

View-Dependent Particles for Interactive
Non-Photorealistic Rendering

Derek Cornish1, Andrea Rowan2, David Luebke2

1 Intrinsic Graphics 2 University of Virginia

Abstract

We present a novel framework for non-photorealistic
rendering (NPR) based on view-dependent geometric
simplification techniques. Following a common thread in
NPR research, we represent the model as a system of
particles, which will be rendered as strokes in the final
image and which may optionally overlay a polygonal
surface. Our primary contribution is the use of a
hierarchical view-dependent clustering algorithm to
regulate the number and placement of these particles.
This algorithm unifies several tasks common in artistic
rendering, such as placing strokes, regulating the screen-
space density of strokes, and ensuring inter-frame
coherence in animated or interactive rendering. View-
dependent callback functions determine which particles
are rendered and how to render the associated strokes.
The resulting framework is interactive and extremely
flexible, letting users easily produce and experiment with
many different art-based rendering styles.

Key words: Non-photorealistic rendering, artistic
rendering, view-dependent simplification, view-dependent
particles

1 Introduction

Non-photorealistic rendering, or NPR, has become an
important and impressive branch of computer graphics in
recent years. Most NPR techniques attempt to create
images or virtual worlds visually comparable to
renderings produced by a human artist. Several artwork
styles have been explored in the NPR literature, such as
pen and ink [9,10], painting [1,6], informal sketching [5],
and charcoal drawing [7]. To date, most published NPR
algorithms focus on a specific artistic style, or a closely
related family of styles. For example, Meier describes a
technique for creating animations evocative of
impressionistic painting [6], and Markosian creates
cartoon-style renderings reminiscent of Dr. Seuss [4].
Underlying these highly varied artistic effects, however,
are several recurring themes common to most NPR
techniques. The framework presented in this paper began
as an attempt to identify and unify these common
algorithmic threads:

Strokes and particles: Human artwork typically consists
of multiple separate strokes, ranging from dabs with a
paintbrush to streaks of charcoal to lines drawn with pen
or pencil. Most NPR algorithms therefore cast rendering
as a process of selecting and placing strokes. These
strokes are usually placed and rendered with some
randomness to imitate the unpredictability of the human
artist, but this randomness can introduce flicker when the
resulting images are animated. To eliminate this flicker,
Meier [6] introduced the idea of associating strokes with
particles defined on the surface of the object to be
rendered. Since the strokes are associated with actual
locations in space, they move smoothly across the screen
in a visually pleasing manner as the viewpoint shifts.
Many NPR systems have since incorporated this idea;
notable examples include work by Markosian and Hughes
[4] and by Kaplan et al [12].

Orientation fields: For the full range of expressive
effect, an artist or programmer must have control over
how strokes are oriented as well as where they are placed.
Salisbury et al used a user-specified vector field defined
on an image to guide the orientation of pen-and-ink
strokes [9], while others rasterize normal and curvature
information from a 3-D model [6][8]. This use of
orientation fields to guide stroke drawing is another
common thread running through multiple NPR
approaches.

Screen-space density: Careful attention to screen-space
density of strokes is yet another common theme. For
example, concentrating strokes most densely on the
silhouette of an object can suggest a great deal of
complexity with relatively few strokes (e.g., [4][7]). Too
many strokes throughout the image can create a cluttered
effect, while too few strokes may fail to convey the
underlying shape. In styles such as pen-and-ink, stroke
density also controls tone, so that too many strokes will
create a darker drawing with a completely different look
[9][10]. Associating strokes with particles as described
above does not solve this problem, since the screen-space
particle density increases as objects recede into the
distance.

1.1 Contribution

These themes—representing strokes with particles,
guiding rendering with orientation fields, and careful
attention to screen-space density—recur in NPR
algorithms varying widely in architecture and artistic
style. Our primary contribution is a system for non-
photorealistic rendering that addresses all three issues,
providing a framework with which users can easily create
a whole spectrum of stylistic effects. The key to our
system is a new representation for the particle field, which
we call view-dependent particles. View-dependent
particles provide an efficient multiresolution structure for
fine-grained control over the placement of strokes, and
can be generated from any polygonal model. The
multiresolution nature of the structure provides efficient
rendering at all scales, allowing densely populated scenes
containing tens or hundreds of thousands of particles.
Arbitrary scalar or vector fields may be defined over the
particles to describe attributes, such as color or
orientation, which affect stroke rendering.

Our system is designed for interactive rendering. The
view-dependent particle system is adjusted dynamically
and continuously as viewing parameters shift, using the
underlying multiresolution structure to enhance
interactivity. We use a multi-stage rendering process
designed to take advantage of hardware acceleration. The
resulting system can produce compelling non-
photorealistic imagery of polygonal models in many
varied artistic styles at interactive rates.

2 Overview of the algorithm

View-dependent particles are inspired by and built upon
algorithms for view-dependent polygonal simplification.
These algorithms address many issues relevant to non-
photorealistic rendering, such as regulating the screen-
space density of polygons and finding visual silhouettes.
As such, they provide an ideal springboard for a system to
manage particles in an NPR algorithm. Our NPR
framework uses VDSlib [13], a public-domain view-
dependent simplification package that supports user-

defined simplification, culling, and rendering criteria via
callback functions. We represent the object to be
rendered as a densely sampled polygonal model; the
vertices of this model form the highest resolution of the
view-dependent particle system.

Rendering a frame in our algorithm comprises up to four
stages:

1. Adjust particles: In this stage the view-dependent
particles are adjusted for the current view parameters.
The active set of particles is traversed and a user-
supplied callback function decides whether to fold,
unfold, or leave unchanged each particle. Unfolding
a particle adds its children to the active set, creating
more local detail in that region of the model; folding
a particle removes its children from the active set,
reducing local detail. It is at this stage that the user
controls the density and placement of strokes in the
final image. For example, a user callback might
mediate screen-space density of strokes by folding
particle clusters that project to a small portion of the
screen, or add contour strokes by unfolding only
particles that lie on a silhouette.

2. Render polygons (optional): For many NPR styles
the interior of the object must be rendered in some
fashion. For example, if pen-and-ink strokes are to
be depth-buffered, so that particles on the far side of
the object do not generate visible strokes in the final
image, the polygons of the object should be rasterized
into the depth-buffer. Other effects, such as “cartoon
rendering”, require rendering the object interior,
perhaps with a single uniform color as in Figure 6. In
this stage the user may optionally render the
simplified polygonal mesh whose vertices are the
active set of particles. A user callback specifies how
to render these polygons. In our cartoon rendering
mode, for example, the polygon rendering callback
would disable lighting, enable depth buffering, set the
color, and render all polygons for the object.

Figure 1: Several examples of different styles that can be created in our interactive NPR system.

From left to right: a sketched molecule, a pencil bunny, a furry bunny after Markosian [4], and a chalky dinosaur.

3. Transform/light particles: In this stage the particles
are partially rendered, in that they are transformed
and clipped to screen-space, with lighting and other
calculations optionally applied. The transformed
particles are not rasterized. Instead, particle data is
accumulated into a buffer that will be guide stroke
rendering in the next stage. We elected to implement
this stage using OpenGL feedback mode. This
allows the user to write custom callbacks that
“render” the particles in a familiar intuitive fashion,
while exploiting any hardware acceleration of
transformation, lighting, etc. By rendering an offset
vertex, vectors associated with the particles (such as
normals or an orientation field) can be transformed
into screen-space to guide stroke rendering.

4. Render strokes: In the final stage, the screen-space
particle data is used to guide the rendering of strokes
into the image. Again, a user-defined callback
performs the rendering, parsing the feedback buffer
to extract the particle position as well as any color or
vector data processed in the third stage. The stroke is
then rendered, typically in 2-D at the particle’s
transformed screen-space position, using whatever
method is appropriate for the desired artistic effect.
For example, in painterly rendering strokes may be
rendered as partially-transparent textured polygons,
while in pen-and-ink rendering strokes might be
rendered as line segments. If the optional second
stage was used to render the underlying polygonal
model, the same buffer is used for the final image.
For example, strokes can outline a filled object, or the
depth buffer can prevent rendering occluded strokes.

3 Implementation Details

As mentioned above, our implementation of view-
dependent particles is built on VDSlib, a view-dependent
algorithm from the polygonal simplification literature.
Polygonal simplification, also known as level of detail
(LOD) management, is a well-known technique for

increasing rendering speed by reducing the geometric
detail of small, distant, or otherwise unimportant portions
of the model. View-dependent simplification techniques
for general polygonal models are comparatively new, with
several algorithms proposed by researchers in recent years
[2,3,11]. All of these algorithms share the same
underlying mechanism for reducing complexity: a
hierarchy of vertex merge operations that progressively
cluster vertices of a triangulated model [Figure 2]. Each
operation replaces multiple vertices with a single
representative vertex, in the process removing some
triangles from the model. By selectively applying and
reversing vertex merge operations, the underlying model
may be represented with greater detail in some regions
(for instance, near the viewer or on object silhouettes)
than others. Of course, this requires the algorithms to
adjust the simplification continuously as the viewpoint
moves. View-dependent simplification algorithms are
thus designed to run on highly complex models at
interactive rates. By defining our view-dependent
particles as the vertices of a dense polygonal mesh, we
can take full advantage of the speed and generality of
view-dependent simplification.

Each node in a view-dependent simplification hierarchy
either represents a vertex from the original full-resolution
model or a vertex created by a series of vertex merge
operations. Similarly, in our system the nodes form a
hierarchy called the particle tree. Each node represents a
particle; leaf nodes are attached to a vertex of the original
polygonal model, while internal nodes represent the result
of particle merge operations. Internal nodes in polygonal
simplification typically represent a sort of average of all
vertices below them in the hierarchy; however, for better
frame-to-frame coherence we simply pick one of the
merged particles to represent the rest. Replacing a
collection of sibling particles with their parent in the
particle tree has the effect of locally simplifying the
model, using fewer particles and ultimately fewer strokes
to render that portion of the object. The first stage in our
rendering process performs this local simplification,

Figure 2: A vertex merge operation on a polygonal mesh, and the associated hierarchy. Here vertices 1, 2, and 7 merge to form
the single vertex A, eliminating the shaded triangles. We associate particles with each vertex, which in turn guide the placement of
strokes. In practice, we usually choose the position of A to be the same as one of its children to increase frame-to-frame coherence
across merge operations.

traversing the particle tree and applying a user-supplied
callback function to determine which nodes should be
merged, or folded, and which should be unfolded. Since
the simplification changes every frame, the distribution of
particles can account for view-dependent factors, such as
the distance of particles from the viewer or which
particles lie on the silhouette.

Since the particles are in fact vertices of a polygonal
mesh, the fold and unfold operations also affect the
underlying surface model. Layering our system over a
view-dependent polygonal simplification algorithm
allows us to track that underlying model, rendering the
polygons if necessary for the desired artistic effect. For
example, the surface might be rendered as a single solid
color for cartoon rendering, or textured with a crosshatch
pattern for a pencil-sketch effect. For many effects, a
depth buffer of the surface may be wanted to eliminate
particles that should be occluded. Our optional second
stage enables all these effects by rendering the polygons
of the current simplification using a custom user callback.
In short, the first and second stages consist of simplifying
and rendering a polygonal model with user-specified
criteria. While those criteria are quite unlike those used
for traditional rendering, both operations are supported
directly by the view-dependent simplification library.

The third stage uses OpenGL feedback mode to transform
and clip the particles. It can also be used to apply lighting
calculations and project vector attributes (such as normal
or orientation vectors defined on the particles) into screen
space. Such vectors are rendered in feedback mode as 3-
D line segments using GL_LINE; the projected 2-D
vectors can be then used to orient strokes tangent or
perpendicular to the surface. Primitives rendered in
feedback mode are not rasterized. Instead, the
transformed, projected, clipped, and lit primitives are
stored, with all relevant information, as a sequence of
tokens in a buffer. The final stage will parse this buffer,
using the contents to place and render the final strokes.
As usual, a callback function allows the user complete
flexibility.

The use of feedback mode during the third stage is open
to question. Certainly all of the geometric operations
performed during this stage could be performed on the
host CPU, and the results used immediately to place the
strokes on the final image. This would effectively merge
the third and fourth stages, and eliminate the need for
intermediate storage of the feedback results. We felt,
however, that rendering the particles in feedback mode
would provide two main advantages: efficient use of
graphics hardware and a flexible, familiar interface for the
user. Rendering particles in feedback mode allows us to
exploit hardware transform, lighting, and clipping
acceleration. Graphics hardware is typically deeply

pipelined, operating most efficiently when the pipeline is
kept full. Rendering all particles in a continuous stream
into a feedback buffer followed by rendering all strokes
continuously to the framebuffer helps maximize graphics
hardware performance. Rendering particles directly with
OpenGL also increases ease of use, enabling the user to
experiment with different rendering strategies quickly and
painlessly. Incorporating lighting, for example, would be
tedious to implement programmatically, but this is easily
done in OpenGL.

4 Results

Here we show images spanning several very different
rendering styles, and briefly explain the various callback
functions used to produce each effect. It should be
emphasized again that the system is fully interactive. The
effects and models shown ran at frame rates ranging from
5-20 Hz on an SGI Onyx2 with InfiniteReality graphics.

1.2 The models

Figure 3: Bunny and Molecule

Bunny is the familiar Stanford bunny, containing
approximately 69,451 triangles and 34,834 vertices.
Molecule is an accessibility isosurface for a simple
molecule, containing 7,344 triangles and 3,675 vertices.
Both models contain interesting curvature and silhouettes
that illustrate the various rendering styles well. Dinosaur
[Figure 1] has 47,904 triangles and 23,984 vertices.

1.3 Painterly

Figure 4: On top, a painterly rendering of Molecule with long,
thin strokes. Below, the same model rendered with round,
dabbed strokes and a different brush texture.

 For these renderings:

� Stage 1: View-dependent particles were left
unsimplified, at the full original resolution.

� Stage 2: Triangles of model rendered into depth
buffer to prevent drawing occluded strokes in stage 4.

� Stage 3: Particles rendered in feedback mode with
lighting enabled. A 3-D orientation vector was also
rendered and projected to screen-space. The
resulting 2-D vector was used to align the strokes.
This orientation vector was set randomly and stored

with each particle, so that the stroke orientation
would remain constant from frame to frame.

� Stage 4: Strokes rendered as texture-mapped
quadrilaterals, at the depth returned from feedback
mode for the particle. The texture used for the top is
long and thin stroke, while on the bottom a short,
almost circular dab was used.

1.4 Sketched

Figure 5: Two quite different effects with a somewhat pencil-
sketch feel. Top and bottom: Molecule and Bunny drawn with
short choppy silhouette strokes. Middle: Bunny drawn with very
thin, elongated strokes roughly aligned.

On the top and bottom, particles were simplified in stage
1 to moderate density, and removed from non-silhouette
regions. In stage 3, the surface normal was transformed
into screen-space for use as an orientation vector. Stage 4
rendered the strokes with a stroke texture scanned from a
crayon mark, oriented by the transformed normal to
appear tangent to the surface.

In the middle, particles were only slightly simplified in
stage 1, with only slight preference given to silhouette
particles. Stage 3 again transformed the surface normal,
which was then slightly perturbed. In stage 4, a single
very long, thin stroke aligned with the transformed
normal was rendered for each particle.

1.5 Cartoon drawing

Figure 6: Two cartoon-like drawing effects, with solid interior
shading and strong silhouette strokes (top) and Markosian-style
graftals (bottom).

Both these styles are identical until stage 4. In stage 1,
particles not on the silhouette were simplified. Stage 2
rendered the underlying triangles a solid color, with flat
shading and lighting disabled. Stage 3 transformed the
particles and the surface normal into screen space, but did
not perform any lighting calculations. For the effect on
the top, stage 4 rendered those particles lying exactly on

the silhouette with strong black horizontal strokes, aligned
by the transformed normal to appear roughly tangent to
the surface. For the Dr. Seuss-inspired effect on the
bottom, particles were rendered with graftals in the
manner of Markosian and Hughes [4], but without using a
desire image. Instead we rely on the view-dependent
simplification of particles and simple screen-space
binning to avoid rendering too many graftals in a single
area of the screen.

1.6 Charcoal smudge

Figure 7: A charcoal effect using just a few strong
overlapping silhouette strokes.

Here the particle tree was simplified drastically in stage 1,
leaving only a few particles near the silhouette. These
particles were transformed and lit in stage 3, along with
an orientation vector aligned with the surface normal.
The effect was completed by rendering with long, thick
brushstrokes in stage 4.

1.7 Two-tone

Figure 8: A two-tone effect in which light and dark strokes are
drawn on a neutral gray background.

Following an image by Markosian and Hughes [4], these
two images use dark and light strokes to bring shape out
of a neutral background. Stage 1 does not appreciably
simplify the particle tree. In stage 2, the underlying
polygons are rasterized to the depth buffer but not the
color buffer. Stage 3 transforms and lights the particles.
Stage 4 examines the intensity of the lit particles in the
feedback buffer. Particles over an upper intensity
threshold are rendered as solid white strokes, while
particles below a lower threshold are rendered as solid
black strokes. All other particles are discarded.

1.8 India ink

Figure 9: An India-ink effect using only strong, black strokes
densely placed in regions of darkness.

This style is very similar to the two-tone effect described
above, but uses only black strokes on a white background.
Stage 1 does not simplify the model at all, so the particle
tree is very densely represented. Stage 3 transforms and
lights the particles. In stage 4, particles below an
intensity threshold are rendered as solid black strokes;
other particles are ignored. The thickly placed strokes
create solid black regions for a strong, stylized effect.

5 Conclusions and Future Work

We have demonstrated a novel framework for non-
photorealistic rendering that unifies several common
threads running through the NPR literature: particle
systems to guide stroke placement, scalar and vector
fields to guide stroke rendering, and careful attention to
screen-space density of strokes. Our system introduces
view-dependent particles, a multiresolution representation
inspired by and built on view-dependent simplification
algorithms. A multi-stage rendering process with a
flexible plug-in architecture gives the user great control
over the placement and rendering of strokes, without
sacrificing graphics acceleration. The resulting system
supports rendering in many highly varied styles at
interactive rates.

The greatest strength of our system is its extensibility.
We have found that extending the system to add
additional rendering styles is typically quite
straightforward; the callbacks to generate many of the
effects demonstrated in this paper were developed in less
than an hour. There are certainly many interesting
avenues for future work in simply exploring techniques
and frameworks for new styles. For example, many
algorithms use a desire image produced by rendering the
model to regulate the screen-space density of strokes.
New particles are placed where the desire image indicates

they are most needed, and adding the particle reduces the
“desire” of that part of the image. None of our current
styles use this technique, but integrating a desire image
and comparing the results seems straightforward and quite
interesting. For now, we have gotten satisfactory results
using simple spatial binning [Figure 6].

We would also like to experiment with multi-layer
painterly rendering techniques such as [6], which more
closely emulate the process a human painter follows.
Better support for pen and ink rendering also seems worth
investigating. The long, expressive strokes typical to this
medium are difficult to produce in our current model,
where a single stroke is associated with each visible
particle. One possibility might be to thread strokes across
multiple particles, adjusting the stroke as individual
particles come in and out of view.

There is scope for more work on ensuring temporal
coherence of strokes. By attaching the strokes to object-
space particles in the fashion of Meier [6], we achieve
good frame-to-frame coherence while the LOD is
constant. However, the view-dependence of our particles
can work against us, since they may be folded away or
unfolded into additional particles. In practice, we have
found only slight flicker introduced by this process, but
we might eliminate that flicker entirely by fading in over
several frames the strokes associated with newly created
particles. This should be simple to implement by adding
an age field to each particle.

A clear limitation of our current approach is the
correlation between particles and vertices in the original
model. This requires us to use densely sampled polygonal
models, to ensure even coverage of particles on the
surface. Placing particles only at vertices also prevents us
from approaching the model too closely, since the vertices
and strokes will grow apart and eventually “tear open” the
illusion of a solid surface. One solution we are exploring
is to procedurally place “temporary” particles on
triangles, so that as the triangle grows larger more
particles are scattered across its surface. These particles
would be rendered from the triangles and accumulated
into the same feedback buffer used for vertex particles
during the third stage. Another limitation is the inherent
assumption that the image is comprised of many short
strokes. For certain styles it is important to have e.g. a
single long contour stroke. One possibility we are
investigating is the use of particles as control points to
guide long strokes rendered as splines or “snakes”.

References
[1] Aaron Hertzmann. Painterly Rendering with Curved Brush Strokes

of Multiple Sizes. In SIGGRAPH 98 Conference Proceedings, pp.
453-460. ACM SIGGRAPH, July 1998.

[2] Hugues Hoppe. Smooth View-Dependant Level-of-Detail Control
and it Application to Terrain Rendering. In SIGGRAPH 97
Conference Proceedings, pp. 189-198. ACM SIGGRAPH, August
1997.

[3] David Luebke and Carl Erikson. View-Dependant Simplification of
Arbitrary Polygonal Environments. In SIGGRAPH 97 Conference
Proceedings, pp. 199-208. ACM SIGGRAPH, August 1997.

[4] Lee Markosian and John F. Hughes. Art-based Rendering of Fur,
Grass, and Trees. In SIGGRAPH 99 Conference Proceedings, pp.
433-438. ACM SIGGRAPH, August 1999.

[5] Lee Markosian, Michael A. Kowalski, Samuel J. Trychin, Lubomir
D. Bourdev, Daniel Goldstein and John F. Hughes. Real-time
Nonphotorealistic Rendering. In SIGGRAPH 97 Conference
Proceedings, pp. 415-420. ACM SIGGRAPH, August 1997.

[6] Barbara J. Meier. Painterly Rendering for Animation. In
SIGGRAPH 96 Conference Proceedings, pp. 477-484. ACM
SIGGRAPH, August 1996.

[7] Ramesh Raskar and Michael Cohen. Image Precision Silhouette
Edges. In 1999 Symposium on Interactive 3D Graphics. pp. 135-
140. ACM SIGGRAPH, 1999.

[8] Takafumi Saito and Tokiichiro Takahashi. Comprehensible
Rendering of 3-D Shapes. In SIGGRAPH 90 Conference
Proceedings, pp. 197-206. ACM SIGGRAPH, August 1990.

[9] Michael P. Salisbury, Michael T. Wong, John F. Hughes, and David
H. Salesin. Orientable Textures for Image Based Pen-and-Ink
Illustration. In SIGGRAPH 97 Conference Proceedings, pp. 401-
406. ACM SIGGRAPH, August 1997.

[10] Georges Winkenbach and David H. Salesin. Computer Generated
pen-and-ink illustration. In SIGGRAPH 94 Proceedings, pp. 91-
100. ACM Press, July 1994.

[11] Julie Xia and Amitabh Varshney. Dynamic View-Dependant
Simplification for Polygonal Models, Visualization 96.

[12] Matthew Kaplan, Bruce Gooch and Elaine Cohen, Interactive
Artistic Rendering. Non-Photorealistic Animation and Rendering
2000 (NPAR '00), Annecy, France, June 5-7, 2000.

[13] VDSlib is available at http://vdslib.virginia.edu.

