
Efficient View-dependent Rendering of Terrains

Yadong Wu Yushu Liu Shouyi Zhan Xiaochun Gao

Department of Computing Science
Beijing Institute of Technology

Abstract
Though considerable progress has been made with the
view-dependent techniques in terrain visualization, the
CPU overhead still precludes their wide application in
many domains. The calculation complexity of view-
dependent techniques mainly involves the calculation of
node screen space error every frame, including the
time-consuming screen space projection, the number of
nodes whose projection error remains to be updated,
and the evaluation of the valid life of the projection
error. In this paper we introduce block-priority-based
traversal of quadtree for reducing the traversal com-
plexity and propose view-angle-based error metrics.
Thus we successfully speed up the valid life evaluation
of projection error by means of calculating the spatial
relation between the viewpoint and a simplified split
zone. In addition, constant frame rate has been achieved
by scaling the split zone accordingly. Corresponding
experimental results have shown that our methods can
real-time render large scale terrain on a low-cost PC so
as to satisfy the demand of most applications in this
way.

Key words: Terrain, real-time rendering, view-
dependent, error metric, valid life, constant frame rate.

1 Introduction
Terrain visualization plays an important role in many
applications, such as GIS, vehicle simulation, battle-
field visualization and entertainment. At the same time,
real-time terrain rendering proves to be a difficult task
for current graphics workstations. In recent years there
have appeared some remarkable techniques on terrain
visualization, such as visibility computing, LOD (Lev-
els of detail), IBR (Image-based rendering), which have
gained such a great progress as to be able to satisfy
some applications to some extent. Of the above tech-
niques, the most popular are the view-dependent tech-
niques, which are often used to adjust the resolutions of
different regions of the scene according to the view
parameters in order to relieve the burden of graphics
subsystems. The main disadvantage of these techniques
lies in their overhead of CPU and memory. The prob-
lem is usually alleviated by using regular grid to lessen
the storage, but the problem of inherent computing
complexity is still unresolved.

 This paper introduces block-priority-based traversal
of quadtree and view-angle-based error metrics in ter-
rain rendering. We simplify the split zone of nodes to
an axis-aligned rectangular box, thus greatly improve
the efficiency of screen space error calculation of nodes.

2 Related Work
Visibility computing [14, 12] is used to accelerate ter-
rain rendering, but only takes effect in low-level flight
or ground vehicle simulation. Image cache [13] requires
long preprocessing time, and the handling of many un-
used pixels in the textures defined by the methods re-
sults in a performance penalty for the technique. Chen
et al [1] propose Lod-sprite, a hybrid of [7] and [13].
Lod-sprite spends different time when rendering the
key frames and the other frames, resulting in evident
latency of key frames.
 View-dependent techniques are introduced in [16, 4,
10]. The methods provide a direct measure to control
the image quality and frame rates according to the
screen space error of the mesh vertices. In terrain visu-
alization, Triangulated-irregular-network (TIN) [5, 6]
will use fewer triangles than regular grid, but it needs a
complex data structure. Besides, TIN may produce
many thin, slivery triangles. Regular grid is adopted in
[7, 2, 11, 8]. Lindstrom et al [7] traverse the quadtree
bottom-up. Duchaineau et al [2] use dual-queue to drive
split and merge operations. Pajarola [11] manages the
scene dynamically while Liu et al [8] accelerate terrain
rendering based on focus criterion.
 With the main idea aiming to exploit the graphics
pipeline by reducing the number of polygons that are to
be rendered at each frame, view-dependent techniques
impose significant overhead in terms of CPU usage
during visualization, as pointed out in [9, 3]. Such an
approach actually limits the wide applications of the
techniques. To reduce the number of the vertices to be
visited, we can traverse the vertex tree based on block-
based simplification [7], or in a top-down manner [2].
But the improvement is meager, for they are in nature
vertex-based methods. Duchaineau et al [2] propose to
defer the projection computation, but do not give a sim-
ple method explicitly. Shade et al [13] introduce one
way to compute the valid lives of nodes, but it cannot
be directly applied to geometry-based rendering. Hier-
archical LOD is used in [3] to visualize dynamic CAD

scenes. But it seems unable to work so well in terrain
rendering because this approach cannot efficiently re-
duce the number of polygons sent to graphics subsys-
tem.
 Our algorithm is more similar to [2] to some extent.
They all adopt dual-queue of split and merge. But this
paper has made remarkable improvements in traversal
of hierarchical tree, error metrics and computation of
projection valid life.

3 Quadtree Structure

3.1 Definition and Basic Operation
Each block is defined as a node of the quadtree, repre-
sented by the vertex centered on the block, with each of
the nodes having 4 children, 1 parent except for the root
node, as shown in Figure 1. Because of the vertex de-
pendencies of regular grid, in every block the node de-
pends on 2 corner vertices, and 4 boundary vertices
depend on it, as shown in Figure 2.

Figure 1: Node hierarchy

Figure 2: Vertex dependencies

 In the mesh rendered at a frame, if no boundary
vertices are dependent on the node, the node would be a
mergeable one, as the solid dots in Figure 3. The nodes
whose parents are at the end of the vertex tree are called
splittable, as the hollow dots in Figure 3.

Figure 3: Splittable and mergeable nodes

 All the operations in our algorithm are centered on
such nodes. When splitting or merging a node, we
check the related vertices, inserting or deleting them

when needed. The split and merge operations are illus-
trated in Figure 4.

Figure 4: Node operations

 To ensure that each vertex can be inserted or deleted,
the vertices that depend on a leaf node in the full quad-
tree are defined as children of the leaf node.

3.2 Traversal of Quadtree
 Block-priority-based traversal of quadtree is intro-
duced to exploit spatial coherence. If the screen space
error of a splittable node A exceeds the threshold τ
specified by the user, we split it. Then we should recur-
sively test the 4 children of the node. In the rendered
mesh the brother nodes are actually to be adjacent to
each other, and the errors of all nodes are in the same
direction, as described in section 4. So we can select the
child node B who holds the largest error of its brothers.
If its screen space error is smaller than τ , we will stop
the test of the rest children of node A. Since each node
corresponds to a block, the priority-based traversal is
called block-priority-based traversal of quadtree. The
key word is the error of the block node.
 Our algorithm will not recursively split one node to
the bottom of the quadtree in one frame. Instead, the
user is just expected to specify a depth limit. The tra-
versal will cease when it reaches the depth limit in a
frame. In doing so we can avoid not only searching the
quadtree so deeply as to affect the frame rates, but also
deferring the update of part of the scene so long as to
make visible progressive changes of terrains.
 In frustum culling it is only necessary to test the
nodes rendered at previous frame, thus relieving the
need to test the children of nodes that intersect the
view-frustum recursively. What we have to do is just
calculate the spatial relations between such nodes and
view-frustum when deciding whether to split or merge
them.

4 Error Metrics

4.1 Error of Vertex
As illustrated in Figure 5, deleting vertex D will intro-
duce an error of DE. The error is:

2D
zz

z
BAD +

−=ε .

Split node A

Merge node A

A
BB

A

 If vertex C is a leaf node in the quadtree, as defined
in section 3.1, vertex D is also a child of C.

Figure 5: Deleting D will introduce an error of DE

4.2 Error of node
Each node in the mesh is associated with an error δ ,

0≥δ , and
),,,,,,,,max(32103210 εεεεεδδδδδ = .

 In which iδ is errors of its children, ε is the error
of the vertex, and iε is errors of boundary vertices de-
pending on it.

4.3 Screen Space Error
Since the vertex D is also a child of node C in Figure 4,
then DD εδ = . From the viewpoint of V, deleting D
leads to an angular error DVE∠ . By computing the pixel
projection of DVE∠ , it can be found whether the simpli-
fication violates the specified pixel threshold τ . Let the
field-of-view in y direction be fovy, and height of the
window be h. Let θ be the angular tolerance corre-
sponding to τ . Since θ is very small, approximately
we can get

τθ
h

fovy= .

 If θ=∠DVE , then viewpoint V must lie on one of
the two circles in the 2D diagram in Figure 6. The ra-
dius of the circle is:

τ
δ

θ
δ

θ
δ 1

22sin2
⋅⋅=≈=

fovy
hr .

Figure 6: The angle between V and DE is θ

 Given threshold τ and the error δ of the node, if
viewpoint V lies outside the two circles in the 2D dia-
gram, the screen space error of the node must be smal-
ler than τ. Once the viewpoint enters this zone of one
node, the node should split. Hence, this zone is called
the split zone of the node.

 It seems still troublesome to compute whether the
viewpoint is inside or outside the split zone of a node,
which can further be simplified to an axis-aligned rec-
tangular box with its length and width of 4r, and height
of 2r respectively. In the remainder of this paper all
split zones are referred as axis-aligned boxes except
specially defined.

5 Valid Life of Projection Error
To exploit frame-to-frame coherence, Duchaineau et al
[2] propose to defer some of the projection error up-
dates for some frames, provided that it will not violate
the specified threshold. In this paper, the safe period is
called the valid life of projection error of nodes, or
valid life of nodes in short.
 It proves easy to compute the valid life of projection
error using our simplified split zone. Typically vehicles
move much slower in vertical direction than in horizon-
tal, so it can safely be said that the upper limit of verti-
cal speed is just half that of the horizontal speed. And
the height of the box-shaped split zone is just half the
length and width, too. If so, the valid life of projection
error can easily be deduced as:

ValidLife()
{

dh = max(|vx – cx|, |vy – cy|);
dv = |vz – cz|;
if(dh>2dv)

return (dh – 2r) / vh;
else

return (dv – r) / vv;
}

 In which the viewpoint is (vx, vy, vz), and the center
of the split zone is (cx, cy, cz), vh, vv is the upper limit of
horizontal and vertical speed respectively.

Figure 7: Life axis of node

 The valid life of a splittable node can be described
by means of the life axis in Figure 7. B is the base, and
its value b is an integer. At the beginning B lies on ori-
gin, and b=0, indicating that a splittable node should
split when the viewpoint arrives at the boundary of the
split zone.
 Assuming the viewpoint moves towards the split-
table node along the life axis, it can be deduced that the
valid life of the splittable node would move from left to
right. Reaching B, the valid life of the node will be 0.
This implies that if the viewpoint arrives at the bound-

θ

θ

D

E

V

01 −1
B

−∞∞

splittable node

mergeable node

D C

Viewpoint V

x

y

E
A

B

ary of the split zone, the node will split. The condition
can be expressed as s

0, == bbpQ , in which b=0 meaning
that base B locates at the origin, p represents the current
location of the viewpoint in the life axis of the node,
and p=b meaning that when the viewpoint reaches B,
the node would split.
 Similar to splittable nodes, when a mergeable node
needs to merge, the condition can be shown as

M
0,1 =+= bbpQ . It means that when the viewpoint goes out-

side of the split zone, the node should merge.

6 Constant Frame Rate
Papers [10, 2, 5] describe how to achieve constant
frame rate in details. The main consideration is to opti-
mize the image quality within the triangle budget,
minimizing the screen space error of the vertices. Since
different frames have different projection error bounds,
it is impossible to use the simplification process directly
under a specified threshold in section 4.3. To sort the
nodes properly according to their projection errors, it is
necessary to recount the projection errors for each
frame, or evaluate the valid lives of projection errors
soundly. The former may help to increase the CPU
overhead intensively while the later does not seem a
simple task for we have to take into full account the
changes of the view parameters and the projection
computation.
 Instead of trying to obtain optimal image at each
frame, which is better, this paper believes, to balance
the benefit and the cost between image quality and con-
stant frame rate. When minimizing the screen space
error, attention should also be paid to the runtime effi-
ciency.
 If more triangles are rendered than required at pre-
vious frame, the viewer is known to have reached a
more complex scene. Now the number of nodes to split
is S

0, == bbpn , and the number of nodes to merge is
M

0,1 =+= bbpn , then S
0, == bbpn > M

0,1 =+= bbpn . Obviously, this
will further increase the triangles to be rendered at cur-
rent frame, thus greatly decreasing the frame rate.
 If base B in the life axis moves to right for a unit,
the number of nodes to split is 0, while the number of
nodes to merge would be M

1,1
M

1,2 −=+=−=+= + bbpbbp nn .
Since merging one node will at least decrease two tri-
angles, the number of triangles to be rendered at current
frame will be 2×(M

1,1
M

1,2 −=+=−=+= + bbpbbp nn) less than
at previous frame.
 Similarly, if fewer triangles are rendered than speci-
fied at previous frame, B would move towards left for a
unit. Then the number of nodes to merge is 0, and that
of nodes to split is S

1,
S

1,1 ===−= + bbpbbp nn . Since splitting

one node will at least introduce two triangles, the trian-
gles to be rendered at current frame will be 2 ×

(S
1,

S
1,1 ===−= + bbpbbp nn) more than at previous frame.

 Similar to [2], dual-queue of split and merge is also
adopted in this paper. The queue members are links,
whose elements are splittable or mergeable nodes in
nature. Each link is associated with a value, which is
the valid life of the nodes in the link. At each frame the
values of the links will be subtracted by 1, indicating
that the valid lives of the screen space errors of the
nodes will be subtracted by 1. It is just for this purpose,
the data structure of split and merge queue are all de-
fined as arrays so as to enhance the efficiency of the
algorithm in our implementation.
 The procedure for maintaining constant frame rate
is as follows:

MobilizeQueues()
{

if(nprev>n)
b=b-1; // move the base B towards right for a unit
Recompute the valid lives of nodes in the 2 links at the top
of the merge queue, merge the nodes whose valid lives are
greater than b.

else if(nprev<n)
 b=b+1; // move the base point towards left for a unit

Recompute the valid lives of nodes in the 2 links at the top
of the split queue, split the nodes whose valid lives are less
than or equal to b.

else
Update the valid lives of nodes in the link at the top of the
split queue, split the nodes whose valid lives equals to b.
Update the valid lives of nodes in the link at the top of the
merge queue, merge the nodes whose valid lives equal to
b+1.

}

 Geometrically, our method is to expand or shrink
the split zone towards the boundary for a unit. The re-
sult is deferring or putting ahead the operations of
nodes for one frame time to make the number of trian-
gles rendered per frame approximate to the triangle
budget. If there are more triangles rendered than speci-
fied at previous frame, we prefer to reduce the split
zones of all the nodes for a unit, which helps to defer
the split operations to be executed at current frame to
the next frame. Along with the merging of the nodes at
current frame as usual, we will further merge the nodes
that should merge at next frame, so as to decrease the
triangles to be rendered at current frame. Otherwise, if
at previous frame there are fewer triangles rendered
than needed, we expand the split zones of all the nodes
for a unit to increase the number of triangles to be ren-
dered at current frame.
 Needless to say, the above technique cannot guaran-
tee optimal mesh at each frame. As compared to the
solution updating the screen space errors of all the
nodes and sorting at each frame, we have succeeded in

a. Full resolution after view-frustum culling b. 6000 triangles per frame c. 3000 triangles per frame

Figure 8: Experimental results

deferring or putting ahead one frame time in splitting or
merging nodes according to a fixed threshold. This
surely means some priority changes in the queues, re-
sulting non-optimal image.
 However, the influence is very limited. If the image
at previous frame is optimal, and the base B has not
been moved at current frame, it can also be expected to
obtain an optimal image too. If the scene can change
smoothly and slowly, there would be only a few of
nodes for the operations to be split or merged at each
frame. What has to be moved is only the base for a unit
at each time. Besides, as there are only a few of split
and merge operations to be deferred or put ahead, the
image will not degraded too much compared to the op-
timal mesh. Thus, it can be proved that high efficiency
of constant frame rate can be achieved at the cost of
insignificant image degradation by using our algorithm.
The corresponding experiment results also prove that
the transformation is a great success.
 To achieve such steady frame rate it is only neces-
sary to specify a threshold. Assume the mesh is dd × ,
in our experiments the threshold we have worked out is
as follows:

 In which aveδ is the average error of all the nodes,
tpf is the triangle budget per frame, and k is a coeffi-
cient. It can therefore be found that k = 1.5 will be a

satisfactory result. More information about the formula
can be found in [15].

7 Results
The algorithm was implemented on a PC of PIII450,
128M RAM, with Diamond Viper V770 based on
nVidia Rava TNT2. The terrain mesh is 10251025× . It
takes only 3.12 seconds to render the first frame, in
which 1.39 seconds is to be spent on reading the mesh
and texture from the disk, and 1.66 seconds on preproc-
essing. The base B fluctuates near about the origin. For
example, in a test of a circular flight above the terrain
for 6000 frames at 6000 triangles per frame, the statis-
tics is bmax=54, bmin=−41, bave≈0. On average there are
1238 splittable nodes and 525 mergeable nodes per
frame, on which there are only 128.7 nodes whose valid
lives are to be recomputed, 11.5 splits and 2.3 merges
to be performed, and 23.3 vertices to be inserted and
23.3 vertices deleted. Table 1 lists the runtime statistics
and comparison with previous researches. Since the
volume of the simplified split zone is larger than the
original, the average screen space error in Table 1 is
overestimated.
 Figure 8 shows some of the frames. Figure 8a is the
scene in full resolution after view-frustum culling while
Figure 8b, c the image at 6000, 3000 frames per second.
 In our implementation the view-frustum is simpli-
fied to a cone with all the four corners of the scene con-

sidered outside the view-frustum. No more noticeable
differences can be found between them as compared
with the images before simplification except for part of
the canyon bottom in the distance in the image of 3000
triangles per frame. Part reasons of the difference be-
tween Figure 8c and 8a are that we render the periphery
in a lower resolution caused by our view-angle-based
error metrics.

Scheme hardware window frames/
sec

triangles/
frame

ave error

ours PIII, TNT2 600×600 72 3,000 3.2
,, PIII, TNT2 600×600 55 5,000 2.5
,, PIII, TNT2 600×600 50 6,000 2.3
,, PIII, TNT2 600×600 45 8,000 2.0
,, PIII, TNT2 600×600 30 12,000 1.6

[11] Inigo2 n/a 38 8,000 n/a
[5] R10K-MXI 710×512 60 5,000 3.5
,, R10K-MXI 710×512 30 12,000 1.7

[2] R10K-MXI 1000×1000 30 3,000 n/a
[7] Onyx-RE2 640×480 20-30 4-9,000 2.0

Table 1: Statistics and comparison with previous work

 We adopt simple geometry morphing similar to [2,
5], thus avoid disturbing pops when the resolutions
change in the mesh. To reduce the transport burden
between CPU and graphics pipeline, we also adopt in-
cremental triangle stripping in a locally optimization
manner. In average there are 3.7 triangles in a strip.

8 Conclusions
We propose a new view-dependent method of real-time
terrain rendering. The method introduces block-
priority-based traversal of quadtree and view-angle-
based error metrics. By simplifying the split zone of a
node to an axis-aligned box, we can compute the valid
life of projection error with much less cost. With these
measures the algorithm achieves constant frame rates
easily. The experimental results show that our method
can real-time render large scale terrain on a low-cost
PC. We hope our efforts will be some help to the
broader applications of view-dependent techniques.
Future work includes disk operation and texture map
LOD processing, etc.

References
[1] Baoquan Chen, J. E. Swan II, Eddy Kuo and A. E.
Kaufman. LOD-Sprite Technique for Accelerated Ter-
rain Rendering. In IEEE Visualization '99, pages 291-
298, 1999.
[2] M. A. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C.
Miller, C. Aldrich and M. B. Mineev-
Weinstein. ROAMing Terrain: Real-time Optimally
Adapting Meshes. In IEEE Visualization '97, pages 81-
88, 1997.
[3] C. Erikson and D. Manocha. HLODs for Fast Dis-
play of Large Static and Dynamic Environments. Sym-

posium on Interactive 3D Graphics 2001 Proceedings,
2001.
[4] H. Hoppe. View-Dependent Refinement of Progres-
sive Meshes, In Proceedings of SIGGRAPH 97, Com-
puter Graphics Proceedings, Annual Conference Se-
ries, pages 189-198, 1997.
[5] H. Hoppe. Smooth View-Dependent Level-of-Detail
Control and its Application to Terrain Rendering. In
IEEE Visualization '98, pages 35-42, 1998.
[6] R. Klein, D. Cohen-Or and T. Hüttner. Incremental
view-dependent multiresolution triangulation of ter-
rain. In The Journal of Visualization and Computer
Animation, 9(3), pages 129-143, 1998.
[7] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hughes,
N. Faust and G. Turner. Real-Time, Continuous Level
of Detail Rendering of Height Fields. In Proceedings of
SIGGRAPH 96, Computer Graphics Proceedings, An-
nual Conference Series, pages 109-118, 1996.
[8] Xuehui Liu, Enhua Wu. Hierarchical Structure with
Focus Criterion for Rendering Height Field. In Journal
of Computer Science & Technology, 13(12), pages 1-8,
1998.
[9] D. Luebke. A Survey of Polygonal Simplification
Algorithms, UNC Technical Report TR97-045. De-
partment of Computer Science, University of North
Carolina at Chapel Hill, 1997.
[10] D. Luebke and C. Erikson. View-Dependent Sim-
plification of Arbitrary Polygonal Environments. In
Proceedings of SIGGRAPH 97, Computer Graphics
Proceedings, Annual Conference Series, pages 199-208,
1997.
[11] R. Pajarola. Large Scale Terrain Visualization Us-
ing The Restricted Quadtree Triangulation. In IEEE
Visualization '98, pages 19-26, 1998.
[12] G. Schaufler, J. Dorsey, X. Decoret and F. X. Sil-
lion. Conservative Volumetric Visibility with Occluder
Fusion. In Proceedings of SIGGRAPH 2000, Computer
Graphics Proceedings, Annual Conference Se-
ries, pages 229-238, 2000.
[13] J. Shade, D. Lischinski, D. Salesin, T. DeRose and
J. Snyder. Hierarchical Image Caching for Accelerated
Walkthroughs of Complex Environments.
In Proceedings of SIGGRAPH 96, Computer Graphics
Proceedings, Annual Conference Series, pages 75-82,
1996.
[14] A. J. Stewart. Hierarchical Visibility in Terrains. In
Eurographics Rendering Workshop 1997, pages 217-
228, 1997.
[15] Yadong Wu. Real-time rendering techniques in 3D
GIS. Doctoral dissertation, Department of Computer
science, Beijing Institute of Technology, 2001.
[16] J. C. Xia and A Varshney. Dynamic View-
Dependent Simplification for Polygonal Models. In
IEEE Visualization '96, pages 327-334, 1996.

