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Abstract 
Though considerable progress has been made with the 
view-dependent techniques in terrain visualization, the 
CPU overhead still precludes their wide application in 
many domains. The calculation complexity of view-
dependent techniques mainly involves the calculation of 
node screen space error every frame, including the 
time-consuming screen space projection, the number of 
nodes whose projection error remains to be updated, 
and the evaluation of the valid life of the projection 
error. In this paper we introduce block-priority-based 
traversal of quadtree for reducing the traversal com-
plexity and propose view-angle-based error metrics. 
Thus we successfully speed up the valid life evaluation 
of projection error by means of calculating the spatial 
relation between the viewpoint and a simplified split 
zone. In addition, constant frame rate has been achieved 
by scaling the split zone accordingly. Corresponding 
experimental results have shown that our methods can 
real-time render large scale terrain on a low-cost PC so 
as to satisfy the demand of most applications in this 
way. 
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1 Introduction 
Terrain visualization plays an important role in many 
applications, such as GIS, vehicle simulation, battle-
field visualization and entertainment. At the same time, 
real-time terrain rendering proves to be a difficult task 
for current graphics workstations. In recent years there 
have appeared some remarkable techniques on terrain 
visualization, such as visibility computing, LOD (Lev-
els of detail), IBR (Image-based rendering), which have 
gained such a great progress as to be able to satisfy 
some applications to some extent. Of the above tech-
niques, the most popular are the view-dependent tech-
niques, which are often used to adjust the resolutions of 
different regions of the scene according to the view 
parameters in order to relieve the burden of graphics 
subsystems. The main disadvantage of these techniques 
lies in their overhead of CPU and memory. The prob-
lem is usually alleviated by using regular grid to lessen 
the storage, but the problem of inherent computing 
complexity is still unresolved. 

 This paper introduces block-priority-based traversal 
of quadtree and view-angle-based error metrics in ter-
rain rendering. We simplify the split zone of nodes to 
an axis-aligned rectangular box, thus greatly improve 
the efficiency of screen space error calculation of nodes. 

2 Related Work 
Visibility computing [14, 12] is used to accelerate ter-
rain rendering, but only takes effect in low-level flight 
or ground vehicle simulation. Image cache [13] requires 
long preprocessing time, and the handling of many un-
used pixels in the textures defined by the methods re-
sults in a performance penalty for the technique. Chen 
et al [1] propose Lod-sprite, a hybrid of [7] and [13]. 
Lod-sprite spends different time when rendering the 
key frames and the other frames, resulting in evident 
latency of key frames. 
 View-dependent techniques are introduced in [16, 4, 
10]. The methods provide a direct measure to control 
the image quality and frame rates according to the 
screen space error of the mesh vertices. In terrain visu-
alization, Triangulated-irregular-network (TIN) [5, 6] 
will use fewer triangles than regular grid, but it needs a 
complex data structure. Besides, TIN may produce 
many thin, slivery triangles. Regular grid is adopted in 
[7, 2, 11, 8]. Lindstrom et al [7] traverse the quadtree 
bottom-up. Duchaineau et al [2] use dual-queue to drive 
split and merge operations. Pajarola [11] manages the 
scene dynamically while Liu et al [8] accelerate terrain 
rendering based on focus criterion. 
 With the main idea aiming to exploit the graphics 
pipeline by reducing the number of polygons that are to 
be rendered at each frame, view-dependent techniques 
impose significant overhead in terms of CPU usage 
during visualization, as pointed out in [9, 3]. Such an 
approach actually limits the wide applications of the 
techniques. To reduce the number of the vertices to be 
visited, we can traverse the vertex tree based on block-
based simplification [7], or in a top-down manner [2]. 
But the improvement is meager, for they are in nature 
vertex-based methods. Duchaineau et al [2] propose to 
defer the projection computation, but do not give a sim-
ple method explicitly. Shade et al [13] introduce one 
way to compute the valid lives of nodes, but it cannot 
be directly applied to geometry-based rendering. Hier-
archical LOD is used in [3] to visualize dynamic CAD 



scenes. But it seems unable to work so well in terrain 
rendering because this approach cannot efficiently re-
duce the number of polygons sent to graphics subsys-
tem. 
 Our algorithm is more similar to [2] to some extent. 
They all adopt dual-queue of split and merge. But this 
paper has made remarkable improvements in traversal 
of hierarchical tree, error metrics and computation of 
projection valid life. 

3 Quadtree Structure 

3.1 Definition and Basic Operation 
Each block is defined as a node of the quadtree, repre-
sented by the vertex centered on the block, with each of 
the nodes having 4 children, 1 parent except for the root 
node, as shown in Figure 1. Because of the vertex de-
pendencies of regular grid, in every block the node de-
pends on 2 corner vertices, and 4 boundary vertices 
depend on it, as shown in Figure 2. 
 
 
 
 
 

Figure 1: Node hierarchy 
 
 
 
 
 
 
 
 
 
 

Figure 2: Vertex dependencies 
 
 In the mesh rendered at a frame, if no boundary 
vertices are dependent on the node, the node would be a 
mergeable one, as the solid dots in Figure 3. The nodes 
whose parents are at the end of the vertex tree are called 
splittable, as the hollow dots in Figure 3. 
 
 
 
 
 

Figure 3: Splittable and mergeable nodes 
 
 All the operations in our algorithm are centered on 
such nodes. When splitting or merging a node, we 
check the related vertices, inserting or deleting them 

when needed. The split and merge operations are illus-
trated in Figure 4. 
 
 
 
 
 
 

Figure 4: Node operations 
 
 To ensure that each vertex can be inserted or deleted, 
the vertices that depend on a leaf node in the full quad-
tree are defined as children of the leaf node. 

3.2 Traversal of Quadtree 
 Block-priority-based traversal of quadtree is intro-
duced to exploit spatial coherence. If the screen space 
error of a splittable node A exceeds the threshold τ  
specified by the user, we split it. Then we should recur-
sively test the 4 children of the node. In the rendered 
mesh the brother nodes are actually to be adjacent to 
each other, and the errors of all nodes are in the same 
direction, as described in section 4. So we can select the 
child node B who holds the largest error of its brothers. 
If its screen space error is smaller than τ , we will stop 
the test of the rest children of node A. Since each node 
corresponds to a block, the priority-based traversal is 
called block-priority-based traversal of quadtree. The 
key word is the error of the block node. 
 Our algorithm will not recursively split one node to 
the bottom of the quadtree in one frame. Instead, the 
user is just expected to specify a depth limit. The tra-
versal will cease when it reaches the depth limit in a 
frame. In doing so we can avoid not only searching the 
quadtree so deeply as to affect the frame rates, but also 
deferring the update of part of the scene so long as to 
make visible progressive changes of terrains. 
 In frustum culling it is only necessary to test the 
nodes rendered at previous frame, thus relieving the 
need to test the children of nodes that intersect the 
view-frustum recursively. What we have to do is just 
calculate the spatial relations between such nodes and 
view-frustum when deciding whether to split or merge 
them. 

4 Error Metrics 

4.1 Error of Vertex 
As illustrated in Figure 5, deleting vertex D will intro-
duce an error of DE. The error is: 
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 If vertex C is a leaf node in the quadtree, as defined 
in section 3.1, vertex D is also a child of C. 
 
 
 
 
 
 
Figure 5: Deleting D will introduce an error of DE 

4.2 Error of node 
Each node in the mesh is associated with an error δ , 

0≥δ , and 
),,,,,,,,max( 32103210 εεεεεδδδδδ = . 

 In which iδ  is errors of its children, ε  is the error 
of the vertex, and iε  is errors of boundary vertices de-
pending on it. 

4.3 Screen Space Error 
Since the vertex D is also a child of node C in Figure 4, 
then DD εδ = . From the viewpoint of V, deleting D 
leads to an angular error DVE∠ . By computing the pixel 
projection of DVE∠ , it can be found whether the simpli-
fication violates the specified pixel threshold τ . Let the 
field-of-view in y direction be fovy, and height of the 
window be h. Let θ  be the angular tolerance corre-
sponding to τ . Since θ  is very small, approximately 
we can get 

τθ
h

fovy= . 

 If θ=∠DVE , then viewpoint V must lie on one of 
the two circles in the 2D diagram in Figure 6. The ra-
dius of the circle is: 
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Figure 6: The angle between V and DE is θ 
 
 Given threshold τ and the error δ of the node, if 
viewpoint V lies outside the two circles in the 2D dia-
gram, the screen space error of the node must be smal-
ler than τ. Once the viewpoint enters this zone of one 
node, the node should split. Hence, this zone is called 
the split zone of the node. 

 It seems still troublesome to compute whether the 
viewpoint is inside or outside the split zone of a node, 
which can further be simplified to an axis-aligned rec-
tangular box with its length and width of 4r, and height 
of 2r respectively. In the remainder of this paper all 
split zones are referred as axis-aligned boxes except 
specially defined. 

5 Valid Life of Projection Error 
To exploit frame-to-frame coherence, Duchaineau et al 
[2] propose to defer some of the projection error up-
dates for some frames, provided that it will not violate 
the specified threshold. In this paper, the safe period is 
called the valid life of projection error of nodes, or 
valid life of nodes in short. 
 It proves easy to compute the valid life of projection 
error using our simplified split zone. Typically vehicles 
move much slower in vertical direction than in horizon-
tal, so it can safely be said that the upper limit of verti-
cal speed is just half that of the horizontal speed. And 
the height of the box-shaped split zone is just half the 
length and width, too. If so, the valid life of projection 
error can easily be deduced as: 
 
ValidLife() 
{ 

dh = max(|vx – cx|, |vy – cy|); 
dv = |vz – cz|; 
if(dh>2dv) 

return (dh – 2r) / vh; 
else 

return (dv – r) / vv; 
} 
 
 In which the viewpoint is (vx, vy, vz), and the center 
of the split zone is (cx, cy, cz), vh, vv is the upper limit of 
horizontal and vertical speed respectively. 
 
 
 
 
 
 

Figure 7: Life axis of node 
 
 The valid life of a splittable node can be described 
by means of the life axis in Figure 7. B is the base, and 
its value b is an integer. At the beginning B lies on ori-
gin, and b=0, indicating that a splittable node should 
split when the viewpoint arrives at the boundary of the 
split zone. 
 Assuming the viewpoint moves towards the split-
table node along the life axis, it can be deduced that the 
valid life of the splittable node would move from left to 
right. Reaching B, the valid life of the node will be 0. 
This implies that if the viewpoint arrives at the bound-
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ary of the split zone, the node will split. The condition 
can be expressed as s

0, == bbpQ , in which b=0 meaning 
that base B locates at the origin, p represents the current 
location of the viewpoint in the life axis of the node, 
and p=b meaning that when the viewpoint reaches B, 
the node would split. 
 Similar to splittable nodes, when a mergeable node 
needs to merge, the condition can be shown as 

M
0,1 =+= bbpQ . It means that when the viewpoint goes out-

side of the split zone, the node should merge. 

6 Constant Frame Rate 
Papers [10, 2, 5] describe how to achieve constant 
frame rate in details. The main consideration is to opti-
mize the image quality within the triangle budget, 
minimizing the screen space error of the vertices. Since 
different frames have different projection error bounds, 
it is impossible to use the simplification process directly 
under a specified threshold in section 4.3. To sort the 
nodes properly according to their projection errors, it is 
necessary to recount the projection errors for each 
frame, or evaluate the valid lives of projection errors 
soundly. The former may help to increase the CPU 
overhead intensively while the later does not seem a 
simple task for we have to take into full account the 
changes of the view parameters and the projection 
computation. 
 Instead of trying to obtain optimal image at each 
frame, which is better, this paper believes, to balance 
the benefit and the cost between image quality and con-
stant frame rate. When minimizing the screen space 
error, attention should also be paid to the runtime effi-
ciency. 
 If more triangles are rendered than required at pre-
vious frame, the viewer is known to have reached a 
more complex scene. Now the number of nodes to split 
is S

0, == bbpn , and the number of nodes to merge is 
M

0,1 =+= bbpn , then S
0, == bbpn > M

0,1 =+= bbpn . Obviously, this 
will further increase the triangles to be rendered at cur-
rent frame, thus greatly decreasing the frame rate.  
 If base B in the life axis moves to right for a unit, 
the number of nodes to split is 0, while the number of 
nodes to merge would be M

1,1
M

1,2 −=+=−=+= + bbpbbp nn . 
Since merging one node will at least decrease two tri-
angles, the number of triangles to be rendered at current 
frame will be 2×( M

1,1
M

1,2 −=+=−=+= + bbpbbp nn ) less than 
at previous frame. 
 Similarly, if fewer triangles are rendered than speci-
fied at previous frame, B would move towards left for a 
unit. Then the number of nodes to merge is 0, and that 
of nodes to split is S

1,
S

1,1 ===−= + bbpbbp nn . Since splitting 

one node will at least introduce two triangles, the trian-
gles to be rendered at current frame will be 2 ×

( S
1,

S
1,1 ===−= + bbpbbp nn ) more than at previous frame. 

 Similar to [2], dual-queue of split and merge is also 
adopted in this paper. The queue members are links, 
whose elements are splittable or mergeable nodes in 
nature. Each link is associated with a value, which is 
the valid life of the nodes in the link. At each frame the 
values of the links will be subtracted by 1, indicating 
that the valid lives of the screen space errors of the 
nodes will be subtracted by 1. It is just for this purpose, 
the data structure of split and merge queue are all de-
fined as arrays so as to enhance the efficiency of the 
algorithm in our implementation. 
 The procedure for maintaining constant frame rate 
is as follows: 
 
MobilizeQueues() 
{ 

if(nprev>n) 
b=b-1;  // move the base B towards right for a unit  
Recompute the valid lives of nodes in the 2 links at the top 
of the merge queue, merge the nodes whose valid lives are 
greater than b.  

else if(nprev<n) 
 b=b+1;  // move the base point towards left for a unit 

Recompute the valid lives of nodes in the 2 links at the top 
of the split queue, split the nodes whose valid lives are less 
than or equal to b.  

else 
Update the valid lives of nodes in the link at the top of the 
split queue, split the nodes whose valid lives equals to b.  
Update the valid lives of nodes in the link at the top of the 
merge queue, merge the nodes whose valid lives equal to 
b+1.  

} 
 
 Geometrically, our method is to expand or shrink 
the split zone towards the boundary for a unit. The re-
sult is deferring or putting ahead the operations of 
nodes for one frame time to make the number of trian-
gles rendered per frame approximate to the triangle 
budget. If there are more triangles rendered than speci-
fied at previous frame, we prefer to reduce the split 
zones of all the nodes for a unit, which helps to defer 
the split operations to be executed at current frame to 
the next frame. Along with the merging of the nodes at 
current frame as usual, we will further merge the nodes 
that should merge at next frame, so as to decrease the 
triangles to be rendered at current frame.  Otherwise, if 
at previous frame there are fewer triangles rendered 
than needed, we expand the split zones of all the nodes 
for a unit to increase the number of triangles to be ren-
dered at current frame. 
 Needless to say, the above technique cannot guaran-
tee optimal mesh at each frame. As compared to the 
solution updating the screen space errors of all the 
nodes and sorting at each frame, we have succeeded in



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. Full resolution after view-frustum culling             b. 6000 triangles per frame                      c. 3000 triangles per frame 
 

Figure 8: Experimental results 
 
deferring or putting ahead one frame time in splitting or 
merging nodes according to a fixed threshold. This 
surely means some priority changes in the queues, re-
sulting non-optimal image. 
 However, the influence is very limited. If the image 
at previous frame is optimal, and the base B has not 
been moved at current frame, it can also be expected to 
obtain an optimal image too. If the scene can change 
smoothly and slowly, there would be only a few of 
nodes for the operations to be split or merged at each 
frame. What has to be moved is only the base for a unit 
at each time. Besides, as there are only a few of split 
and merge operations to be deferred or put ahead, the 
image will not degraded too much compared to the op-
timal mesh. Thus, it can be proved that high efficiency 
of constant frame rate can be achieved at the cost of 
insignificant image degradation by using our algorithm. 
The corresponding experiment results also prove that 
the transformation is a great success. 
 To achieve such steady frame rate it is only neces-
sary to specify a threshold. Assume the mesh is dd × , 
in our experiments the threshold we have worked out is 
as follows: 

  
 In which aveδ  is the average error of all the nodes, 
tpf is the triangle budget per frame, and k is a coeffi-
cient. It can therefore be found that k = 1.5 will be a 

satisfactory result. More information about the formula 
can be found in [15]. 

7 Results 
The algorithm was implemented on a PC of PIII450, 
128M RAM, with Diamond Viper V770 based on 
nVidia Rava TNT2. The terrain mesh is 10251025× . It 
takes only 3.12 seconds to render the first frame, in 
which 1.39 seconds is to be spent on reading the mesh 
and texture from the disk, and 1.66 seconds on preproc-
essing. The base B fluctuates near about the origin. For 
example, in a test of a circular flight above the terrain 
for 6000 frames at 6000 triangles per frame, the statis-
tics is bmax=54, bmin=−41, bave≈0. On average there are 
1238 splittable nodes and 525 mergeable nodes per 
frame, on which there are only 128.7 nodes whose valid 
lives are to be recomputed, 11.5 splits and 2.3 merges 
to be performed, and 23.3 vertices to be inserted and 
23.3 vertices deleted. Table 1 lists the runtime statistics 
and comparison with previous researches. Since the 
volume of the simplified split zone is larger than the 
original, the average screen space error in Table 1 is 
overestimated. 
 Figure 8 shows some of the frames. Figure 8a is the 
scene in full resolution after view-frustum culling while 
Figure 8b, c the image at 6000, 3000 frames per second. 
 In our implementation the view-frustum is simpli-
fied to a cone with all the four corners of the scene con-



sidered outside the view-frustum. No more noticeable 
differences can be found between them as compared 
with the images before simplification except for part of 
the canyon bottom in the distance in the image of 3000 
triangles per frame. Part reasons of the difference be-
tween Figure 8c and 8a are that we render the periphery 
in a lower resolution caused by our view-angle-based 
error metrics. 
 

Scheme hardware  window  frames/ 
sec  

triangles/ 
frame 

ave error 

ours PIII, TNT2 600×600 72 3,000 3.2 
,, PIII, TNT2 600×600 55 5,000 2.5 
,, PIII, TNT2 600×600 50 6,000 2.3 
,, PIII, TNT2 600×600 45 8,000 2.0 
,, PIII, TNT2 600×600 30 12,000 1.6 

[11] Inigo2 n/a 38 8,000 n/a 
[5] R10K-MXI 710×512 60 5,000 3.5 
,, R10K-MXI 710×512 30 12,000 1.7 

[2] R10K-MXI 1000×1000 30 3,000 n/a 
[7] Onyx-RE2 640×480 20-30 4-9,000 2.0 

 
Table 1: Statistics and comparison with previous work 
 
 We adopt simple geometry morphing similar to [2, 
5], thus avoid disturbing pops when the resolutions 
change in the mesh. To reduce the transport burden 
between CPU and graphics pipeline, we also adopt in-
cremental triangle stripping in a locally optimization 
manner. In average there are 3.7 triangles in a strip. 

8 Conclusions 
We propose a new view-dependent method of real-time 
terrain rendering. The method introduces block-
priority-based traversal of quadtree and view-angle-
based error metrics. By simplifying the split zone of a 
node to an axis-aligned box, we can compute the valid 
life of projection error with much less cost. With these 
measures the algorithm achieves constant frame rates 
easily. The experimental results show that our method 
can real-time render large scale terrain on a low-cost 
PC. We hope our efforts will be some help to the 
broader applications of view-dependent techniques. 
Future work includes disk operation and texture map 
LOD processing, etc. 
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