
Hardware Accelerated Displacement Mapping for Image Based Rendering

Jan Kautz
Max-Planck-Institut für Informatik

Saarbrücken, Germany

Hans-Peter Seidel
Max-Planck-Institut für Informatik

Saarbrücken, Germany

Abstract
In this paper, we present a technique for rendering dis-

placement mapped geometry using current graphics hard-
ware.

Our method renders a displacement by slicing through
the enclosing volume. Theα-test is used to render only
the appropriate parts of every slice. The slices need not
to be aligned with the base surface, e.g. it is possible to
do screen-space aligned slicing.

We then extend the method to be able to render the
intersection between several displacement mapped poly-
gons. This is used to render a new kind of image-based
objects based on images with depth, which we callimage
based depth objects.

This technique can also directly be used to acceler-
ate the rendering of objects using the image-based visual
hull. Other warping based IBR techniques can be accel-
erated in a similar manner.

Key words: Displacement Mapping, Image Warping,
Hardware Acceleration, Texture Mapping, Frame-Buffer
Tricks, Image-Based Rendering.

1 Introduction

Displacement mapping is an effective technique to add
detail to a polygon-based surface model while keeping
the polygon count low. For every pixel on a polygon a
value is given that defines the displacement of that partic-
ular pixel along the normal direction effectively encoding
a heightfield. So far, displacement mapping has mainly
been used in software rendering [21, 29] since the graph-
ics hardware was not capable of rendering displacement
maps, although ideas exist on how to extend the hardware
with this feature [9, 10, 20].

A similar technique used in a different context is im-
age warping. It is very similar to displacement mapping,
only that in image warping adjacent pixels need not to be
connected, allowing to see through them for certain view-
ing directions. Displacement mapping is usually applied
to a larger number of polygons, whereas image warp-
ing is often done for a few images only. Techniques
that use image warping are also traditionally software-
based [12, 16, 19, 25, 26, 27].

Figure 1:Furry donut (625 polygons) using displacement
mapping. It was rendered at 35Hz on a PIII/800 using an
NVIDIA GeForce 2 GTS.

Displacement mapping recently made its way into
hardware accelerated rendering using standard features.
The basic technique was introduced by Schaufler [24] in
the context of warping for layered impostors. It was then
reintroduced in the context of displacement mapping by
Dietrich [8]. This algorithm encodes the displacement in
theα-channel of a texture. It then draws surface-aligned
slices through the volume defined by the maximum dis-
placement. Theα-test is used to render only the appropri-
ate parts of every slice. Occlusions are handled properly
by this method.

This algorithm works well only for surface-aligned
slices. At grazing angles it is possible to look through
the slices. In this case, Schaufler [24] regenerates the lay-
ered impostor, i.e. the texture and the displacement map,
according to the new viewpoint, which is possible since
he does have the original model that the layered impostor
represents.

We will introduce an enhanced method that supports
arbitrary slicing planes, allowing orthogonal slicing di-
rections or screen-space aligned slicing commonly used
in volume rendering, eliminating the need to regenerate
the texture and displacement map.

On the one hand, we use this new method to render

traditional displacement mapped objects; see Figure 1.
This works at interactive rates even for large textures and
displacements employing current graphics hardware.

On the other hand, this new method can be extended
to render a new kind of image-based object, based on im-
ages with depth, which we will refer to asimage based
depth objects. How to reconstruct an object from sev-
eral images with depth has been known for many years
now [2, 3, 6]. The existing methods are purely software
based, very slow, and often working on a memory con-
suming full volumetric representation. We introduce a
way to directly render these objects at interactive rates
using graphics hardware without the need to reconstruct
them in a preprocessing step. The input images are as-
sumed to be registered beforehand.

We will also show how the image-based visual hull al-
gorithm [13] can be implemented using this new method,
and which runs much faster than the original algorithm.

Many other image based rendering algorithms also use
some kind of image warping [12, 16, 19, 25, 26, 27]. The
acceleration of these algorithms using our technique is
conceivable.

2 Prior Work

We will briefly review previous work from the areas
of displacement mapping, image warping, object recon-
struction, and image-based objects.

Displacement Mapping was introduced by Cook [4]
and has been traditionally used in software based meth-
ods, e.g. using raytracing or micro-polygons. Patter-
son et al. [21] have introduced a method that can ray-
trace displacement mapped polygons by applying the in-
verse of this mapping to the rays. Pharr and Hanra-
han [22] have used geometry caching to accelerate dis-
placement mapping. Smits et al. [29] have used an ap-
proach which is similar to intersecting a ray with a height-
field. The REYES rendering architecture subdivided the
displacement maps into micro-polygons which are then
rendered [5].

On the other hand many image-based rendering (IBR)
techniques revolve around image warping, which was
e.g. used by McMillan et al. [16] in this context. There
are two different ways to implement the warping: forward
and backward mapping. Forward mapping loops over all
pixels in the original image and projects them into the
desired image. Backward mapping loops over all pixels
in the desired image and searches for the corresponding
pixels in the original image. Forward mapping is usu-
ally preferred, since the search process used by backward
mapping is expensive, although forward mapping may in-
troduce holes in the final image. Many algorithms have
been proposed to efficiently warp images [1, 15, 20, 28].

All of them work in software, but some are designed to
be turned into hardware.

The only known hardware accelerated method to do
image warping was introduced by Schaufler [24]. Diet-
rich [8] used it later on for displacement mapping. This
algorithm will be explained in more detail in the next sec-
tion. It has the main problem of introducing severe arti-
facts at grazing viewing angles.

Many IBR techniques employ (forward) image warp-
ing [12, 19, 20, 25, 26, 27] but also using a software im-
plementation.

New hardware has also been proposed that would al-
low displacement mapping [9, 10, 20], but none of these
methods have found their way into actual hardware.

The reconstruction of objects from images with depth
has been researched for many years now. Various differ-
ent algorithms have been proposed [2, 3, 6] using two
different approaches: reconstruction from unorganized
point clouds, and reconstruction that uses the underlying
structure. None of these algorithms using either approach
can reconstruct and display such an object in real-time,
whereas our method is capable of doing this.

There are many publications on image based objects;
we will briefly review the closely related ones. Pulli et
al. [23] hand-model sparse view-dependent meshes from
images with depth in a preprocessing step and recom-
bine them on-the-fly using a soft z-buffer. McAllister et
al. [14] use images with depth to render complex environ-
ments. Every seen surface is stored once in exactly one of
the images. Rendering is done using splatting or with tri-
angles. Layered depth images (LDI) [27] store an image
plus multiple depth values along the direction the image
was taken; reconstruction is done in software. Image-
based objects [19] combine six LDI arranged as a cube
with a single center of projection to represent objects. An
object defined by its image-based visual hull [13] can be
rendered interactively using a software renderer.

Our method for rendering image-based objects is one
of the first purely hardware accelerated method achieving
high frame rates and quality. It does not need any prepro-
cessing like mesh generation, it only takes images with
depths.

3 Displacement Mapping

The basic idea of displacement mapping is simple. A
base geometry is displaced according to a displacement
function, which is usually sampled and stored in an ar-
ray, the so-called displacement map. The displacement is
performed along the interpolated normals across the base
geometry. See Figure 2 for a 2D example where a flat
line is displaced according to a displacement map along
the interpolated normals.

geometry
displacement mappeddisplacement mapbase geometry

nn

Figure 2:Displacement Mapping.

3.1 Basic Hardware Accelerated Method
First we would like to explain the basic algorithm for do-
ing displacement mapping using graphics hardware as it
was introduced by Dietrich [8] (and in a similar way by
Schaufler [24]).

The input data for our displacement mapping algo-
rithm is an RGBα-texture, which we calldisplacement
texture, where the color-channels contain color informa-
tion and theα-channel contains the displacement map. In
Figure 3 you can see the color texture and theα-channel
of a displacement texture visualized in different images.
The displacement values stored in theα-channel repre-
sent the distance of that particular pixel to the base ge-
ometry, i.e. the distance along the interpolated normal at
that pixel.

side viewtop view

Figure 4:Top view and side view of a displaced polygon
using the basic method (64 slices).

In order to render a polygon with a displacement tex-
ture applied to it, we render slices (i.e. polygons) through
the enclosing volume extruded along the surface’s normal
directions, which we will call thedisplacement volume;
see right side of Figure 3. Every slice is drawn at a certain
distance to the base polygon textured with the displace-
ment texture. In every slice only those pixels should be
visible whose displacement value is greater or equal the
height of the slice. This can be achieved by using theα-
test. For every slice that is drawn we convert its height
to anα-valuehα in the range[0, 1], wherehα = 0 cor-
responds to no elevation; see Figure 3. We then enable
theα-test so that only fragments pass whoseα-value is
greater or equalhα.

As you can see in Figure 3 this method completely fills

the inside of a displacement (which will be needed later
on).

Schaufler [24] used a slightly different method. In ev-
ery slice only those pixels are drawn whoseα-values lie
within a certain bound of the slice’s height. For many
viewpoints this allows to see through neighboring pix-
els whose displacement values differ more than the used
bound. This is suited to image warping in the traditional
sense, where it is assumed that pixels with very differ-
ent depth values are not connected. The method we de-
scribed is more suited to displacement mapping, where it
is assumed that neighboring pixels are always connected.

Both methods have the problem that at grazing angles
it is possible to look through the slices; see Figure 4 for an
example. Schaufler [24] simply generates a new displace-
ment texture for the current viewpoint using the origi-
nal model. In the next section we introduce an enhanced
algorithm that eliminates the need to regenerate the dis-
placement texture.

3.2 Orthogonal Slicing
It is desirable to change the orientation of the slices to
avoid the artifacts that may occur when looking at the dis-
placement mapped polygon from grazing angles as seen
in Figure 4.

Meyer and Neyret [17] used orthogonal slicing direc-
tions for rendering volumes to avoid artifacts that oc-
curred in the same situation. We use the same possi-
ble orthogonal slicing directions, as depicted in Figure 5.
Depending on the viewing direction, we choose the slic-
ing direction that is most perpendicular to the viewer and
which will cause the least artifacts.

ca b

Figure 5: The three orthogonal slicing directions. Only
slicing directiona is used by the basic algorithm.

Unfortunately, we cannot directly use the previously
employedα-test since there is no fixedα-valuehα (see
Figure 3) that could be tested for slicing directionsb
andc; see Figure 5. Within every slice theα-valueshα

vary from 0 to 1 (bottom to top); see the ramp in Figure 6.
Everyα-value in this ramp corresponds to the pixel’s dis-
tance from the base geometry, i.e.hα.

A single slice is rendered as follows. First we ex-
trude the displacement texture along the slicing polygon,
which is done by using the same set of texture coordi-

displacement texture

color texture displacement map

+ =

Figure 3:Displacement Mapping using Graphics Hardware.

nates for the lower and upper vertices. Then we subtract
theα-ramp (applied as a texture or specified as color at
the vertices) from theα-channel of the displacement tex-
ture, which we do with NVIDIA’s register combiners [18]
since this extension allows to perform the subtraction in
a single pass. The resultingα-value is greater than 0 if
the corresponding pixel is part of the displacement. We
set theα-test to pass only if the incomingα-values are
greater than 0. You can see in Figure 6 how the correct
parts of the texture map will be chosen.

alpha test

−

displacement map

α:

RGB:

=

ramp

Figure 6:The necessary computation involved for a sin-
gle orthogonal slice. First the displacement texture is ex-
truded along the slicing polygon. The resultingα and
RGB channels of the textured slicing polygon are shown
separately. Then, the shownα-ramp is subtracted. The
resultingα-values are> 0 if the pixel lies inside the dis-
placement. Theα-test is used to render only these pixels.

Now that we know how this is done for a single slice,
we apply this to many slices and can render the displace-
ment mapped polygon seen in Figure 4 from all sides
without introducing artifacts; see Figure 7.

This algorithm works for the slicing directionb andc.
It can also be applied for directiona, we just use the reg-
ister combiners to subtract the per-slicehα-value from
theα-value in the displacement map (for every slice) and

a cb

Figure 7: Displacement mapped polygon rendered with
all three slicing directions (using 64 slices each time).

perform theα-test as just described.
Using the same algorithm for all slicing directions

treats displacement map values of 0 consistently. The ba-
sic algorithm does render pixels if the displacement value
is 0, which corresponds to no elevation. The new method
doesnot draw them, it starts rendering pixels if their orig-
inal displacement value is greater than 0. This has the ad-
vantage that parts of the displaced polygon can be masked
out by setting the displacement values to 0.

3.3 Screen-Space Slicing

Orthogonal slicing is already a good method to pre-
vent one from looking through the slices. From volume
rendering it is known that screen-space aligned slicing,
which uses slices that are parallel to the viewplane, is
even better. In Figure 8 it is shown why this is the case.
The screen-space aligned slices are always orthogonal to
the view direction and consequently preventing him/her
from seeing through or in-between the slices.

The new method described in the last section can be
easily adapted to allow screen-space aligned slicing.

Our technique can be seen as a method that cuts out
certain parts of the displacement volume over the base
surface. The parts of the volume which are larger than
the specified displacements are not drawn.

In Figure 9 you can see an arbitrary slicing plane in-

orthogonal screen−space

Figure 8:Orthogonal vs. screen-space aligned slices.

tersecting this volume. Three intersections are shown:
with the extruded color texture, the extruded displace-
ment map, and with thehα-volume. Of course only those
parts of this slicing plane should be drawn that have a
displacement-value (as seen in the middle) that is equal
or greaterhα (as seen on the right). To achieve this, we
use the exact same algorithm from the previous section,
i.e. we subtract the (intersected)α-ramp from the (inter-
sected) displacement map and use the resultingα-value
in conjunction with theα-test to decide whether to draw
the pixel or not.

The only difficulty is the computation of the texture
coordinates for an arbitrary slicing plane, so that it cor-
rectly slices the volume. For screen-space aligned slices
this boils down to applying the inverse modelview matrix,
which was used for the base geometry, to the original tex-
ture coordinates plus some additional scaling/translation,
so that the resulting texture coordinates lie in the [0,1]
range. This can be done using the texture matrix.

Now it is possible to render the displacement using
screen-space aligned slices, as depicted in Figure 8.

The actual implementation is a bit more complicated
depending on the size and shape of the slices. The sim-
plest method generates slices that are all the same size, as
seen in Figure 8. Then one must ensure that only those
parts of the slices are texture mapped that intersect the
displacement volume. This can be done using texture bor-
ders where theα-channel is set to 0, which ensures that
nothing is drawn there (pixels with displacement values
of 0 are not drawn at all, see previous section). Unfortu-
nately, this takes up a lot of fill rate that could be used
otherwise. A more complicated method intersects the
slices with the displacement volume and generates new
slicing polygons which exactly correspond to the inter-
section. This requires less fill rate, but the computation
of the slices is more complicated and burdens the CPU.

3.4 Comparison of Different Slicing Methods

The surface-aligned slicing method presented in Sec-
tion 3.1 is the simplest method. It only works well when
looking from the top onto the displacement, otherwise it

displacementcolor hα

Figure 9: Intersection of arbitrary slicing plane with the
displacement volume.

is possible to look through the slices.
The orthogonal slicing method is already a big im-

provement over the simplistic basic method. But it should
be mentioned that slicing in other directions than orthog-
onally to the base surface usually requires more slices.
This is visualized in Figure 10. The orthogonal slicing
directiona achieves acceptable results even with a few
slices, whereas the slicing directionb produces unusable
results. This can be compensated if the number of slices
used is adjusted according to the ratio of the maximum
displacement and the edge length of the base geometry.
For example, if the base polygon has an edge length of
2 and the maximum displacement is 0.5, then 4 times
as many slices should be used for the slicing directionb
(or c). This also keeps the fill rate almost constant.

screen−spaceba

Figure 10:Comparison of different slicing directions (a,
b, and screen-space).

Screen-space aligned slicing should offer the best qual-
ity since the viewing direction is always orthogonal to the
slices. While this is true (see Figure 10), screen-space
aligned slicing can introduce a lot of flickering, especially
if not enough slices are used. In any case, the screen-
space method is more expensive than orthogonal slicing
since some more care has to be taken that only the correct
parts are rendered; see the previous section.

The absolute number of slices that should be used de-
pends on the features of the displacement map itself and
also on the size the displacement takes up in screen-
space. Different criteria that have been proposed by
Schaufler [24] and Meyer and Neyret [17] can be applied
here as well.

4 Image Based Depth Objects

So far, we have shown how we can efficiently render
polygons with a displacement map. We can consider a
single displacement mapped polygon as an object with
heightfield topology. The input data for this object is
a color texture and a depth image, which we assume
for a moment to have been taken with an (orthogonal)
camera that outputs color and depth. What if we take
more images with depth of this object from other view-
points? Then the shape of the resulting object, which
does not necessarily have heightfield topology anymore,
is defined by the intersection of all the displaced images.
This is shown in Figure 11 for two input images with
depth. As you can see the resulting object has a com-
plex non-heightfield shape. Many software-based vision
algorithms exist for reconstructing objects using this kind
of input data, e.g. [2, 3, 6].

intersect

Figure 11:Intersection of two displacement maps.

Our displacement mapping technique can be easily ex-
tended to rendering this kind of object without explicitly
reconstructing it. What needs to be done is to calculate
the intersection between displacement mapped polygons.
We will look at the special case, where the base poly-
gons are arranged as a cube and the intersection object
is enclosed in that cube; other configurations are possi-
ble. This algorithm can use screen-space aligned slices
as well as orthogonal slices. In our description we focus
on orthogonal slicing for the sake of simplicity.

Let us look at a single pixel that is enclosed in that cube
and which is to be drawn. We have to decide two things:
firstly, is it part of the object. If so, then it should be
rendered or otherwise be discarded. And secondly, given
the pixel is part of the object, which texture map should
be applied. We will first deal with the former problem
and in the next section with latter.

4.1 Rendering
The decision whether to render or discard a pixel is fairly
simple. Since we assume a cube configuration, we know
that the pixel is inside the displacement volumes of all
polygons. A pixel is part of the object, if theα-tests suc-
ceeds for all six displacement maps.

In Figure 16 you can see how this works conceptually:
One slice is cutting through the cube defined by four en-
closing polygons (usually six but for clarity only four).
For every polygon we apply our displacement mapping
algorithm with the given slicing polygon. The pixels on
the slicing plane are colored according to the base poly-
gon where theα-test succeeded. Only the pixels that are
colored with all colors belong to the object resulting in
white pixels in Figure 16, whereas the other pixels have
to be discarded.

With an imaginatory graphics card that has a lot of tex-
ture units and that allows many operations to be done in
the multitexturing stage the rendering algorithm is sim-
ple. The slicing polygon is textured with the projections
of all the displacement textures of the base polygons as
well as the accordingα-ramps. For every displacement
map we compute the difference between its displacement
values and theα-valuehα from the ramp texture (see Sec-
tion 3.2). The resultingα-value is greater zero if the pixel
belongs to the displacement of that particular displace-
ment map. We can now simply multiply the resultingα-
values of all displacement maps. If it is still greater 0,
we know that all theα-values are greater 0 and the pixel
should be drawn, otherwise it should be discarded. As ex-
plained before we check this with anα-test that lets only
pass fragments withα greater 0.

Although it is expected that future graphics cards will
have more texture units and even more flexibility in the
multitexturing stage, it is unlikely that they will soon be
able to run the just described algorithm. Fortunately, we
can use standard OpenGL to do the same thing, only that
it is a bit more complicated and requires the stencil buffer:

1. Clear frame buffer and disable depth-test.
2. Loop over slices from front to back

(a) Loopi over all base polygons

i. Set stencil test to pass and increment if stencil
value equalsi − 1, otherwise keep it and fail
test

ii. Render slice (using theα-test)

(b) // Stencil value will equal total number of base
// polygons where allα-tests passed

(c) // Now clear frame buffer where stencil value is
// less than total number of base polygons:

(d) Set stencil test to pass and clear, if stencil6= to-
tal number of base polygons, otherwise keep stencil
(those parts have to remain in the frame buffer)

(e) Draw slice with background color

(f) // Parts with stencil = total number of base polygons
// will remain, others are cleared

Please note that we slice the cube from front to back in
the “best” orthogonal direction.

4.2 Texture Mapping
So far, we have only selected the correct pixels, but we
still have to texture map them with the “best” texture map.
There are as many texture maps as base polygons and the
most appropriate is the one that maps onto the pixel along
a direction which is close to the viewing direction.

Instead of using only one texture map, we choose the
three texture maps which come closest to the current
viewing direction. First we compute the angles between
the normals of the base polygons and the viewing direc-
tion. We then choose those three base polygons with the
smallest angles and compute three weights, summing up
to one, that are proportional to the angles. The weights
for the other base polygons are set to zero. When we now
render a slice in turn with all the displacement textures
defined by the base polygons (see algorithm in previous
subsection), we set the color at the vertices of the slice
to the computed weights. The contributions of the differ-
ent textures are summed up using blending. This strategy
efficiently implements view-dependent texturing [7].

5 Image Based Visual Hull

The algorithm that was described in the previous section
can also be used to render objects based on their visual
hull, for which Matusik et al. [13] proposed an interactive
rendering algorithm that uses a pure software solution.

These objects are defined by their silhouette seen from
different viewpoints. Such an object is basically just the
intersection of the projections of the silhouettes. The
computation of the intersection is almost exactly what
our algorithm does, only that we also take into account
per-pixel depth values. The only thing that we need to
change in order to render a visual hull object is the in-
put data. Theα-channel of the displacement maps con-
tains 1s inside the silhouette and 0s outside. Then we can
run the same algorithm that was explained in the previous
section.

If the input images are arranged as a cube, the algo-
rithm can be streamlined a bit more, since opposing sil-
houettes are the same. A graphics card with something
similar to NVIDIA’s register combiner extension and four
texture units would then be able to render a visual hull
object in only a single pass per slice.

6 Results and Discussion

We have verified our technique using a number of mod-
els and displacement textures. All our timings were mea-
sured on on a PIII/800 using an NVIDIA GeForce 2 GTS.

Figure 1, Figure 17, and Figure 18 show different dis-
placement maps applied to a simple donut with 625 poly-
gons. We used between 15 and 25 slices together with
the orthogonal slicing technique. The frame rates varied

between 35 and 40Hz. This technique is heavily fill rate
dependent and the number of additional slicing polygons
can be easily handled by the geometry engine of modern
graphics cards.

constant coverage
varying # of slices

varying coverage
128 slices

20

15

10

5

450 500

fps

fps
25

150
number of slices

pixel coverage (X * X)

32 250
0

50 100 200

0

25

30

35

10

Depth Object
Visual Hull

Depth Object
Visual Hull

20

250 300 350 400200

15

5

100 150

Figure 12:Comparison of timings for rendering the crea-
ture. The upper graph shows how the frame rate varies
with different pixel coverage but constant number of
slices (128 in this case). The lower graph shows frame
rates depending on the number of slices but for a fixed
size (300×300 pixels).

In Figure 13 the input data for our image-based depth
object algorithm is shown — a creature orthogonally seen
through six cube faces. In Figure 14 you can see the crea-
ture rendered with our method. The achieved frame rates
are heavily fill rate dependent. When the object occu-
pies about150 × 150 pixels on the screen, we achieve
about 24 frames per second using 70 slices (high qual-
ity). For 400 × 400 pixels about 150 slices are needed
for good quality yielding about 2.7 frames per second.
In Figure 12 two graphs show the variation in frame rates
depending on the pixel coverage and the number of slices.

We also noted that the rendering speed depends on the
viewing angle relative to the slicing polygons. The more
the slicing polygons are viewed at an angle, the better the
frame rate (up to 20% faster). This is not surprising, since
less pixels have to drawn.

With the next generation graphics cards (e.g.
GeForce 3), which have four texture units, the frame rate

is likely to almost double.
As you can see under the creature’s arm, naïve view-

dependent texturing is not always ideal. Even if a part
of the object has not been seen by any of the images, it
will be textured anyway, which can produce undesirable
results.

In Figure 15 you can see our algorithm working on
the same input data, only that all the depth values greater
than 0 were set to 1. This corresponds to the input of a
visual hull algorithm. You can see that many artifacts are
introduced, because there are not enough input images
for an exact rendering of the object. Furthermore, many
concave objects, e.g. a cup, cannot be rendered correctly
at all using the visual hull, unlike the image-based depth
objects that can handle concave objects. Frame rates are
increased for the visual hull compared to the depth ob-
jects (see Figure 12), because only the three front-facing
polygons of the cube are used (opposing cube faces have
the same silhouettes).

7 Conclusions and Future Work

We have presented an efficient technique that allows to
render displacement mapped polygons at interactive rates
on current graphics cards. Displacement mapped poly-
gons are rendered by cutting slices through the enclosing
displacement volume. The quality is improved over pre-
vious methods with a flexible slicing method.

This flexible slicing method allows the introduction of
image-based depth objects. An image-based depth ob-
ject is defined by the intersection of displacement mapped
polygons. These depth objects can be rendered using
our displacement mapping technique at interactive frame
rates. The quality of the resulting images is high, but can
be sacrificed for speed by choosing fewer slicing planes.
Depth objects can handle fairly complex shapes, espe-
cially compared to the similar image-based visual hull al-
gorithm.

Shading of the image-based depth objects is handled
by using view-dependent texture mapping. Reshading
can be accomplished by using not only colors as an input
but also using a texture map storing normals, which can
then be used to perform the shading [11]. This can also be
used to shade the displacement mapped polygons, which
doesn’t even require more rendering passes on NVIDIA
GeForce class graphics cards since only the first texture
unit is needed for the displacement mapping algorithm
keeping the second unit available.

Furthermore, animating the displacement maps is pos-
sible much in the same way as it was proposed by Meyer
and Neyret [17]. Also animated depth objects are easily
possible, only prerendered texture maps have to be loaded
the graphics card.

For the image-based depth objects we have only used
images with “orthogonal” depth values. The technique
can be easily extended to images with “perspective”
depth values.

Acknowledgements

We would like to thank Hiroyuki Akamine for writing the
3D Studio Max plugin to save depth values. Thanks to
Hartmut Schirmacher for the valuable discussions about
this method.

8 References

[1] B. Chen, F. Dachille, and A. Kaufman. Forward
Image Warping. InIEEE Visualization, pages 89–
96, October 1999.

[2] Y. Chen and G. Medioni. Surface Description Of
Complex Objects From Multiple Range Images. In
Proceedings Computer Vision and Pattern Recogni-
tion, pages 153–158, June 1994.

[3] C. Chien, Y Sim, and J. Aggarwal. Generation of
Volume/Surface Octree From Range Data. InPro-
ceedings Computer Vision and Pattern Recognition,
pages 254–260, June 1988.

[4] R. Cook. Shade Trees. InProceedings SIGGRAPH,
pages 223–231, July 1984.

[5] R. Cook, L. Carpenter, and E. Catmull. The Reyes
Image Rendering Architecture. InProceedings SIG-
GRAPH, pages 95–102, July 1987.

[6] B. Curless and M. Levoy. A Volumetric Method for
Building Complex Models from Range Images. In
Proceedings SIGGRAPH, pages 303–312, August
1996.

[7] P. Debevec, Y. Yu, and G. Borshukov. Efficient
View-Dependent Image-Based Rendering with Pro-
jective Texture-Mapping. In9th Eurographics Ren-
dering Workshop, pages 105–116, June 1998.

[8] S. Dietrich. Elevation Maps. Technical report,
NVIDIA Corporation, 2000.

[9] M. Doggett and J. Hirche. Adaptive View Depen-
dent Tessellation of Displacement Maps. InPro-
ceedings SIGGRAPH / Eurographics Workshop on
Graphics Hardware, pages 59–66, August 2000.

[10] S. Gumhold and T. Hüttner. Multiresolution Ren-
dering with Displacement Mapping. InProceedings
SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pages 55–66, August 1999.

[11] W. Heidrich and H.-P. Seidel. Realistic, Hardware-
accelerated Shading and Lighting. InProceedings
SIGGRAPH, pages 171–178, August 1999.

[12] W. Mark, L. McMillan, and G. Bishop. Post-
Rendering 3D Warping. InSymposium on Interac-
tive 3D Graphics, pages 7–16, April 1997.

[13] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and
L. McMillan. Image-Based Visual Hulls. InPro-
ceedings SIGGRAPH, pages 369–374, July 2000.

[14] D. McAllister, L. Nyland, V. Popescu, A. Lastra,
and C. McCue. Real-Time Rendering of Real-
World Environments. In10th Eurographics Ren-
dering Workshop, pages 153–168, June 1999.

[15] L. McMillan and G. Bishop. Head-Tracked Stereo-
scopic Display Using Image Warping. InProceed-
ings SPIE, pages 21–30, February 1995.

[16] L. McMillan and G. Bishop. Plenoptic Modeling:
An Image-Based Rendering System. InProceed-
ings SIGGRAPH, pages 39–46, August 1995.

[17] A. Meyer and F. Neyret. Interactive Volumetric Tex-
tures. In9th Eurographics Rendering Workshop,
pages 157–168, June 1998.

[18] NVIDIA Corporation. NVIDIA OpenGL Extension
Specifications, November 1999. Available from
http://www.nvidia.com.

[19] M. Oliveira and G. Bishop. Image-Based Objects.
In 1999 ACM Symposium on Interactive 3D Graph-
ics, pages 191–198, April 1999.

[20] M. Oliveira, G. Bishop, and D. McAllister. Re-
lief Texture Mapping. InProceedings SIGGRAPH,
pages 359–368, July 2000.

[21] J. Patterson, S. Hoggar, and J. Logie. Inverse Dis-
placement Mapping.Computer Graphics Forum,
10(2):129–139, June 1991.

[22] M. Pharr and P. Hanrahan. Geometry Caching
for Ray-Tracing Displacement Maps. In7th Euro-
graphics Rendering Workshop, pages 31–40, June
1996.

[23] K. Pulli, M. Cohen, T. Duchamp, H. Hoppe,
L. Shapiro, and W. Stuetzle. View-based Rendering:
Visualizing Real Objects from Scanned Range and
Color Data. In8th Eurographics Rendering Work-
shop, pages 23–34, June 1997.

[24] G. Schaufler. Per-Object Image Warping with Lay-
ered Impostors. In9th Eurographics Rendering
Workshop, pages 145–156, June 1998.

[25] G. Schaufler and M. Priglinger. Efficient Displace-
ment Mapping by Image Warping. In10th Eu-
rographics Rendering Workshop, pages 183–194,
June 1999.

[26] H. Schirmacher, W. Heidrich, and H.-P. Sei-
del. High-Quality Interactive Lumigraph Rendering
Through Warping. InProceedings Graphics Inter-
face, pages 87–94, 2000.

[27] J. Shade, S. Gortler, L. He, and R. Szeliski. Layered
Depth Images. InProceedings SIGGRAPH, pages
231–242, July 1998.

[28] A. Smith. Planar 2-Pass Texture Mapping and

Warping. InProceedings SIGGRAPH, pages 263–
272, July 1987.

[29] B. Smits, P. Shirley, and M. Stark. Direct Ray Trac-
ing of Displacement Mapped Triangles. In11th
Eurographics Workshop on Rendering, pages 307–
318, June 2000.

Figure 13:The input data for the creature model (color and depth).

Figure 14:Image-Based Depth Object. Figure 15:Image-Based Visual Hull.

Figure 16:One slice through an
image-based depth object.

Figure 17: Displacement
mapped donut (20 slices, 38Hz).

Figure 18: Displacement
mapped donut (15 slices, 41Hz).

