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Abstract
We present a number of techniques to facilitate the gen-
eration of textures for facial modeling. In particular, we
address the generation of facial skin textures from uncal-
ibrated input photographs as well as the creation of in-
dividual textures for facial components such as eyes or
teeth. Apart from an initial feature point selection for the
skin texturing, all our methods work fully automatically
without any user interaction. The resulting textures show
a high quality and are suitable for both photo-realistic and
real-time facial animation.

Key words: texture mapping, texture synthesis, mesh pa-
rameterization, facial modeling, real-time rendering

1 Introduction

Over the past decades, facial modeling and animation
has achieved a degree of realism close to photo-realism.
Although the trained viewer is still able to detect mi-
nor flaws in both animation and rendering of recent full-
feature movies such asFinal Fantasy, the overall quality
and especially the modeling and texturing are quite im-
pressive. However, several man-years went into the mod-
eling of each individual character from that movie. Try-
ing to model a real person becomes even more tricky: the
artistic licence to create geometry and textures that “look
good” is replaced by the demand to create models that
“look real”.

A common approach towards creating models of real
persons for facial animation uses range scanners such as,
for instance, Cyberware scanners to acquire both the head
geometry and texture. Unfortunately, the texture resolu-
tion of such range scanning devices is often low com-
pared to the resolution of digital cameras. In addition,
the textures are typically created using a cylindrical pro-
jection. Such cylindrical textures have the drawback to
introduce visual artifacts, for instance on top of the head,
behind the ears, or under the chin. Finally, there is no
automatic mechanism provided to generate textures for
individual facial components such as eyes and teeth.

In this paper, we present an approach to generate high-
resolution textures for both facial skin and facial compo-
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Figure 1: Overview of our skin texture generation pro-
cess: the 3D face mesh is parameterized over a 2D do-
main and the texture is resampled from several input pho-
tographs.

nents from several uncalibrated photographs. The gener-
ation of these textures is automated to a large extent, and
the resulting textures do not exhibit any patch structures,
i.e. they can be used for mip-mapping. Our approach
combines several standard techniques from texture map-
ping and texture synthesis. In addition, we introduce the
following contributions:

• a view-dependent parameterization of the 2D texture
domain to enhance the visual quality of textures with
a fixed resolution;

• a texture resampling method that includes color
interpolation for non-textured regions and visual
boundary removal using multiresolution splines
with a fully automatic mask generation;

• a radial texture synthesis approach with automatic
center finding, which robustly produces individual
eyeball textures from a single input photograph;

• a technique that uses a single natural teeth photo-
graph to generate a teeth texture, which is applied to
an appropriate 3D model to resemble the appearance
of the subject’s mouth.
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All of these techniques are fully automated to minimize
the construction time for creating textures for facial mod-
eling. However, we do not address the topic of facial
modeling itself in this paper. We apply the textures gen-
erated by the techniques presented in this paper in our
facial animation system [12], which has been designed to
produce physically based facial animations that perform
in real-time on common PC hardware. Thus the focus of
our texture generation methods is primarily on the appli-
cability of the textures for OpenGL rendering and a sim-
ple but efficient acquisition step, which does not require
sophisticated camera setups and calibration steps.

2 Previous and Related Work

Research on either texturing or facial animation has pro-
vided a large number of techniques and insights over the
years, see the surveys and textbooks in [13, 6] and [25]
for an overview. Texturing in the context of facial ani-
mation is, however, an often neglected issue. Many so-
phisticated facial animation approaches, e.g. [32, 18, 19],
simply use the textures generated by Cyberware scan-
ners. In [35], Williams presents an approach to gen-
erate and register a cylindrical texture map from a pe-
ripheral photograph. This approach is meanwhile super-
seded by the ability of Cyberware scanners to acquire ge-
ometry and texture in one step. The method presented
in [1] generates an individual head geometry and tex-
ture by linear combination of head geometries and tex-
tures from a large database that has been acquired us-
ing a Cyberware scanner in a costly preprocessing step.
Marschneret al. describe a technique that uses several in-
put photographs taken under controlled illumination with
known camera and light source locations to generate an
albedo texture map of the human face along with the
parameters of a BRDF [23]. Several other approaches
such as [26, 11, 16, 17] are image-based and use a small
number of input photographs (or video streams) for the
reconstruction of both geometry and texture. Although
these approaches could potentially yield a higher texture
quality compared to the Cyberware textures, they typi-
cally suffer from a less accurate geometry reconstruction,
limited animation, and reduced texture quality by using
cylindrical texture mapping.

Creating textures from multiple, unregistered pho-
tographs has been addressed in the literature by several
authors [28, 3, 24]. First, they perform a camera cali-
bration for each input photograph based on correspond-
ing feature points. Next, a texture patch is created for
each triangle of the input mesh. The approaches differ
in the way these texture patches are created, blended,
and combined into a common texture. However, the
resulting textures always exhibit some patch structure,

which makes it impossible to generate mip-maps from
these textures. Creating textures that can be mip-mapped
requires to construct a parameterization of the mesh
over a two-dimensional domain. To this end, generic
techniques based on spring meshes have been presented
in [10, 15, 7]. Special parameterizations that minimize
distortion during texture mapping for different kinds of
surfaces have been investigated by several authors, see
for instance [27, 29, 22, 21].

Texture synthesis [9, 33] has become an active area of
research in the last few years. Recent publications focus
on texture synthesis on surfaces [34, 31, 36] or on texture
transfer [8, 14]. All of the methods presented so far use a
Euclidean coordinate system for the synthesis of textures.
In contrast, we use a polar coordinate system to synthe-
size textures that exhibit some kind of radial similarity.

3 Texturing Facial Skin

To generate a skin texture for a head model, we first
take about three to five photographs of the person’s head
from different, uncalibrated camera positions. All pho-
tographs are taken with a high-resolution digital camera
(3040×2008 pixels). The camera positions should be
chosen in such a way that the resulting images roughly
cover the whole head. During the acquisition, no spe-
cial illumination is necessary. However, the quality of
the final texture will benefit from a uniform, diffuse il-
lumination. In addition, we acquire the geometry of the
head using a structured-light range scanner. As a result,
we obtain a triangle mesh that consists of up to a few
hundred thousand triangles. After the texture registration
step, this triangle mesh is reduced to about 1.5k triangles
for real-time rendering using a standard mesh simplifica-
tion technique. Each photograph is registered with the
high-resolution triangle mesh using the camera calibra-
tion technique developed by Tsai [30]. Since the intrinsic
parameters of our camera/lens have been determined with
sub-pixel accuracy in a preprocessing step, we need to
identify about 12–15 corresponding feature points on the
mesh and in the image to robustly compute the extrinsic
camera parameters for each image. This manual selec-
tion of feature points is the only step during our texture
generation process that requires user interaction.

Next, we automatically construct a parameterization
of the 3D input mesh over the unit square[0, 1]2. This
step is described in detail in the following Section 3.1.
Finally, every triangle of the 2D texture mesh is re-
sampled from the input photographs. A multiresolution
spline method is employed to remove visual boundaries
that might arise from uncontrolled illumination condi-
tions during the photo session. Details about this resam-



pling and blending step are given in Section 3.2. Figure 1
shows an overview of our texture generation process.

3.1 Mesh Parameterization
We want to parameterize the 3D input mesh over the 2D
domain[0, 1]2 in order to obtain a single texture map for
the whole mesh. To obtain a mip-mappable texture, the
texture should not contain individual patches (texture at-
las) but rather consist of a single patch. Clearly, this goal
cannot be achieved for arbitrary meshes. In our case, the
face mesh is topologically equivalent to a part of a plane,
since is has a boundary around the neck and does not con-
tain any handles. Thus we can “flatten” the face mesh to
a part of a plane that is bounded by its boundary curve
around the neck. We represent the original face mesh
by a spring mesh and use theL2 stretch norm presented
in [29] to minimize texture stretch. In our simulations,
this L2 norm performs better than theL∞ norm that is
recommended by the authors of [29].

By applying the texture stretch norm, texture stretch
is minimized over the whole mesh. In the following step,
we introduce some controlled texture stretch again. Since
the size of textures that can be handled by graphics hard-
ware is typically limited, we would like to use as much
texture space as possible for the “important” regions of a
head model while minimizing the texture space allocated
to “unimportant” regions. Obviously, the face is more
important for the viewer than the ears or even the back of
the head. To accomplish some biased texture stretch, we
have introduced an additional weighting functionω into
theL2 stretch norm presented in [29]:

L2(M) :=

√√√√√√
∑

Ti∈M
(L2(Ti))

2
ω(Ti)A′(Ti)∑

Ti∈M
ω(Ti)A′(Ti)

with

ω(Ti) :=
1

〈N(Ti), V 〉+ k
,

whereM = {Ti} denotes the triangle mesh,A′(Ti) is
the surface area of triangleTi in 3D, N(Ti) is the tri-
angle normal ofTi, V is the direction into which the
head model looks, andk > 1 is a weighting parameter.
The weighting functionω thus favors the triangles on the
face by diminishing their error while penalizing the tri-
angles on the back of the head by amplifying their error.
As a consequence, triangles on the face become larger
in the texture mesh while backfacing triangles become
smaller. Useful values fork are from within [1.01, 2].

Figure 2: Comparison between a view-independent tex-
ture mesh parameterization according to [29] (left) and
our view-dependent parameterization (right).

Figure 2 shows a view-independent texture mesh param-
eterization obtained with the originalL2 stretch norm as
well as a view-dependent parameterization with our mod-
ified stretch norm fork = 1.2.

The difference between ourview-dependent texture
mesh parameterizationand theview-dependent texture
mappingproposed in [5, 26] is the following: the latter
performs an adaptive blending of several photographs for
each novel view, whereas we create a static texture that
has its texture space adaptively allocated to regions of dif-
ferent visual importance.

3.2 Texture Resampling

After having created the 2D texture mesh from the 3D
face mesh, we resample the texture mesh from the in-
put photographs that have been registered with the face
mesh. First, we perform a vertex-to-image binding for all
vertices of the 3D face mesh. This step is carried out as
suggested in [28]: Each mesh vertexv is assigned a set
of valid photographs, which is defined as that subset of
the input photographs such thatv is visible in each pho-
tograph andv is a non-silhouette vertex. A vertexv is
visible in a photograph, if the projection ofv on the im-
age plane is contained in the photographand the normal
vector ofv is directed towards the viewpointand there
are no other intersections of the face mesh with the line
that connectsv and the viewpoint. A vertexv is called a
silhouette vertex, if at least one of the triangles in the fan
aroundv is oriented opposite to the viewpoint. For fur-
ther details see [28]. In contrast to the approach in [28],
we do not require that all vertices of the face mesh are
actually bound to at least one photograph, i.e. the set of
valid photographs for a vertex may be empty.

Let4 = {v1, v2, v3} denote a triangle of the face mesh
and 4̃ = {ṽ1, ṽ2, ṽ3} be the corresponding triangle in
the texture mesh. For each triangle4, exactly one of the
following situations might occur (see also Figure 3):



Figure 3: Greylevel-coded triangles of the texture mesh:
each white triangle has at least one common photograph
to which all of its vertices are bound; the vertices of light
grey triangles don’t have a common photograph, but they
are all bound; dark grey triangles have at least one un-
bound vertex.

1. There exists at least one common photograph in
the sets of valid photographs of the three vertices
v1, v2, v3 of4 (white triangles).

2. All of the vertices of4 are bound to at least one pho-
tograph, but no common photograph can be found
for all three vertices (light grey triangles).

3. At least one vertex of4 is not bound to any photo-
graph (dark grey triangles).

In the first case, we rasterizẽ4 in texture space. For
each texelT , we determine its barycentric coordinates
ρ, σ, τ w.r.t. 4̃ and compute the corresponding normalN
by interpolating the vertex normals of4: N = ρN(v1)+
σN(v2)+τN(v3). For each common photographi in the
sets of valid photographs of all vertices of4, we compute
the dot product betweenN and the viewing directionVi
for the pixelPi that corresponds toT . Finally, we color
T with the color obtained by the weighted sum of pixel
colors

∑
i 〈N,Vi〉 · Color(Pi) /

∑
i 〈N,Vi〉.

In the second case, we color each vertexṽj of 4̃ indi-
vidually by summing up the weighted pixel colors of the
corresponding pixels in all valid photographsi of ṽj sim-
ilarly as in the first case: Color(ṽj) :=

∑
i 〈N(vj), Vi〉 ·

Color(Pi) /
∑
i 〈N(vj), Vi〉. The texels of the rasteriza-

tion of 4̃ are then colored by barycentric interpolation
of the colors of the vertices̃v1, ṽ2, ṽ3. Alternatively, we
tried to use as much information as possible from the

Figure 4: Boundaries in the skin texture (left) are re-
moved using multiresolution spline techniques (right).

input photographs if, for instance, the verticesv1, v2 of
4 share a photograph and the verticesv2, v3 share an-
other photograph. However, we found that this second
case does not occur very often (cf. Figure 3) and that the
difference between plain color interpolation and a more
sophisticated approach is almost invisible.

Since we do not require that each vertex of the face
mesh is bound to at least one photograph, there might ex-
ist some vertices that cannot be colored by any of the pre-
viously described schemes. We address this problem in a
two-stage process: First, we iteratively assign an interpo-
lated color to each unbound vertex. Next, we perform the
color interpolation scheme from the second case for the
remaining triangles of̃4 that have not yet been colored.
The first step iteratively loops over all unbound and un-
colored vertices of the face mesh. For each unbound ver-
tex v, we check if at leastp = 80 % of the vertices in the
one-ring aroundv are colored (either by being bound to
a photograph or by having an interpolated color). If this
is true, we assign tov the average color of all the colored
vertices aroundv, otherwise we continue with the next
unbound vertex. We repeat this procedure until there are
no further vertex updates. Next, we start the same proce-
dure again, but this time we only requirep = 60 % of the
vertices in the one-ring aroundv to be colored. As soon
as there are no more updates, we repeat this step twice
again withp = 40 % andp = 20 %. Finally, we update
each unbound vertex that has at least one colored neigh-
bor. Upon termination of this last step, all vertices of the
face mesh are either bound or colored and the remaining
triangles of4̃ can be colored.

If the input photographs have been taken under uncon-
trolled illumination, the skin color might differ noticeably
between the images. In this case, boundaries might ap-
pear in the resampled texture. We then apply a multires-



Figure 5: Multiresolution spline masks: three differ-
ent regions in the texture mesh resampled from different
input photographs (top) and their corresponding masks
shown in grey (bottom).

olution spline method as proposed in [2, 17] to remove
visual boundaries. Figure 4 shows a comparison between
a textured head model with and without multiresolution
spline method applied. To smoothly combine texture re-
gions that have been resampled from different input pho-
tographs, we automatically compute a mask for each re-
gion by removing the outmost ring of triangles around
the region, see Figure 5. Such a shrinking is necessary to
ensure that there is still some valid color information on
the outside of the mask boundary, because these adjacent
pixels might contribute to the color of the boundary pixels
during the construction of Gaussian and Laplacian pyra-
mids. In addition to the masks for each input photograph,
we create one more mask that is defined as the comple-
ment of the sum of all the other masks. This mask is
used together with the resampled texture to provide some
color information in those regions that are not covered by
any input photograph (e.g. the inner part of the lips). As
described above, these regions have been filled by color
interpolation in the resampled texture. By blending all of
the masked input photographs and the masked resampled
texture with a multiresolution spline, we obtain a final
texture with no visual boundaries and crispy detail.

4 Texturing Facial Components

Both human eyes and teeth are important for realistic fa-
cial animation while, at the same time, it is difficult to ac-
quire data from a human being to precisely model these
facial components. Thus we use generic models of these
components as shown in Figure 8. The design of our
generic models has been chosen such that they look con-
vincingly realistic when inserted into a face mesh while
still being rendered efficiently using OpenGL hardware.

On the other hand, both eyes and teeth (especially the
more visible middle ones) are crucial features to visu-
ally differentiate one individual from another. Hence, it
would be very desirable to use individual models for each
person. Luckily, texturing can do the trick alone: indeed
it is sufficient to apply a personal texture to a generic
model to get the desired effect. Moreover, it is possi-
ble to automatically and quickly generate these textures
each from a single input photograph of the subject’s eye
and teeth, respectively. Details about this process will be
given in the next two subsections.

4.1 Texturing Eyes
In order to realistically animate our head model, we must
be able to perform rotations of the eyeball and dilation
of the pupil. While the latter can be achieved by trans-
forming the texture coordinates, we need an eye texture
that covers the whole frontal hemisphere of the eyeball
for the rotations.

Our goal to generate such an eyeball texture from a
single input photograph is complicated by several factors
such as the presence of occluding eyelids, shadows of
eyelashes, highlights, etc. Still, all these factors are lo-
cal and can be detected and removed. A new texture can
then be synthesized from an input image consisting of the
surviving pixels. In our current approach, we focus our
effort on the iris, since it is obviously the most character-
istic part of the eye.

Both the detection and the synthesis phase rely on the
simplicity of the eye structure, i.e. an almost perfect point
symmetry about the center, assuming our photograph rep-
resents an eye looking at the camera. To take advantage
of this symmetry, we must first know precisely where the
center of the eye is located. Since this would encumber
the user, the center finding is done automatically by re-
fining a rough estimation to sub-pixel precision using the
following heuristic: we progressively enlarge an initially
point-sized circle while checking the pixels on the circle
at every iteration. If these pixels are too bright, they are
assumed to be outside the iris and we thus move the cen-
ter of the circle away from them. When most of the circle
is composed by too bright pixels, we assume its center is
the eye center and its radius is the iris radius. This ap-
proach runs robustly as long as the initial estimation is
inside the pupil or the iris.

At this point, removal of occluded, shadowed, and
highlighted pixels is done by:

• removing pixels with a color too similar to the skin;

• removing pixels with a color too dissimilar to the
pixels at the same radial distance from the center.

For the second case, we compute the average color and
standard deviation of the pixels at the same radial dis-



Figure 6: Two input photographs (left) and the resulting
reference patches outlined by white sectors (right). Oc-
cluded, shadowed, highlighted, and skin-colored pixels
(shown in black) have been removed automatically.

tance and remove those pixels that are at leastα times
the standard deviation away from the average. The pa-
rameterα should be chosen within[2, 3]. We typically
use a rather small value ofα = 2.3, as it empirically
proved to remove the problematic (occluded, shadowed,
highlighted, etc.) pixels in most cases. In addition, we
remove pixels too close to the skin to better take into ac-
count small shadows cast by eyelids. Actually, the deci-
sion of which pixel to remove does not need excessively
fine tuning: due to the regularity of the eye, we can be
pretty conservative and remove many pixels, since the re-
construction phase requires only a small zone of pixels in
order to synthesize more. Figure 6 shows the remaining
set of pixels for two different input photographs.

For the reconstruction phase it is natural to resort
to some texture synthesis from samples approach like
e.g. [33]. In our case, we need to work in polar coor-
dinates, because the eyeball texture behaves like a texture
as defined in [33] only along theangleaxis. This means
that subregions of the eyeball texture are perceived to be
similar if their radius coordinates are the same, cf. Fig-
ure 10. To take this into account, when choosing a candi-
date pixelp in the input image for filling a pixelp′ in the
output texture, we constrain the radius coordinate ofp to
be within a small threshold of the radius coordinate ofp′.

A robust approach for texture synthesis is to use only
a small patch of the original input image as the reference
image and synthesize the texture from scratch. Although
larger reference images theoretically result in more faith-
ful textures, we obtained very good results with small
reference patches covering a sector of about 30 degrees
around the pupil. Small reference patches have the advan-

tage of being more uniform and thus bypassing problems
related to uneven lighting in the original photograph. In
our approach, we simply use the largest sector of valid
pixels of at most 60 degrees as the reference patch. In the
rare cases where the largest sector is too small, e.g. span-
ning less than 20 degrees, the entire set of valid pixels
with a valid neighborhood is used as the reference image.

Since the detail frequencies of human irises are
roughly the same, it is sufficient to use a texture synthesis
scheme with a fixed neighborhood size rather than a mul-
tiresolution approach. In our case, the size of the neigh-
borhood mask depends only on the resolution of the input
image. For instance, for an image of an iris with a diame-
ter of approximately 80 pixels, we use a 3×6 pixel mask
(radius× angle). For other iris diameters, the pixel mask
is set proportionally. Depending on the value of the ra-
dius coordinate, a neighborhood with a fixed size in polar
coordinates covers areas of different sizes in the input im-
age. Our simulations showed, however, that no correction
is needed, since the human iris usually exhibits higher
frequency detail towards the center. Thus an iris resam-
pled in polar coordinates shows quite uniform frequency
distribution. Figure 9 shows several input photographs
together with the resulting eye textures for various indi-
viduals.

To speed-up the reconstruction step, we use a one-
dimensional texture synthesis approach along the angle
axis alone, modeling the texture as a Markov chain rather
than a Markov random field. Each symbol of the chain
is an entire row of texels at a given angle coordinate. We
output each new row accordingly to the previous rows.
This approach gives similar results (even if it requires
slightly larger reference textures) and is much faster, not
even requiring any vector quantization for finding the best
neighborhood row. If, however, the size of the reference
patch is very small, we apply a two-dimensional texture
synthesis approach as described earlier in this section.

4.2 Texturing Teeth
Geometry and color of teeth are difficult to capture and,
at the same time, crucial to reflect personal appearance.
We address this problem by distinguishing between

• the six middle teeth (incisors and canines) and

• the rest of the teeth (4–5 on each side).

The middle teeth are much more visible than the other
teeth. This means that they account for most of the vi-
sual appearance of an individual person, but also that
it is much easier to reconstruct them from a photo-
graph. In addition, the middle teeth have an almost two-
dimensional structure: they are shaped to have the func-
tion of a blade. Their small width allows us to model



Figure 7: Teeth arch model using the texture shown in
Figure 11. The wireframe shows the geometry of the
teeth model, which consists of 384 triangles.

them using a billboard (impostor). Being a 2D data struc-
ture, the billboard can be easily extracted directly from
a normal photograph of the subject exposing the teeth in
a similar way as shown in Figure 11 (left). Using local
transparency, it is straightforward to make the texture em-
bed the teeth shape and size including gaps between teeth.
This approach allows us to use the same (billboarded) 3D
model for every face model and just change the texture
from person to person.

The rest of the teeth, while being more voluminous and
less accessible and visible, do not allow this useful short-
cut. But, for the same reason, it is also less important
to model them faithfully and individually for each single
person. Thus it seems reasonable to use a standard 3D
model and a standard texture (up to recoloring, see be-
low) for this part of the teeth arch.

Following these considerations, we have built a generic
3D model for the teeth, which is non-uniformly scaled
according to the individual skull and jaw geometry to fit
into every head model. For each individual head model,
we only need to vary the texture (including the billboard),
which is created fully automatically. The generic teeth
model is constructed such that the transition between the
billboard (in the middle) and the 3D structure (left and
right) is smooth, see Figure 7. The billboard, which is
bent for better realism, could cause undesired artifacts
when seen from above. To avoid this, only the upper part
of the lower teeth and the lower part of the upper ones
is actually modeled as a billboard. The remaining parts
of the upper and lower middle teeth smoothly gain some
width as they go up and down, respectively.

To automatically create a texture for the teeth, we start
from a normal photograph of the subject showing his/her
teeth. Several stages of the whole process of generating

a teeth texture are shown in Figure 11. We color-code
dark parts that represent voids with a blue color, which
is replaced by a transparent alpha value during rendering.
Similarly, we identify and remove gums, lips, and skin,
recoloring it with some standard gums color. To make
this color-coding more robust, we identify the different
regions using threshold values, which are obtained by
finding the biggest jumps in the histograms of the color
distances to the target color (red for gums and black for
voids). In addition, we expand teeth into those parts of
the gums that have been covered by the lips in the input
photograph. We use some simple heuristics to include the
missing part of the tooth roots, cf. Figure 11.

During rendering, our teeth model is shaded using a
Phong shading model, which means that we have to de-
shade our teeth texture. In order to do so for uncontrolled
illumination, we equalize the color of the teeth, suppos-
ing they have approximately the same albedo. First, we
define a target color by computing the average color of
all teeth pixels and setting its brightness (but not the hue)
to a predefined value. Next, we subdivide the texture in
six vertical stripes and compute the average color of each
stripe. We then add to the pixels in each column the dif-
ference between the target color and the stripe average,
taking care of enforcing continuity in this correction by
using a piecewise linear function. Similarly, we use the
target color to correct the color of the “generic” part of
the texture, which is applied to the side teeth. Finally, we
composite the middle teeth texture into our generic tex-
ture using a curved boundary that follows the silhouettes
of the canines.

5 Results

We have created facial textures for several individuals
who have also been range-scanned to acquire their head
geometry. Rendering of our head model is performed in
real-time using OpenGL hardware (about 100 fps on a
1.7 GHz PC with a GeForce3 graphics board). A physics-
based simulation is used to control the facial animation.
Several images of our head models are distributed over
this paper, see for instance Figures 1, 4, 8, and espe-
cially Figure 12. For each skin texture, the only inter-
active step is the initial identification of corresponding
feature points. This step takes about five minutes per in-
put photograph, which sums up to about 15–25 minutes
spent interactively for three to five photographs. Com-
puting an optimized parameterization of the face mesh
(approx. 1600 triangles) takes about 80 minutes on a fast
PC (1.7 GHz Pentium 4). Resampling a 2048×2048 tex-
ture from five input photographs takes about one minute,
additional multiresolution spline blending (if necessary)
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Figure 8: Generic models of eyes, teeth, and tongue are fitted into individual face meshes.

Figure 9: Input photographs and resulting eye textures: the in-
put images have been taken under various illumination condi-
tions with different resolutions. The size of the resulting textures
changes from 128×128 (top left) to 1024×1024 (bottom right).

Figure 10: A detail of the texture from Fig-
ure 9 (bottom right) shown in polar coordinates.
The abscissa represents the radius axis and the
ordinate represents the angle axis.

Figure 11: Teeth texture generation. Left to right: starting from an input photograph, we extract the upper and lower
middle teeth, fill in missing parts and adjust the color, and composite the new image with a generic teeth texture. The
blue pixels in the final texture (right) will be rendered transparently.

Figure 12: Side-by-side comparison of photographs (left) and head models (right) for plain OpenGL rendering.



takes about ten minutes. Currently, our algorithms are
optimized with respect to robustness but not to speed.

Generating the teeth and eye textures takes only a few
seconds even for large textures using the 1D Markov
chain method for the texture synthesis. If a full Markov
field is used, construction time may go up to several min-
utes, depending on the size of the texture being created.

6 Conclusion and Future Work

We have introduced a number of techniques that help to
minimize the time and effort that goes into the creation
of textures for facial modeling. With the exception of the
initial feature point selection for the skin texturing, our
methods are fully automated and do not require any user
interaction.

For the generation of skin textures from uncalibrated
input photographs, we propose a view-dependent param-
eterization of the texture domain and a texture resampling
method including color interpolation for non-textured re-
gions and multiresolution splining for the removal of vi-
sual boundaries. Using our methods, both eye and teeth
textures can be created fully automatically from single in-
put photographs, adding greatly to a realistic appearance
of individual subjects during facial animation.

One of the main goals of ongoing research is to get
rid of the interactive camera calibration step for skin tex-
turing. Given that the resulting texture should contain
fine detail, this is a tough problem, indeed. Automatic
approaches such as [20] fail simply due to the fact that
the silhouette of a human head looks more or less iden-
tical when viewed from within a cone of viewing direc-
tions from the front or the back. Furthermore, it would
be desirable to account for lighting artifacts in the input
photographs. Although a uniform, diffuse illumination
during the photo session helps a lot, there are still con-
tributions from diffuse and specular lighting in the pho-
tographs. Approaches to overcome these problems have
been suggested [4, 23], but they require sophisticated
camera setups and calibration steps. Finally, it would be
very helpful to speed-up the computation time of the cur-
rent bottleneck, namely the mesh parameterization, using
a hierarchical coarse-to-fine approach.
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