and resized for consistency. Note that
the input writing style has been preserved.

The style-preserving morph result provides useful
feedback on symbol layout in most cases. Errors are of-



a. Original input b. After style-preserving morph

Figure 2: The effect of a Style-Preserving Morph.

ten obvious, for example in Figure 3, where the super-
scripted “2” has been interpreted as being adjacent to the
“x”. Once these types of errors are identified, they are
easy to fix using operations built into FFES.

In addition to increasing consistency, the resizing
of symbols also provides a small amount of feedback
on character recognition: if a handwritten symbol is
squashed or stretched into an unexpected shape, it is a
sure sign of a recognition error. For example, in Figure 3,
the lower-case “x” has clearly been mis-recognized.

The new bounding boxes for symbols after the morph
are computed bottom-up from the baseline structure tree
returned by DRACULAE, proceeding from leaf baselines
to the baseline below the EXPRESSION node at the root
of the tree.

The procedure for formatting the bounding boxes of
each baseline is as follows:

1. An average of the height of the baseline symbols is
computed, where each symbol height is weighted
based on identity. For example, the height of a
lower-case letter such as “x” is doubled. Flat sym-
bols such as horizontal lines are not included in the
average. Average height and typeset symbol aspect
ratios are then used to recompute the bounding box
sizes.

2. Baseline symbols are vertically aligned and any sub-
expressions nested vertically relative to a symbol
(e.g. superscripted, below) are placed 15 pixels
above/below the parent symbol.

3. Horizontal spacing is cleaned up: first subexpres-
sions which are nested above or below baseline sym-

a. Original input b. After style-preserving morph

Figure 3: Interpretation errors become clear.

bols are centered, and super and subscripted subex-
pressions are spaced at a fixed distance of 15 pixels
to the right of their parent symbol. Then an aver-
age of the baseline symbol widths is computed (thin
symbols such as ’i’ are not included in the average),
and the larger of 15 pixels and 1/3 the average width
is placed between the areas filled by each baseline
symbol and its nested subexpressions.

The Align operation must preserve the semantics, which
implies that aligning input should not alter baseline struc-
ture. Ensuring that DRACULAE would produce the same
baseline structure tree before and after using Align was
one of the key design constraints for the formatting algo-
rithm.

The formatting algorithm executes in under a second
on a 200MHz machine. Once it is complete we have a
target bounding box for each of the user-drawn symbols.
The source and target bounding boxes are used to define a
geometric transformation comprised of a translation and
a scale that will achieve the desired effect. The trans-
formation is divided into equal steps that are applied in
sequence to produce a morphing effect. We implemented
the morph in Tcl/Tk. It is achieved in fifteen frames, dis-
played at approximately ten frames a second. In compar-
ison, a typeset representation can be generated and dis-
played in under a second.

5 Experiment

Our enhanced version of the equation editor could pro-
vide feedback in terms of a conventional Render opera-
tion (resulting in a typeset formula being displayed as a
bitmap in a separate window) or an Align operation (re-
sulting in a style-preserving morph on the user’s drawing
canvas). In an attempt to isolate the effect of the style-
preserving morph, we designed an experiment to com-
pare the performance of FFES under three conditions of
available feedback:

1. conventional Render operation but no Align opera-
tion,

2. Align operation but no Render operation, and



3. both Render and Align operations.

In each case the user was asked to enter formulae and
to apply edit operations until the system correctly inter-
preted each one. We measured total time taken to en-
ter each formula so that it was interpreted correctly and
counted feedback requests.

A Render operation gives more information than
Align, since it unambiguously displays symbol interpre-
tations. It also runs considerably faster than Align, be-
cause the morph has a built-in lag. For these reasons, we
hypothesized that (1) Render would be more effective in
communicating the system’s interpretation and (2) partic-
ipants would enter and correct expressions more quickly
using Render than with Align. Nonetheless, we expected
subjects to feel more comfortable with Align-style feed-
back.

5.1 Method
Participants
There were 27 participants in the experiment, five female
(18.5%) and 22 male (81.5%), with a mean age of 28.92
years (SD=7.54). Nineteen participants were graduate
students (14 Computing Science, three Psychology, two
Math), four were Computing Science professors, three
were Computing Science undergraduates and one was a
software developer.

Materials
Materials consisted of a data tablet attached to a 900 MHz
Linux machine with 256MB of RAM running FFES, and
a questionnaire (see Appendix A). FFES is a pen-based
system; as a result no keyboard or mouse was used in the
experiment.

FFES had to be modified to collect the data we needed
for the experiment. A screen shot of an experiment in
progress is shown in Figure 4. The user drawing canvas
dominates the screen. The panel on the lower right dis-
plays the target formula to be entered. The panel on the
lower left is used to display the results of a Render oper-
ation, if enabled.

The expressions used in the experiment are shown in
Table 1. They are designed to be of increasing com-
plexity, with expressions three and four being of roughly
equal complexity. We gauged the complexity of expres-
sions using number of symbols and number of symbols
which are subscripted, superscripted, or above or below
another symbol.

Procedure
After completing a consent form, all participants were
given a scripted walk-through of the operations of FFES,
and introduced to the three experimental conditions: (1)
FFES with Render only (2) FFES with Align only and

1. n(1− a)

2. y = 3x+1

5x
+ z

3. 1
N−1

N∑
k=1

(tk −m)2

4.
+∞∫
−∞

(2x+4x)
−z dx

Table 1: Expressions used in the experiment. Expression
four was entered only in the final condition (FFES with
Render and Align).

(3) FFES with Render and Align. The participants then
performed two practice trials, enteringE = mc2 in the
Render-only and Align-only conditions with the experi-
menter available for questions.

For each trial the participants first hit a start button to
view the target expression (displayed in the bottom right
panel of FFES, see Figure 4). When the participants felt
that the system had correctly interpreted their input, they
pressed a button labeled “Stop”. If Stop was pressed and
the last interpretation did not match the target expression,
a pop-up window appeared prompting the participant to
continue entering the expression. Otherwise the partici-
pant was given on-screen instructions on how to continue.

After the practice trials the participants entered seven
expressions without the aid of the experimenter. First,
participants entered expressions one to three (see Ta-
ble 1) in either the Align-only or Render-only condition.
Next, participants re-entered the same expressions with
the same ordering in the opposite condition. A counter-
balanced design was adopted in order to minimize prac-
tice effects and increase internal validity [8]: order of
condition and expression presentation for the first two
conditions and condition order for the practice trials were
randomized within participants. For the seventh and final
trial the participants entered expression four (see Table
1) in the third condition (FFES with Render and Align).
Finally, participants completed the questionnaire.

5.2 Results
Timed Expression Entry Results
The means for expression entry times, the number of
Stop presses and number of Align and Render presses
are shown in Tables 2, 3, and 4. Three 2× 3 within sub-
jects ANOVA tests were used to examine the contribution
of condition and equation to entry times, the number of
times Stop was pressed, and the number of times Align



Figure 4: A screen shot of the experiment in progress.

and Render were pressed in the first two conditions. For
all three ANOVA there was a main effect for expression
independent of condition (entry time: (F=204.26, p<
.05), Stop presses: (F=8.04, p< .05), Align and Render
presses: (F= 19.25, p< .05)). Independent of expression
there was a significant difference between the two condi-
tions (Render and Align) in the number of Stop presses
(F=13.14, p< .05). However, there was no significant
difference between conditions for entry time or the num-
ber of times that Align and Render were pressed (p>
.05).

Paired samples t-tests between the Render and Align
conditions for each equation were not significant for en-
try time or the number of Render and Align presses (p>
.05). A t-test showed a significant difference between the
number of times Render and Align were pressed in the
final condition (t26=5.24, p< .05). The t-tests for num-
ber of Stop presses were significant between conditions
for expressions two and three ((t26=2.32, p< .05) and
(t26=2.78, p< .05) respectively).

Questionnaire Results

When asked if the Align operation was useful, 16 (59.3%)
participants responded Yes, while 11 (40.7%) responded
No. All participants (100%) indicated that Render was
useful. Twenty-three participants (85.2%) reported that
they felt that using Render was faster than using Align,

three participants (11.1%) felt neither was faster, and one
participant (3.7 %) did not respond. When asked which
of Align or Render allowed easier correction of interpre-
tation errors, 22 (81.5%) replied Render, four participants
(14.8%) replied Align, and one participant (3.7%) replied
Neither.

Fifteen participants (55.6%) reported that FFES with
Render and Align allowed the simplest correction of in-
terpretation errors overall, while 12 participants (44.4%)
reported finding FFES with Render easiest to correct in-
terpretation errors with. When asked which version of
FFES they enjoyed using most, 16 participants (59.3%)
replied FFES with Render and Align, and 11 participants
(40.7%) replied FFES with Render only.

The FFES version participants enjoyed using most was
correlated with entry time for expression one in the Align
condition (r=-.58, p<.05), the number of Align presses
for expressions one and two ((r=-.45, p<.05) and (r=-.41,
p<.05), respectively) and the number of Align presses in
the final condition (r=.52, p< .05).

Twenty-four participants (88.9%) were interested in
using a system similar to FFES again, while three
(11.1%) were not.

5.3 Discussion
Our hypothesis that Render is more effective in commu-
nicating the system’s interpretation was supported by the



Expression 1 2 3 4
Render 49.42 (SD= 23.08 ) 159.62 (SD=58.67 ) 199.42 (SD= 73.24 )
Align 51.58 (SD= 27.92 ) 166.58 (SD= 85.15 ) 226.42 (SD= 74.86 )
Both 172.5 (SD= 78.37 )

Table 2: Mean Entry Time in Seconds

Expression 1 2 3 4
Render 1.0 (SD= 0.0 ) 1.37 (SD= 0.69 ) 1.19 (SD= 0.49)
Align 1.35 (SD= 1.13 ) 2.42 (SD= 2.37 ) 2.15 (SD= 1.64)
Both 1.31 (SD= 0.88 )

Table 3: Mean Number of Stop Presses

fact that users pressed Stop significantly more often under
the Align-only condition. Pressing stop more than once
per formula indicates that the user thought that the system
was interpreting their formula correctly when it was not.
This may result from two factors. First, Align does not
provide unambiguous feedback about the symbol labels.
Second, some participants found the symbol layout of the
Align operation confusing.

Our hypothesis that time to enter a correctly interpreted
formula would be greater for Align was not supported.
Despite slower feedback and incomplete information, the
overall process was just as fast using Align as with Ren-
der.

When given the option, participants used Render more
often than Align. However, participants that enjoyed us-
ing FFES with Render and Align the most used the Align
operation more in the final condition than those that pre-
ferred FFES with Render only. The participants who re-
ported preferring the version of FFES with Render and
Align also appear to have been more proficient with the
Align operation, evidenced by correlations with faster en-
try time for expression one in the Align condition, and
fewer Align presses for expressions one and two. It
may be that some individuals are simply more comfort-
able than others with the type of feedback that the style-
preserving morph provides.

Finally, participants were poor at determining un-
der which of Render or Align they entered expressions
more quickly or corrected interpretation errors more eas-
ily. There were no correlations between participants’ re-
sponses on these matters and any other data analyzed.

5.4 Usability Feedback
Participants that found Align useful reported that this was
because it provided feedback on the relative positions of
symbols, formatted their input in a pleasing way, and in a
few cases helped them find an interpretation error in the
final condition.

a. Original Input b. After style-preserving morph

Figure 5: Adjacent symbols can appear to have a sub-
script relation after using Align.

Participants who did not find Align useful stated that
this was because the Align results were often confusing.
For example consider Figure 5, where after using Align
the positioning of the adjacent ‘=’ relative to the ‘E’ ap-
pears subscripted. Some participants also strongly dis-
liked that their input changed at all, or the way that the
formatting algorithm resized their symbols (e.g. if a par-
ticipant wrote short, wide symbols, after pressing Align
the symbols would shrink substantially). Another com-
mon complaint was that Align did not provide symbol
recognition feedback the way that Render did.

Participants reported that Render was useful because
it showed symbol recognition results, was easier to detect
errors with than Align, and the resulting bitmap was more
familiar, aesthetically pleasing and easier to compare to
the target than the style-preserving morph result.

General feedback obtained regarding FFES was in line
with an earlier published study on the system [13].

6 Conclusion

This paper introduced the notion of style-preserving
morphs for generating unobtrusive feedback from inter-
pretive interfaces. Style-preserving morphs employ grad-
ual changes to preserve the user’s mental map of the in-
put, and use affine transformations of the input strokes to
preserve the user’s writing style.

Our user study showed that despite being both slower
and less precise in its feedback than a conventional type-



Expression 1 2 3 4
Render 1.35 (SD=0.49 ) 3.04 (SD= 2.37 ) 3.12 (SD= 2.22 ) 2.81 (SD= 2.06 )
Align 1.54 (SD= 1.24 ) 2.89 (SD= 2.20 ) 3.23 (SD= 2.10 ) 0.962 (SD= 1.15 )

Table 4: Mean Number of Align and Render Presses

set rendering, users are able to get the job of equation
entry done just as quickly using only a style-preserving
morph. We believe that the style-preserving morph
makes it easier for users to correspond their input to the
interpreted output, and that this benefit is compensating
for the method’s other weaknesses. However, more ex-
perimentation is needed to determine the cognitive effects
of each of the feedback methods.

While none of the users saw Align as supplanting the
Render operation, most felt that it was a useful addition
to the interface. Further development of the Align oper-
ation will make it even more useful. The appearance of
symbols after morphing can be improved by taking into
account areas rather than simply heights and widths, and
confusing vertical alignments of adjacent baseline sym-
bols such as seen in Figure 5 may be prevented with some
simple modifications of Step 2 in the formatting algo-
rithm.

Feedback by its very nature always involves some
disruption. Despite our attempts to make the style-
preserving morphs as unobtrusive as possible, some users
disliked the fact that their input was tampered with at
all. It seems likely that tolerance for disturbance of one’s
writing style or mental map varies widely among indi-
viduals. If so, it may help to allow the user to adjust the
extent to which the system is allowed to modify the user’s
drawing area.

Acknowledgements

The authors wish to thank Dorothea Blostein for help-
ing make this collaboration possible, and Jim Cordy for
providing the TXL compiler. The authors also wish to
acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada and the Na-
tional Science Foundation (USA), under Career Award
CCR9876332.

References

[1] James Arvo. Computer aided serendipity: The role
of autonomous assistants in problem solving. In
Proceedings of Graphics Interface ‘99, pages 183–
192, Kingston, Ontario, June 1999.

[2] James Arvo and Kevin Novins. Fluid sketches:
Continuous recognition and morphing of simple
hand-drawn shapes. InACM Symposium on User

Interface Software Technology, Stanford, Califor-
nia, November 2000.

[3] James Arvo and Kevin Novins. Smart text: A
synthesis of recognition and morphing. InAAAI
Spring Symposium on Smart Graphics, pages 140–
147, Stanford, California, March 2000.

[4] J.R. Cordy, C.D. Halpern, and E. Promislow. Txl:
A rapid prototyping system for programming lan-
guage dialects. Computer Languages, 16(1):97–
107, Jan 1991.

[5] Julie Dorsey and Leonard McMillan. Computer
graphics and architecture: State of the art and out-
look for the future.Computer Graphics, 32(1):45–
48, February 1998.

[6] Takeo Igarashi, Satoshi Matsuoka, Sachiko
Kawachiya, and Hidehiko Tanaka. Interactive
beautification: A technique for rapid geometric
design. In ACM Symposium on User Interface
Software and Technology, pages 105–114, 1997.

[7] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko
Tanaka. Teddy: A sketching interface for 3D
freeform design. InComputer Graphics Proceed-
ings, Annual Conference Series, pages 409–416,
August 1999.

[8] G. Keppel. Design and Analysis: A Researcher’s
Handbook. Prentice Hall, Englewood Cliffs, NJ,
second edition, 1982.

[9] K. A. Lyons, H. Meijer, and D. Rappaport. Algo-
rithms for cluster busting in anchored graph draw-
ing. Journal of Graph Algorithms and Applications,
2(1):1–24, 1998.

[10] I. S. MacKenzie and S. X. Zhang. The immediate
usability of graffiti. InProceedings of Graphics In-
terface ’97, pages 129–137, 1997.

[11] L. Markosian, M. A. Kowalsi, S. J. Trychin, and
L. D. Bourdev. Real-time nonphotorealistic render-
ing. In Computer Grahpics Proceedings, Annual
Conference Series, pages 415–420, 1997.

[12] Kazuo Misue, Peter Eades, Wei Lai, and Kozo
Sugiyama. Layout adjustment and the mental
map. Journal of Visual Languages and Computing,
6:183–210, June 1995.



[13] Steve Smithies. Freehand formula entry system.
Master’s thesis, Department of Computer Science,
University of Otago, Dunedin, New Zealand, May
1999.

[14] Steve Smithies, Kevin Novins, and James Arvo. A
handwriting-based equation editor. InProceedings
of Graphics Interface ‘99, pages 84–91, Kingston,
Ontario, June 1999.

[15] Osama Tolba, Julie Dorsey, and Leonard McMillan.
Sketching with projective 2D strokes. InProceed-
ings of the 12th Annual ACM Symposium on User
Interface Software and Technology, pages 149–157,
Asheville, North Carolina, November 1999. ACM
Press.

[16] Richard Zanibbi. Baseline structure analysis of
handwritten mathematics notation. Submitted for
publication.

[17] Richard Zanibbi. Recognizing mathematical ex-
pressions using tree transformation. Submitted for
publication.

[18] Richard Zanibbi. Recognition of mathematics nota-
tion via computer using baseline structure. Tech-
nical Report ISBN-0836-0227-2000-439, Depart-
ment of Computer Science, Queen’s University,
Kingston, Ontario, Canada, August 2000.

Appendix A: Questionnaire
1. What is your gender?

2. What is your age?

3. What is your occupation?
1. Undergraduate Student, Discipline:
2. Graduate Student, Discipline:
3. Professor, Discipline:
4. Other (please specify):

4. Which one of the first two versions of FFES that you
used allowed you to enter expressions most quickly (check
one)?
1. FFES with Align Symbols
2. FFES with Render
3. Neither

5. Which one of the first two versions of FFES that you used
allowed you to correct interpretation errors most easily
(check one)?
1. FFES with Align Symbols
2. FFES with Render
3. Neither

6. Which one of the three versions of FFES that you used did
you enjoy using most (check one)?
1. FFES with Align Symbols
2. FFES with Render
3. FFES with both Align Symbols and Render

7. Would you be interested in using a system similar to the
Freehand Formula Entry System in the future?
1. Yes 2. No

8. In which of the three versions of FFES used in the exper-
iment was it easiest to correct interpretation errors (check
one)?
1. FFES with Align Symbols
2. FFES with Render
3. FFES with both Align Symbols and Render

9. Overall, was the Align Symbols operation useful?
1. Yes 2. No
Please provide a brief reason for your answer.

10. Overall, was the Render operation useful?
1. Yes 2. No
Please provide a brief reason for your answer.

11. Please explain briefly what in your opinion was the
strongest part of the program.

12. Please explain briefly what in your opinion was the weak-
est part of the program.

13. Please provide any additional comments you have about
FFES.


	Introduction
	Style-Preserving Morphs
	Interpretation of Handwritten Equations
	Morphing Algorithm
	Experiment
	Method
	Results
	Discussion
	Usability Feedback

	Conclusion

