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Abstract 

Although text entry has been extensively studied for 
touch typing on standard keyboards and finger and 
stylus input on soft keyboards, no such work exists for 
two-thumb text entry on miniature Qwerty keyboards.  
In this paper, we propose a model for this mode of text 
entry.  The model provides a behavioural description of 
the interaction as well as a predicted text entry rate in 
words per minute.  The prediction obtained is 60.74 
words per minute.  The prediction is based solely on the 
linguistic and motor components of the task; thus, it is a 
peak rate for expert text entry.  A detailed sensitivity 
analysis is included to examine the effect of changing 
the model’s components and parameters over a broad 
range (+/-50% for the parameters).  The model 
demonstrates reasonable stability — predictions remain 
within about 10% of the value just cited.   

1.1 Introduction 
Current research in text entry includes significant 
interest in the use of small physical keyboards.  Some 
devices allow text entry with as few as five keys, such 
as the AccessLink II by Glenayre Electronics (Charlotte, 
NC).  Others sport a complete, but miniature, Qwerty 
keyboard, such as the Blackberry by Research In 
Motion (Waterloo, Canada).  These are both examples 
of two-way pagers.  As well, text entry using the mobile 
phone keypad has grabbed the attention of users and 
researchers.  While most mobile phones support text 
entry via the conventional telephone keypad, Nokia has 
recently introduce the 5510, a mobile phone with a full 
Qwerty keyboard.   

Much of the interest is spurred by the remarkable 
success of so-called SMS messaging on mobile phones 
(aka text messaging).  The ability to discretely, 
asynchronously, and at very low cost, send a message 
from one mobile device to another has proven hugely 
successful, particularly in Europe.  The statistics are 
staggering: Volumes are now approaching 1 billion 
messages per day!  (Various SMS statistics are 
available at http://gsmworld.com/technology/sms.html)  
Given the limited capability of the mobile phone 

keypad for text input, it is not surprising, therefore, that 
the current wave of mobile text entry research includes 
numerous researchers and companies working on new 
ideas to improve text entry techniques for mobile 
phones or other anticipated mobile products supporting 
similar services.  

In this article, we propose what we believe is the first 
model of two thumb text entry on small physical 
keyboards.  The model provides both a behavioural 
description of the interaction plus a predicted peak text 
entry rate for expert users.  In the following sections, 
the model is described and our prediction is given.  This 
is followed by a detailed analysis examining the 
model’s sensitivity to changes in the various 
components and parameters that affect the prediction. 

Two-thumb text entry is depicted in Figure 1.   

 

 
Figure 1.  Two-thumb text entry 

The device shown is a Sharp EL-6810 organizer (also 
shown in Figure 2a).  Other devices for which a similar 
interaction style is expected include the Motorola 
PageWriter 2000 two-way pager (Figure 2b), the 
Research In Motion Blackberry two-way pager (Figure 
2c), and the Nokia 5510 mobile phone (Figure 2d).  
These are all small devices bearing a complete, but 
miniature, Qwerty keyboard. 



 

(a)     
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(d)  
Figure 2. Devices with miniature Qwerty keyboards (a) 

Sharp EL-6810 organizer (b) Motorola PageWriter 
2000 two-way pager (c) Research In Motion Blackberry 

two-way pager (d) Nokia 5510 mobile phone 

1.2 Model Overview 
To model two-thumb text entry, the following steps are 
proposed: 

1. Obtain a word-frequency list derived from a 
language corpus. 

2. Digitize the miniature keyboard of interest. 

3. Determine the assignment of the left and right 
thumbs to letters and keys. 

4. Given the information in steps 1-3, compute the 
predicted entry time for each word in the corpus, 
including the time to enter a terminating SPACE 
character after each word. 

5. Multiply the predicted entry time for each word by 
the frequency of the word in the corpus, then sum 
the values.  The result, tCORPUS, is the time to 
reproduce the entire corpus.  

6. Multiply the size of each word (including a 
terminating a SPACE character) by the frequency 
of the word in the corpus, then sum the values.  
The result, nCORPUS, is the number of characters in 
the corpus. 

7. Compute tCHAR = tCORPUS / nCORPUS.  The result, 
tCHAR, is the mean time to enter each character in 
the corpus.  The units are “seconds per character”. 

8. Compute tWPM = (1 / tCHAR) × (60 / 5).  The result, 
tWPM, is the text entry throughput in “words per 
minute”.  The scaling factor includes “second per 
minute” (60) and “characters per word” (5). 

The steps above are similar to those in prior work on 
text entry on soft keyboards using a stylus [6, 7, 9, 10] 
and one-finger text entry on a mobile phone keypad [8].  
There are two significant departures, however.  First, 
the unit of linguistic analysis is the word.  The models 
in prior work are based on digrams.  Second, the motor 
component of the model works with two thumbs rather 
than a single finger or stylus.  Thus, simple Fitts’ law 
predictions for the time to press a key given a previous 
key are not possible — at least, in the case where the 
two keys are pressed by different thumbs.   

Each step above is detailed in the following sections. 

1.3 Word-Frequency List (Step 1) 
Our word-frequency list contains the 9022 most-
frequent words in the British National Corpus.  It is the 
same list used by Silfverberg et al. [8] in developing 
their text entry model for mobile phone keypads.   The 
frequencies total 67,962,112.  The shortest word is “a” 
(frequency = 1,939,617), while the longest word is 
“telecommunications” (18 letters, frequency = 1221).  
The average word size is 7.088 characters if a simple 
mean is calculated, or 4.427 characters if weighted by 
the word frequency. 

Although our model’s predictions are generated using a 
word-frequency list, digram-frequency and letter-



 

frequency lists are also useful to facilitate certain 
analyses, for example, on SPACE key usage and word 
transitions.  Both are easily built from the word-
frequency list, with the added assumption that each 
word is followed by a space.  The letter-frequency list 
has 27 letters (A-Z, SPACE) with frequencies totaling 
368,832,032.  The digram-frequency list has 27 x 27 = 
729 digrams, with frequencies again totaling 
368,832,032.  Some statistics from these lists are now 
given. 

Letters Frequency % of Letters 
SPACE 67,962,112 18.43% 
All others 300,869,920 81.57% 
Total 368,832,032 100.00% 
Figure 3. Frequency of the SPACE character 

As seen in Figure 3, spaces constitute about 18.43% of 
all letters.  Similarly, 18.43% of all digrams are of the 
form SPACE-letter (start of word), and an additional 
18.43% of all digrams are of the form letter-SPACE 
(end of word).  We can split the start-of-word and end-
of-word digrams by “side-of-keyboard”.  This refers 
simply to the position of “letters” in SPACE-letter or 
letter-SPACE digrams as per the conventional left- and 
right-hand keypresses for touch typing.  These results 
are shown in Figure 4 and Figure 5. 

Digrams at 
Start of Word 

Frequency % of Start-of-
word Digrams 

% of 
Digrams 

SPACE-left 44,686,347 65.75% 12.12% 
SPACE-right 23,275,765 34.25% 6.31% 
Total 67,962,112 100.00% 18.43% 

Figure 4. Digrams at start of word 

Digrams at 
End of Word 

Frequency % of End-of-
word Digrams 

% of 
Digrams 

left-SPACE 47,905,787 70.49% 12.99% 
right-SPACE 20,056,325 29.51% 5.44% 
Total 67,962,112 100.00% 18.43% 

Figure 5. Digrams at end of word 

As seen in Figure 4, about 65.75% of words begin with 
a letter on the left side of the keyboard, with the 
remaining 34.25% beginning with a letter on the right 
side.  A similar breakdown for word endings is seen in 
Figure 5.  70.49% of words end with a letter on the left, 
while 29.51% end with a letter on the right.  Thumb-to-
key assignments are discussed in more detail shortly. 

1.4 Digitized Keyboard (Step 2) 
Digitizing a keyboard is straight-forward.  Working 
with an image of a keyboard, the x-y coordinate and the 
size of each key is measured and entered into a table 
along with the letter assigned to the key.  For 
rectangular or elliptical keys, the smaller of the width 
and height dimensions is entered as the size of the key, 
as suggested in prior Fitts’ law research [4].  The units 

are arbitrary.  Our measurements were gathered using 
the pixel coordinates of an image processing 
application. 

We used the Sharp EL-6810 as a representative 
keyboard for testing our model (see Figure 2a).   The 
digitized rendering is shown in Figure 6.  

Letter X Position Y Position Size 
q 46.0 314 35 
w 119.4 314 35 
e 192.8 314 35 
r 266.2 314 35 
t 339.6 314 35 
y 413.0 314 35 
u 486.4 314 35 
i 559.8 314 35 
o 633.2 314 35 
p 706.6 314 35 
a 80.0 366 35 
s 153.4 366 35 
d 226.8 366 35 
f 300.2 366 35 
g 373.6 366 35 
h 447.0 366 35 
j 520.4 366 35 
k 593.8 366 35 
l 667.2 366 35 
z 118.0 418 35 
x 191.4 418 35 
c 264.8 418 35 
v 338.2 418 35 
b 411.6 418 35 
n 485 418 35 
m 558.4 418 35 
_ 416 470 35 

Figure 6. Digitized Sharp EL-6810 miniature Qwerty 
keyboard (Note: ‘_’ represents the SPACE key) 

1.5 Assignment of Thumbs to Letters and Keys 
(Step 3) 

To determine the assignment of thumbs to letters and 
keys, a few assumptions are necessary.  A reasonable 
assumption is that each thumb presses keys normally 
pressed by the corresponding hand during touch typing.  
This is illustrated in Figure 7. 

 

Q W E R T Y U I O P 

A S D F G H J K L 

Z X C V N M 

Left Thumb Right Thumb 

B 

SPACE 
 

Figure 7. Assumed use of left and right thumbs for two-
thumb text entry on a miniature Qwerty keyboard 



 

Although it is uncertain whether the thumb assignments 
in Figure 7 occur in practice, this is a reasonable start.  
Changes are easily introduced later to accommodate 
different thumb-to-key assignments.  Given the 
assignments in Figure 7, it is known which thumb is 
used to enter each letter.  Figure 8 shows an example, 
where L is for the left thumb, R is for the right thumb. 

 

Letter:  t h e _ q u i c k _ b r o w n _ f o x 

Thumb:   L R L R L R R L R L L L R L R L L R L 

 
Figure 8. Example phrase and thumb assignment for 

two-thumb text entry (see text for discussion on SPACE 
key usage) 

1.5.1 Space Key Policy 
SPACE key usage is problematic, since the size and 
position of the SPACE key varies among devices.  If 
the SPACE key is centrally located, as with standard 
keyboards, then it is equally accessible to the right or 
left thumb.  Since spaces constitute about 18% of 
English text entry, it is important to embed in our 
model an appropriate behavioural description of 
SPACE key usage.  We call this the Space Key Policy.  
The following three SPACE key policies seem tenable.   

Alternate Thumb.  One possibility is that the SPACE 
key is activated by the alternate thumb to that used for 
the last letter in a word.  This behaviour is shown for 
the example phrase in Figure 8.  Viewed in isolation, 
this is optimal.  For two-handed touch typing, for 
example, it is known that keying time is less when the 
preceding key is pressed by a finger on the opposite 
hand [3].  Arguably, the first letter in the next word 
should also be considered; however, this complicates 
the model and will not be considered at the present 
time. 

Left Thumb.  The left thumb space key policy assumes 
simply that the SPACE key is always  pressed by the 
left thumb. 

Right Thumb.  With a right-thumb space key policy, 
the SPACE key is always pressed by the right thumb.  

The left-thumb and right-thumb space key policies are 
particularly appealing if the SPACE key is positioned 
on either the left or right side or the keyboard, as seen, 
for example, in Figure 2b and Figure 2d where the 
SPACE key is on the left.  In these cases, the model 
should likely adopt a left-thumb space key policy.  

1.5.2 Thumb Transitions 
Given our three space key policies and the earlier 
assumptions on the assignment of thumbs to letters and 
keys, it is possible to categorize two-thumb text entry 

by thumb transitions for each digram in our corpus.  
This is shown in Figure 9. 

(a)    

 

(b)      

 

(c)    

Figure 9. Thumb transitions by space key policy (a) 
alternate thumb (b) left thumb (c) right thumb 

The ratios in Figure 9 are of 368,832,032 total 
frequencies in the digram-frequency list cited above.  
Among the insights in Figure 9 is the identification of 
key actions characterized by Fitts’ law.  These are the 
key sequences LEFT-LEFT or RIGHT-RIGHT.  For the 
alternate thumb space key policy (Figure 9a), about 
36.8% of the actions are of this type, whereas 63.2% of 
the key actions are of the form LEFT-RIGHT or 
RIGHT-LEFT.  Our method of modeling the key 
actions and thumb transitions is explained in the next 
section.  

1.6 Predicted Entry Times (Step 4) 
Our next step is to determine the predicted entry time 
for each word in the corpus.   Before giving a detailed 
analysis, we introduce tMIN, the minimum time between 
keystrokes on alternate thumbs.  We use 



 

tMIN = ½ × tREPEAT (1) 

where tREPEAT is the time to press one key repeatedly 
with the same finger.  The rationale is based on 
research in two-handed touch typing, as reported in 
Card et al. [1, p. 60].  The idea is depicted in Figure 10.  
The time between keystrokes when using one thumb to 
repeatedly type the same key is tREPEAT (depicted in 
Figure 10a).  When using two thumbs to repeatedly 
alternate between two keys, the keystroke rate almost 
doubles because the movement of the two thumbs 
overlaps (Figure 10b). 

 Left thumb 
Right thumb 

time 

thumb 
motion 

time 

tREPEAT 

tREPEAT 

2 

(a) 

(b) 

thumb 
motion 

 
Figure 10. Illustration of key repeat time (a) single 

thumb (b) alternating thumbs 

Our method to compute the predicted entry time for 
each word is explained through an example.  Figure 11 
illustrates an arbitrary sequence of letters followed by 
SPACE, entered as LLRLRL.   Each circle represents a 
keystroke.  Entry proceeds left-to-right as two separate 
coordinated streams of input, one for the left thumb (top 
line) and one for the right thumb (middle line).  The 
combined effect is shown in the bottom line.  The time 
to enter the word is t6. 

 L  L  R  L  R  L 

t0            t1              t2                t3              t4               t5              t6  

Left thumb
Right thumb

Combined

 
Figure 11. Computing entry time for a word 

The open circles on the left represent the SPACE 
character terminating the previous word.  Since our 
model considers words only, and is based on a specific 
space key policy (see above), we do not know which 

thumb was used for the SPACE key preceding a word.  
However, this uncertainty can be accommodated as 
now explained.  Our earlier analysis of end-of-word 
digrams reveals that 70.49% of words end with a letter 
on the left side of the layout in Figure 7.  Based on our 
SPACE key policy, this implies that 70.49% of the 
time, the SPACE key is pressed by the right thumb, and 
29.51% of the time the SPACE key is pressed by the 
left thumb. 

We use the values just cited as weighting factors in 
determining t1.  The example word in Figure 11 begins 
with a left-thumb keystroke.  If the left thumb was used 
for the preceding SPACE, the movement time for first 
letter is tFITTS, where tFITTS is the time for the left thumb 
to move to and press the key bearing the first letter in 
the word, having just pressed the SPACE key.  If the 
right thumb was used for the preceding SPACE, we 
assume the left thumb is poised to enter the first letter 
with negligible movement.  In this case, movement time 
is tMIN.  We combine these descriptions with the 
weighting factors to accommodate uncertainty on which 
interaction takes place.  Since the example word in 
Figure 8 begins with a left-thumb keystroke, we use 

t1 = 0.2951 × tFITTS + 0.7049 × tMIN  (2) 

For words beginning with a right-thumb keystroke, we 
use the same formula, except the weighting factors are 
reversed. 

Time t2 in Figure 11 is simply 

t2 = t1 + tFITTS (3)  

where tFITTS, in this case, is the time for the left thumb 
to move to and acquire the key bearing the second 
letter, having just entered the first.  A similar 
calculation is used throughout a word if the same thumb 
is used for the preceding letter. 

The third letter in the example is entered with the right 
thumb.  There is again uncertainty on the preceding 
interaction.  For the sequence in Figure 11, we use 

t3 = max(t2 + tMIN , t0 + tFITTS) (4) 

In this case, tFITTS is the time for the right thumb to 
press the key bearing the third letter having previously 
pressed the SPACE key (which occurs at t0 in the 
example). At the very least, t3 should be t2 + tMIN, so we 
choose the maximum of these two possibilities.  A 
similar calculation is used throughout a word if a 
different thumb is used for the preceding letter. 

To complete the example, 

t4 = max(t3 + tMIN , t2 + tFITTS) (5) 

t5 = max(t4 + tMIN , t3 + tFITTS) (6) 

t6 = max(t5 + tMIN , t4 + tFITTS) (7) 



 

This completes our example walk-through for the key 
sequence in Figure 11.  Let’s re-state the procedure in 
general terms.  For the first letter in a word, we use 

t1 = 0.2949 × tFITTS + 0.7051 × tMIN  (8) 

if entered with the left thumb, or 

t1 = 0.7051 × tFITTS + 0.2949 × tMIN  (9) 

if entered with the right thumb.  For subsequent letters, 
we use  

tn = tn-1 + tFITTS (10) 

if the same thumb is used for the previous letter, or   

tn = max(tn-1 + tMIN , tRECENT + tFITTS) (11) 

if the opposite thumb is used for the previous letter.  
The time stamp of the most recent use of the same 
thumb is represented by tRECENT, which is at least two 
keystrokes before the current keystroke.  Of the four 
equations above, equation 11 is used most often (about 
57% of the time).  It is for this reason — considering 
more than one preceding keystroke — that our model is 
based on words rather than digrams. 

1.6.1 Model Coefficients 
An important component of the model is missing.  Fitts’ 
law models have not been reported for pressing keys 
with thumbs, as shown in Figure 1.  Two models are 
needed: one for the preferred hand, and one for the non-
preferred hand.  A related model is reported by 
Silfverberg et al. [8] for the thumb on the preferred 
hand pressing keys on a mobile phone keypad: 

MT = 176 + 64 × log2(A / W + 1) (12) 

where A is the amplitude of the movement and W is the 
width of the destination key.  We can tentatively use 
this model for both thumbs.  As well, tREPEAT = 176 ms 
in Equation 1.  So, a tentative value for tMIN is 

tMIN = 88 ms (13) 

1.7 Model Predictions (Steps 5-8) 
With these model coefficients, and the behavioural 
description above, all the components of the model are 
in place.  A Java program was written to generate a 
prediction, as per the procedure and coefficients just 
described.  The program works with a space key policy, 
a word-frequency list and a digitized rendition of a 
keyboard.  Our default invocation uses the alternate 
thumb space key policy, the 9022 word-frequency list 
from the British National Corpus, and a digitization of 
the Sharp EL-6810 keyboard in Figure 2a.  Our 
program provides the following prediction for two-
thumb text entry: 

tWPM = 60.74 wpm (14) 

Previous predictions for key-based mobile text entry are 
in the range of 20.8 wpm to 45.7 wpm [5, 8].  Although 
our prediction of 60.74 wpm seems quite high, it is 
important to remember that it is a peak rate for experts 
and it is for dual-stream input using two thumbs.  Rates 
of 80 wpm, or beyond, are readily attained by expert 
touch typists on standard keyboards; so our prediction 
is not unreasonable.    

1.8 Sensitivity Analysis 
There are numerous factors influencing our model’s 
prediction.  A useful exercise, therefore, is to test the 
sensitivity of the model to changes in the components 
and parameters contributing to the prediction.  Such an 
exercise is known as a sensitivity analysis.  For 
examples, see [1, 8]. 

1.8.1 Slope Coefficient 
A good start is to vary the slope coefficient in the Fitts’ 
law model and observe the effect on the model’s 
predictions.  As noted earlier, we tentatively used 
Silfverberg et al.’s [8] model for pressing keys with the 
thumb, using the same model for both thumbs.  The 
slope coefficient in their model is 64 ms/bit (see 
Equation 12).  Figure 12 illustrates the effect of 
systematically altering the slope coefficient.  For this, 
we generated six additional predictions: three with 
higher slope coefficients (+10%, +20%, and +50%) and 
three with lower slope coefficients (-10%, -20%, and 
-50%).   

Slope Coefficient (ms/bit) WPM Prediction 
Value % of Nominal Value % of Nominal 
32.0 50% 76.44 125.8% 
51.2 80% 66.18 109.0% 
57.6 90% 63.35 104.3% 

64.0* - 60.74* - 
70.4 110% 58.34 96.0% 
76.8 120% 56.12 92.4% 
96.0 150% 50.37 82.9% 

* Nominal values 
Figure 12. Sensitivity to the Fitts’ law slope coefficient 

The relationship is inverse, as expected, since 
increasing the slope coefficient increases the predicted 
Fitts’ law movement time which, in the end, reduces 
text entry throughput in words per minute.  A 10% 
change in the slope coefficient, for example, yields a 
change of about 4%-5% in the word-per-minute 
prediction.  This effect is readily seen in Figure 13.  
The 50% increase and decrease in slope coefficient 
values represent extremes that are presented for 
completeness.  Reasonable (up to +/-20%) variation of 
the slope results in a less than 10% change in our 
nominal prediction. 
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Figure 13. Sensitivity to the Fitts’ law slope coefficient, 

chart form (dashed line shows nominal value) 

1.8.2 t MIN 
Our model makes frequent use of tMIN, the assumed 
minimum time between key presses with alternate 
thumbs. We nominally set tMIN = 88 ms, or one half the 
intercept in the Fitts’ law equation, as explained earlier.  
However, it is not clear that users will exhibit such 
behaviour during normal or high speed text entry.  And 
so, examining the influence of tMIN on the model is 
worthwhile.  Figure 14 shows this influence, replicating 
the procedure in the preceding section. 

tMIN Coefficient (ms) WPM Prediction 
Value % of Nominal Value % of Nominal 
44.0 50% 63.84 105.1% 
70.4 80% 61.97 102.0% 
79.2 90% 61.36 101.0% 

88.0* - 60.74* - 
96.8 110% 60.12 99.0% 

105.6 120% 59.51 98.0% 
132.0 150% 57.47 94.6% 

* Nominal values 
Figure 14. Sensitivity to tMIN 

Clearly the influence is much less than for the slope 
coefficient.  Changes of +/-10% yield just a 1% change 
in the word-per-minute prediction produced by the 
model.  Even changes of +/-50% in the slope 
coefficient yield changes of only about 5% in the 
predicted text entry rate. The effects are more-clearly 
seen in Figure 15. 

1.8.3 Key Widths 
As well as sensitivity to the Fitts’ law coefficients, our 
model is sensitive to the assumed width of the keys, 
which is confounded with the width of the thumb.   Our 
model uses the key heights as W in the model, since key 
height is the smaller of the width and height dimensions 
of the keys.  This assignment for target width was used 
by Silfverberg et al. [8] and is recommended in prior 

Fitts’ law research [4].  However, the input “device” is 
a thumb, not a stylus, so the “effective key width” may 
be somewhat larger if we also consider the width of the 
thumb.  This was noted by Drury [2] in a study of 
keying times on calculators with various inter-key gaps.  
If the assumed key widths are increased by 10%,  20%, 
and 50%, for example, the word-per-minute prediction 
increases by 1.9% (61.89 wpm), 3.7% (62.96 wpm), 
and 8.3% (65.76 wpm), respectively. 
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Figure 15. Sensitivity to tMIN, chart form (dashed line 
shows nominal value) 

1.8.4 Corpus Effect 
We used the same word-frequency list as Silfverberg et 
al. [8].  To test for a possible “corpus effect” we also 
generated predictions with three other word-frequency 
lists.  The first is a much larger list from the British 
National Corpus that inludes numerous additional low-
frequency words.  The second is a word-frequency list 
derived from the Brown Corpus (available from 
numerous on-line sites).  The third is a word-frequency 
list derived from a set of 500 phrases constructed in-
house for our text entry evaluations.  These lists are 
available from the first author upon request.  The results 
are given in Figure 16. 

 
Corpus 

Unique 
Words 

Total 
Frequencies 

WPM 
Prediction 

% of 
Nominal 

BNC1 9022 67,962,112 60.74* - 
BNC2 64,588 90,563,847 60.21 99.1% 
Brown 41,532 997,552 60.18 99.1% 
Phrases 1163 2712 59.81 98.5% 
* Nominal value 

Figure 16. Model sensitivity to corpus 

Clearly, the corpus effect is minimal.  The first two 
additional predictions are extremely close to the 
original prediction of 60.74 wpm.  Even the prediction 
generated with the very limited word-frequency list 
from our phrase set is within 1% of the nominal value. 



 

1.8.5 Space Key Policy 
Our nominal prediction assumes a specific policy on 
SPACE key usage; namely, that the user always presses 
the SPACE key with the alternate thumb from that used 
for the last letter in a word.  Again, it is not clear that 
this will occur in practice.  And so, we also generated 
word-per-minute predictions for the two other SPACE 
key policies described earlier.  The results are shown in 
Figure 17. 

SPACE Key Policy WPM 
Prediction 

% of Nominal 

Alternate thumb 60.74* - 
Left thumb  49.92 82.19% 
Right thumb  56.54 93.09% 
* Nominal value 
Figure 17. Model sensitivity to SPACE key policy 

Using the alternate thumb for the SPACE key is highly 
preferential to the policy of always using the same 
thumb.  There are significant performance costs (7-
18%) in the latter cases, depending of whether the left 
or right thumb is used.  We consider these differences 
more the result of changes in user behaviour, rather 
than a sensitivity effect in the model.  Importantly, this 
exercise demonstrates the utility of our model for a 
priori analyses. 

The predictions in Figure 17 are for the Sharp EL-6810 
keyboard which includes a centrally located space key 
(see Figure 2a).  If the space key is offset to the left or 
right, then the effect of SPACE key policy may be 
different.  For example, the keyboards on the Motorola 
PageWriter 2000 two-way pager (Figure 2b) and the 
Nokia 5510 mobile phone (Figure 2d) position the 
SPACE key to the left of centre.  The effect of SPACE 
key positioning and SPACE key policy are the focus of 
continuing work in modeling two-thumb text entry. 

1.9 Conclusions 
This paper presents a model for two-thumb text entry 
on mobile keyboards.  We have provided a detailed 
behavioural description of the interaction as well as a 
predicted rate for English text entry.  Our prediction of 
60.74 wpm is based solely on the linguistic and motor 
component of the interaction; thus, it is a peak rate for 
expert users. 

Our model’s prediction is relatively stable.  In a 
sensitivity analysis, we examined the effect of changes 
in the various components and parameters that 
influence the predictions.  We generated new 
predictions after changing corpora, assumed key widths 
(accounting for thumb width), the minimum time 
between keypresses by alternate thumbs, and slope 
coefficients in the movement time prediction equations.  

In most cases, the predicted text entry rate changed by 
less than 10%.   

A change is text entry throughput of about 7-18% is 
expected if the user adopts a non-preferential space key 
policy, such as always using the left or right thumb to 
press the SPACE key.  This expectation is coincident 
with a centrally located SPACE key.  The effect may be 
somewhat different for other keyboard geometries. 

Further work includes building the Fitts’ law models for 
two-thumb text entry, directly observing thumb-to-key 
assignments and space key policies with users, and 
testing users on two-thumb text entry tasks with 
representative keyboards. 
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