
Real-time Extendible-resolution Display of On-line Dynamic Terrain

Yefei He
National Advanced Driving Simulator

& Simulation Center
The University of Iowa

James Cremer
Computer Science Department

The University of Iowa

Yiannis Papelis
National Advanced Driving Simulator

& Simulation Center
The University of Iowa

Abstract
We present a method for multiresolution view-dependent
real-time display of terrain undergoing on-line modifica-
tion. In other words, the method does not assume static
terrain geometry, nor does it assume that the terrain up-
date sequence is known ahead of time. The method is
both fast and space efficient. It is fast because it relies
on local updates to the multiresolution structure as ter-
rain changes. It is much more space efficient than many
previous approaches because the multiresolution struc-
ture can be extended on-line, to provide higher resolution
terrain only where needed. Our approach is especially
well-suited for applications like real-time off-road driv-
ing simulation involving large terrain areas with localized
high-resolution terrain updates.

Key words: dynamic terrain, triangle bintree, multireso-
lution representation, view-dependent mesh, level of de-
tail

1 Introduction

Many techniques have been developed for representa-
tion and efficient visualization of terrains and other sur-
faces. In particular, the recent development of view-
dependent multiresolution methods has provided a strong
advance over distance-based discrete level-of-detail and
other simple methods aimed at minimizing rendered
polygons.

Existing methods focus either on static terrains or
on time-varying geometry where all changes are known
prior to any rendering. In this paper, we present meth-
ods for representation and real-time visualization ofon-
line dynamicterrain. In on-line dynamic terrain, sur-
face geometry, color, and material properties can change
over time and the particular changes are not knowna pri-
ori; this precludes the preprocessing approaches of many
techniques, which build a multiresolution structure that is
dependent on the initial terrain geometry.

Specifically, our approach to view dependent visual-
ization on-line dynamic terrain is:

• fast. The approach extends the ROAM[6] algorithm,
and is fast because local terrain updates require only
local updates to the multiresolution structure.

• space efficient. Through on-line extension of the
multiresolution structure only where needed, dy-
namic terrain applications can save an enormous
amount of space over methods that “prepare for the
worst” everywhere (even if they never need it).

Figure 1: A screenshot from an off-road driving simulation
application using our dynamic terrain algorithm.

We do not claim to have developed major new algo-
rithmic results. But, we believe that support for on-
line changes to geometry, color, and texture, represents
an very important challenge for multiresolution methods,
and that we have demonstrated useful practical early re-
sults in the area.



Our work was initially motivated by off-road driving
simulation applications for The National Advanced Driv-
ing Simulator[23] — automobile and agricultural vehi-
cle industry, as well as military, applications requiring
real-time on-line simulation and visualization of vehicle-
terrain interaction. Real-time determination of the effects
of vehicle-terrain interaction, computed via tire-soil dy-
namics simulation, is a challenging computational prob-
lem. Furthermore, integration and correlation between
very high resolution (non-visual) terrain databases re-
quired for tire-soil dynamics, and visual databases used
for rendering is itself a challenging software systems is-
sue (see [1]). In this paper, we address only the visual-
ization of terrain changes determined through real-time
tire-soil simulation or other processes.

2 Background and Related Work

Several good surveys on multiresolution surface repre-
sentations exist, including Garland and Heckbert [7, 11],
De Floriani et al. [5], Luebke [17], etc.

A multiresolution, or multiple level-of-detail (LOD),
representation of a surface typically contains a sequence
of approximations of the input surface, each with a differ-
ent level of detail. These approximations are organized
into a hierarchical structure, such as a DAG, a tree, or a
forest, where the nodes represent parts of the approxima-
tions of various detail, with nodes closer to the top having
lower detail. Edges relate parts from different approxima-
tions. In addition to the hierarchical structure, anerror
metric is also given, to use in measuring the deviation,
or error, of approximation meshes in the hierarchy from
the input surface. In someview dependentalgorithms,
screen-space error is used, which measures the size of the
geometric approximation error projected onto the screen.
The world space error, from which the screen-space error
is derived, is view independent. During each iteration,
the hierarchy is “trimmed” to get a single approximation
of the surface that satisfies the error criteria.

Multiresolution surface representations can be classi-
fied as either vertex hierarchies or face hierarchies.

• Face hierarchy models (FHMs) are constructed to
indicate the relation between the faces from approx-
imations of different LODs. Existing algorithms
based on face hierarchies include Lindstrom and
Pascucci [16], Lindstrom et al. [15], Scarlatos and
Pavlidis [20], de Berg and Dobrindt [2], Gross, Gatti
and Staadt [9], De Floriani et al. [4], Duchaineau et
al. [6], etc. A general face hierarchy model,multi-
triangulation, was presented in De Floriani [3].

• Vertex hierarchy models (VHMs) are built from the
relation between vertices from different approxima-

tions. Usually, each node of the hierarchy corre-
sponds to a set of vertices, and the set of vertices
denoted by the children of that node are the vertices
used to replace them in a more refined approxima-
tion of the input surface. Error measures can be as-
sociated to each node in the hierarchy. Since ver-
tices alone cannot determine the approximation, ad-
ditional information about how the surface is polyg-
onalized is required. Vertex hierarchy methods in-
clude Rossignac and Borrel [19], Luebke and Erik-
son [18], Hoppe [12, 13, 14], Xia and Varshney [24],
and Garland and Heckbert [8].

Shamir, Pascucci and Bajaj [22] presented an approach
for multiresolution dynamic surface visualization. Their
method uses a DAG as the hierarchical structure and in-
crementally modifies the DAG as the surface deforms.
The result is a super hierarchy, T-DAG, that combines
the DAGs at all time-steps. T-DAG is capable of visual-
izing dynamic surfaces with arbitrary changes, including
changes in topology and connectivity. The approach is
not well suited for on-line updates due to the relatively
high cost of T-DAG modification.

3 Real-time Visualization of Dynamic Terrain

As mentioned above, many terrain visualization algo-
rithms rely on an assumption of static surface geometry
to create, during a preprocessing step, a multiresolution
structure from which efficient rendering may be done at
run time. The assumption is invalid in on-line dynamic
terrain applications,

To support on-line dynamic terrain, one must construct
the hierarchical structure from the initial input surface
and then modify it to reflect any changes made to the in-
put surface. In some algorithms, such as Schroeder et
al. [21] and Hoppe [12], the approximation sequence or
multiresolution structure is constructed through an opti-
mization process so that each approximation simplifies
the previous mesh in the sequence while increasing the
approximation error as little as possible. When applied to
height fields, such a process can be called data-dependent
simplification because the organization of the precom-
puted multiresolution depends on the heights of the ver-
tices. In data-dependent approaches, structure updates to
account for terrain changes are generally quite costly.

In data-independent approaches, only the(x, y) values
of the vertices affect the organization of the multiresolu-
tion structure. For example, sub-sampling a regular grid
mesh is a data-independent process. Data-independent
approaches are thus good for on-line dynamic terrain
based on height fields; terrain updates do not necessi-
tate multiresolution structure reorganization. The block-
based face quadtree method presented in Lindstrom et



al. [15] and the ROAM algorithm in Duchaineau et al. [6],
both use data-independent hierarchies.

In the following section, we present the general idea
of extendible resolution terrain representation. Sections
5 and 6 then present the details of our dynamic terrain
representation and visualization approach.

4 DEXTER: Dynamic EXTEnsion of Resolution

The methods described in Section 2 pre-construct hier-
archies from which meshes of various detail level can be
derived at run time. Even in view dependent methods, the
hierarchy itself is fixed, and the highest detail available to
approximate any part of the surface is pre-determined.

In on-line dynamic terrain applications, greater interest
may be put on the deformed regions, requiring higher res-
olution there than on untouched regions. In some cases,
the particular maximum deformed resolution requirement
may be known ahead of time. But, terrain deformation is
often sparse and the precise location and degree of the de-
formation is not known until run time. A preconstructed
“prepared for the worst” hierarchy that represents, every-
where in the terrain, the high resolution required by po-
tential terrain modifications, can be prohibitively and un-
necessarily space inefficient. When only a small portion
of terrain will be modified, additional levels of the hier-
archy in regions of untouched terrain waste memory that
could better be used to represent important areas of dy-
namic modification in even better detail.

Thus, instead of a fixed-hierarchy, we use a dynami-
cally extendible hierarchy for multiresolution terrain rep-
resentation. The initial hierarchy is created so that it
satisfies the resolution requirement of the initial non-
deformed terrain. The finest mesh constructed from the
hierarchy may have different detail at different parts of
the terrain, depending on the local ruggedness of the ini-
tial terrain and other attributes such as the variation in
color and texture, etc. The hierarchy is not fixed, how-
ever; as terrain deformation takes place, the hierarchy
is extended only where necessary. The dynamic exten-
sion of resolution provides additional levels of detail at
the modified regions without wasting memory space rep-
resenting untouched terrain at unnecessarily high resolu-
tion.

DEXTER is a simple but general idea that can be ap-
plied to enhance many multiresolution surface represen-
tation methods. For different methods, there are different
issues that need to be addressed in order to use DEX-
TER. In this paper, we demonstrate the necessary modifi-
cations for our real-time ROAM-based terrain visualiza-
tion method.

5 Dynamic Terrain Extension to ROAM

A uniformly spaced, axis-aligned grid of terrain posts is
a compact and efficient way of representing terrain sur-
faces. This grid is the foundation of the hierarchical
structure built for the purpose of a multiple level-of-detail
representation. Every grid point can be used as a vertex
in the mesh that approximates the terrain surface. The
finest approximation mesh is obtained when all the grid
points are present in the mesh. All the elements that make
up that mesh are considered to have zero approximation
error.

The ROAM algorithm is well suited for the task of
real-time visualization of terrain surfaces represented by
a regular grid. In order to use ROAM for dynamic terrain
visualization, two extensions of the algorithm were car-
ried out. First, necessary updates of mesh data are added
in each iteration to reflect the deformation of the terrain.
Second, run-time extension of the hierarchical structure,
i.e. the DEXTER augmentation, is incorporated into the
algorithm. In this section we present the basic dynamic
terrain extension to ROAM. In Section 6 we present the
modification to the terrain grid representation and to the
ROAM algorithm in order to incorporate DEXTER.

5.1 A Brief Review of ROAM
Real-time Optimally Adapting Meshes (ROAM), first
presented by Duchaineau et al. [6], is a terrain visual-
ization algorithm that adaptively generates right isosceles
triangle meshes to render the underlying regular terrain
grid.

The hierarchical structure of ROAM is a binary tree
of right isosceles triangles, which is established during
the preprocessing stage. Each non-leaf triangle has two
children, obtained by splitting the triangle with an edge
that links its apex vertex to the midpoint of its base edge.
Figure 2 shows how a bintree of four levels is formed by
recursively splitting the triangles of higher levels. The
root triangle (va, v0, v1) has a midpointvm at its base
edge, and its two children, (vm, va, v0) and (vm, v1, va),
are called its left child and right child, respectively.

To represent a square region, a pair of triangle bintrees
is needed. The two root triangles (adiamondin ROAM
terminology) should be of the same size, and share the
base edge.

As in other hierarchical models, a trimming of the tree
is required to obtain a mesh representation of the terrain.
A view-dependent error metric is used as the criterion for
trimming. During each frame, the trimming result from
the previous frame is adjusted by moving the trim line
further down toward the leaf nodes at some places and up
toward the root at some others. Intuitively, some trian-
gles in the previous mesh are replaced by its descendents
in the bintree, and some others are replaced by their an-



T T

l = 1 l = 0

l = 3 l = 2

v1

va va

v0 vm v1

T0 1

v0

Figure 2: A triangle bintree of four levels.

cestors. Such adjustments are achieved by a sequence of
split andmergeoperations on triangles. Asplit operation
replaces a triangle with its two children in the bintree,
while amergeoperation replaces two siblings in the bin-
tree with their parent. Figure 3 shows the effects ofsplit
andmergein aspects of both triangulation and trimming
of the bintree. It is clear that asplit is the reversal of a
merge, and vice versa.

split

merge

TT T0 1

A
split

merge

B

Figure 3: split and mergeoperations: A. effects on triangle
mesh; B. effects on triangle bintree trimming. Solid nodes in B
represent the triangles selected for the approximation mesh.

ROAM-based visualization is free of “crack” prob-
lems; mesh continuity is maintained by keeping track of
the neighbors of each triangle, executing appropriate re-
cursivesplit andmergeoperations.

5.2 Dynamic Terrain ROAM
The ROAM algorithm uses a pair of triangle bintrees
as its data-independent hierarchy. Therefore, the basic
structure of the bintrees does not need to be altered when

the terrain is modified. However, the world space errors
of the mesh elements – the triangles – need to be updated
during each iteration. In the original ROAM algorithm,
the computation of the world space errors is done in a
bottom-up fashion. Therefore their updating needs to be
performed bottom-up as well. Although the world space
errors are associated to triangles, not vertices, they are de-
rived from the geometry of the vertices. Which triangles
are affected can be easily determined by checking which
vertices have been modified. Update flags are therefore
added to the data structure for the vertices, but not to that
for the triangles. During the error updating procedure, the
errors of leaf triangles remain zero, but leaf triangles with
modified vertices need to notify their parents, whose er-
rors need to be recomputed. This notification is passed on
until the root triangles, and the error of every notified tri-
angle is recomputed. Details of world- and screen-space
error management for our algorithm are given in [10].

The vertices of the mesh triangles also need to be up-
dated, e.g. the change of elevation, etc. In our imple-
mentation, the vertices are posts in the terrain cells (see
Section 6.1), and the triangles in the bintrees use point-
ers to refer to them. Therefore by updating the posts, the
vertices of the mesh triangles are automatically updated
as well.

6 DEXTER Extension to ROAM

ROAM uses regular terrain grid as the basis of its triangle
bintree structure. In order to accommodate DEXTER, the
terrain grid representation needs to be modified. We in-
troduceterrain cells to enhance the grid representation,
and then discuss transition zones required to maintain
mesh continuity after local extensions to the mesh hier-
archy.

6.1 Terrain Cells
Starting from a uniform-resolution regular terrain grid,
we can modify it to accommodate DEXTER. DEXTER
allows the resolution to be extended at the deformed re-
gion of the terrain, therefore the grid resolution across
the terrain may become non-uniform after such exten-
sions. We divide the terrain surface into patches, each
allowed to have its own grid resolution. To make the al-
gorithm efficient, we restrict the shape of the patches to
axis-aligned rectangles. We call these rectanglescells.
The data structure for a cell should include its location,
size, and grid resolution. The uniform resolution terrain
grid can be considered as a special case – a grid with a
single cell.

To extend the resolution of the terrain representation
at designated regions, new cells that contain a terrain
grid with desired resolution are created to cover those re-
gions. Newly created cells overlap existing lower reso-



lution cells, and consistency must be maintained among
terrain posts common to multiple cells. The properties
of the new grid posts can be obtained from the input sur-
face. If the input surface is simply represented by the
initial terrain grid, an interpolation on that initial grid can
be performed to get the properties for the new posts.

In our implementation, the terrain is initially repre-
sented by a single cell that covers the complete region.
As terrain deformation takes place, new cells with higher
grid resolution are created dynamically to cover the mod-
ified regions. The dynamic cells are all aligned to a cell
grid and have uniform sizes. Furthermore, in the imple-
mentation demonstrated in this paper, the dynamic cells
all have the same grid resolution. The grid resolution
of dynamic cells is that of the initial cell times a user-
specifiable power of two, so that the hierarchical struc-
ture in ROAM – the triangle bintrees – can be extended
accordingly, which uses the grid posts of the cells as the
vertices of the mesh triangles. Figure 4 shows a dynamic
cell that doubles the initial grid resolution partially over-
lapping the initial terrain cell. The dynamic cells can be
organized using a simple two-dimensional array.

Figure 4: A dynamic cell overlaps the top right quadrant of the
initial terrain cell.

The grid resolution may be increased by different
amounts at different places. Different kinds of terrain
modifiers produce shapes of various details. For exam-
ple, footprints and tire tracks might require higher reso-
lution representation than bulldozer tracks. This is easily
supported - terrain cells form a hierarchy of multiple lev-
els, where a dynamic cell may be partially coveredy by
further even-high-resolution dynamic cells - but was not
included in the implementation demonstrated on the ac-
companying video.

6.2 Extending ROAM’s Mesh Hierarchy
As mentioned in Section 6.1, the triangle bintrees in
ROAM are tightly associated with the terrain cells. As
dynamic cells with a high grid resolution are created, the
triangle bintrees are extended accordingly. The extension
is achieved by recursively subdividing the leaf triangles

of the initial bintrees whose areas of coverage are inside
the area covered by the newly created cells. The number
of levels of triangles that should be added to the bintrees
are determined by the extent to which the grid resolution
is increased via dynamic terrain cells. Suppose the grid
resolution of the dynamic cells is2n times the initial res-
olution, then2n levels of triangles should be added. Fig-
ure 5 shows the creation of a dynamic terrain cell matched
by the extension of the triangle bintrees.

Figure 5: A 5 × 5 initial terrain grid is matched by a pair of
triangle bintrees with 5 levels. The creation of a dynamic cell
that doubles the grid resolution leads to the extension of the
bintrees by 2 levels.

6.3 Transition Zones
After extending the mesh hierarchy, the triangle bintrees
are no longer complete binary trees (except in the special
case where the mesh was extended over the whole ter-
rain). There are more levels of approximation available
for the regions covered by triangles added to the bintrees
at run time than for the rest of the terrain. This could
cause problems in mesh continuity, as shown in Figure 6,
where the mesh contains cracks around the two circled
vertices. Here, the error criteria determine that triangles
from newly added levels are needed to approximate the
top left quadrant, but no triangles outside that quadrant
can match them.

To preclude mesh discontinuities,transition zonesare
introduced. Given terrain regionR1, where the highest
grid resolution among all terrain cells that cover it isδ1,
and an adjacent regionR2, whose highest grid resolu-
tion is δ2, a transition zone is defined along the boundary
betweenR1 andR2, in R2, if δ1 > δ2 and the higher



Figure 6: Mesh discontinuity caused by high level-of-detail
mesh patches that cannot be matched elsewhere.

zone 2

zone 1

zone 1

zone 2

A B

Figure 7: Possible transition zones between regions of differ-
ent resolutions. Note that although they do preserve continuity,
they use special non-right-triangles, and are not the form of tri-
angulation used in our algorithm.

resolutionR1 meshes cannot be matched byR2 meshes.
This transition zone offers the basis for constructing spe-
cial mesh patches that will match the higher resolution
meshes forR1 with the highest resolution mesh available
for R2. The transition zone needs to have the same high
resolution asR1. In essence, the transition zone is the ex-
pansion ofR1, and a simple way to do it is to expand the
highest resolution cell that coversR1 to cover the transi-
tion zone as well, and at the same time expand the higher
resolution meshes to include the special matching patches
for the transition zone. In Figure 7, the top left quadrant
of the terrain is of higher resolution than the rest, and two
more levels of mesh are available there. Two transition
zones are assigned outside the top left quadrant. In this
particular case, a special mesh is necessary only to match
the highest LOD mesh in the top left quadrant with the
highest LOD mesh elsewhere, as shown in Figure 7.A;
the second highest LOD mesh in the top left quadrant
matches the highest LOD mesh outside perfectly, as in
Figure 7.B. The result is, the highest LOD mesh for the
top left quadrant is expanded to cover the transition zone,
while the second highest LOD mesh is not.

l = 6l = 6

l = 6 l = 6

l = 6 l = 6l = 0l = 1

l = 2l = 3

l = 4l = 5

l = 6l = 6

Figure 8: The high resolution meshes of six new levels of detail
in the darkest region, from level 0 to level 5, are connected to
the mesh in the lightest region with help from the meshes in the
transition zone.

The transition zones shown in Figure 7 contain trian-
gles that are not right isosceles triangles; this is not the
way we prefer to extend ROAM. Instead, the special tran-
sition zone meshes can be constructed in the same fashion
as the newly added high resolution mesh patches.

Consider the example shown in Figure 8. The six trian-
gles in the first mesh of the sequence are from the lowest
level mesh of an initial mesh hierarchy. They form three
diamonds. The region covered by the leftmost diamond
is now deformed, and its grid resolution is extended to be
23 times the original, thus introducing 6 new levels of de-
tail in the triangle bintree. These 6 levels of detail are not
available at the rightmost diamond. But as we can see, if
we assign the region covered by the middle diamond as
the transition zone, and extend it too by six levels, mesh
continuity can be maintained no matter which of the six
newly added levels of detail is used to approximate the
region covered by the leftmost diamond. Not all trian-
gles in the six levels of meshes in the transition zone are
needed to maintain mesh continuity. However, it is sim-
pler to extend the bintree fully there as well. Besides, it
is likely that the transition zone will become a high reso-
lution zone later and require the full expansion.

One may observe that in the above example the transi-
tion zone is made of just one pair of leaf triangles from
the original bintree. In fact, if the resolution is extended
by 2n times, no matter how largen is, the transition zone
always only needs to be as wide as a diamond made of a
pair of original leaf triangles. Figure 8 shows the case for
n = 3. The case forn = 1 is just the first three meshes;



n = 2, the first five. To prove the claim for anyn, use
mathematical induction. The claim is true forn = 1 as
demonstrated in Figure 8. Assume the claim is true for
n = k. For n = k + 1, extend the bintree by two more
levels in the transition zone than in the case ofn = k to
match the high resolution region. Next construct a mesh
in the transition zone that connects the level 2 mesh in the
high resolution region with the lowest level mesh avail-
able in the low resolution region. Here, that level is2k+1.
The mesh detail near the boundary between the high res-
olution region and the transition zone is shown in Fig-
ure 9.A. Now split trianglesT1, T2 and their base neigh-
bors, and we get the mesh in Figure 9.B, which remains
continuous. One can now notice that the highlighted re-
gion has the same configuration as the first graph in Fig-
ure 8, and edge(a, b) corresponds to the boundary be-
tween the transition zone and the low resolution region in
Figure 8. Lowering the mesh level in the high resolution
region to 1 and 0 are just like the second and third meshes
in Figure 8, as shown in Figure 9.C and Figure 9.D. In
both cases, in order to maintain mesh continuity, the re-
finement of the mesh in the transition zone can be limited
to the left of (a, b). Therefore, the transition zone for
n = k is also sufficient forn = k + 1.

level = 2

T

T

1

2

level = 2

a

b

A B
level = 1

a

b

level = 0

b

a

C D

Figure 9: Mesh details near the boundary between the high
resolution region on the left and the transition zone on the right.

Since transition zones surround a rectangular region,
some occur at corners. These yield different transition
trianglations but are still handled easily (see [10] for de-
tails).

Note that no special code needs to be implemented for
the transition zones. The zones’ high resolution com-
bined with error values of zero ensure that the proper
transition triangulation will be created as a natural part
of the trimming process.

6.4 Updating Triangle Errors
World space errors need to be assigned to triangles added
due to bintree extension. The errors of existing trian-
gles can change when the underlying grid resolution is
increased and the triangle bintrees extended. Most sig-
nificantly, some leaf triangles in the initial bintrees now
have descendents, so they are no longer part of the finest
mesh available, and their errors are generally no longer
zero. So, the errors of affected triangles need to be recom-
puted after hierarchy extension. A bottom-up approach is
adopted, similar to the way the world space errors are
computed during initialization.

New higher-resolution triangles in transition zones
simply have zero error, since the terrain has not been (yet)
been modified and the original coarser triangles still have
zero error. Some of the high resolution triangles will ul-
timately be selected into a displayed mesh based not on
their error values but because of the component of the
algorithm that maintains mesh continuity.

6.5 DEXTER Algorithm Outline
Following is a general multiple LOD dynamic terrain vi-
sualization algorithm with DEXTER, applicable to all
DEXTER methods that use terrain cells and transition
zones1.

begin
1. Initialize terrain cells
2. Initialize mesh hierarchy
3. while no exit signaldo

begin
4. deform terrain
5. add high resolution cells to deformed regions

if necessary
6. assign transition zones around new cells
7. update mesh hierarchy, recompute errors
8. trim mesh hierarchy to obtain approximation

mesh for the complete terrain
9. render the approximation mesh

end
end

7 Implementation Results

The accompanying video shows DEXTER with ROAM
running smoothly in real time on an 866MHz Pentium
III with a GeForce2 graphics card and 384MB of RAM.
Figures 10, 11, 12, and 13 show screenshots from the
same application.

1Some multiple LOD terrain visualization methods do not require
terrain cells or transition zones when extended with DEXTER, e.g cer-
tain methods that do not use regular grids or vertex hierarchy methods
that perform triangulation at run time.



The algorithm was implemented as a research proto-
type with no code tuning or low-level code optimization.
Some basic timing results are included in the following
paragraphs. The results were recorded from identical
1800 frame portions from the middle of runs using the
same vehicle path and scene shown in the video. The er-
ror tolerance,τ , was .04 in each case. The terrain for
the test runs is perfectly flat at the start. Thus, no loss of
detail occurs in representation of the initial unmodified
terrain, eliminating differences in the number of triangles
that would result from different basic terrain grid sam-
pling resolutions for the regular ROAM and the DEX-
TER version. Note that the average frame rates include
significant non-visualization-related simulation time.

Run 1: ROAM without DEXTER
.

The grid size was 513-by-513, so the finest mesh con-
sists of512∗512∗2 = 524, 288 triangles, while the trian-
gle hierarchy has2+4+8+ ...+524, 288 = 1, 048, 574
triangles.

Error threshold tau = 0.04
Total time: 51.47s

- rendering: 25.92s
- DT rep. and error update: 11.43s
- vehicle/soil simulation: 14.12s

Avg. tri count: 4140
Avg. frame rate: 35.0

Run 2: ROAM with DEXTER
.

The initial grid size was 129-by-129, and the maxi-
mum grid size, through DEXTER, was 513-by-513, the
same as in Run 1 without DEXTER. In this case, however
the initial hierarchy has only2+4+8+...+128∗128∗2 =
65, 534 triangles,1/16th that of Run 1.

Error threshold tau = 0.04
Total time: 52.18s

- rendering: 25.45s
- DT rep. and error update: 10.61s
- vehicle/soil simulation: 16.12s

Avg. tri count: 4131
Subtrees created: 2186
Avg. frame rate: 34.5

2186 subtrees created means a total of2186 ∗ 30 =
65, 580 triangles were added to the hierarchy, leaving the
final total to be65, 534 + 65, 580 = 131, 114. Compare
this to1, 048, 574 in ROAM without DEXTER.

The two runs result in nearly identical visual appear-
ances, and the triangle counts are also very close. This

is expected because the resolution of the regular ROAM
and the maximum resolution of the DEXTER version are
the same, and the same error threshold is used. The frame
rates are also very similar, which means the extra work on
the DEXTER version only accounts for a small portion of
the total computation.

Run3: ROAM with DEXTER
.

In this run the initial grid size was again 129-by-129.
However, the maximum grid size is increased to 1025-
by-1025. The error threshold is kept at 0.04.

Error threshold tau = 0.04
Total time: 86.65s

- rendering: 49.47s
- DT rep. and error update: 22.51s
- vehicle/soil simulation: 14.67s

Avg. tri count: 9681
subtrees created: 2186
Avg. frame rate: 20.8

As expected, the triangle count increases and the frame
rate drops, when compared to the previous two runs. But
the detail available in the tire tracks is much higher be-
cause highest resolution triangles are smaller than before,
and are therefore better equipped to represent the curves
along the tracks. The number of subtrees created was
the same as in Run 2 because the vehicle path is identi-
cal. The subtrees are taller than in Run 2, though, so a
total of 21, 886 ∗ 126 = 275, 436 triangles were added.
Still, the final total of65, 534 + 275, 436 = 340, 970 is
much smaller than Runs 1’s 1,048,754. And, the maxi-
mum resolution of the grid is four times higher. The test
runs clearly exemplify significant reduction in data size
without a large speed penalty.

8 Conclusion and Continuing Work

We described methods that enable practical real-time vi-
sualization of on-line dynamic terrain. Our approach pro-
vides multiresolution view-dependent representation and
display of dynamic terrain by extending ROAM with ef-
ficient hierarchy updates as terrain deforms, and using
DEXTER to provide only-where-needed memory effi-
cient resolution extension.

This paper directly addressed only the geometric as-
pects of dynamic terrain. Interesting additional research
problems remain in dynamic terrain representation and
visualization, particularly related to color and texture is-
sues. Error measures in view-dependent multiresolution
techniques have largely concentrated on geometric error,
but can account for color and texture as well. Like the sit-
uation with geometry, however, they are more difficult to



handle (and perhaps even more important) in a dynamic
terrain setting. Some possible solutions and additional
research directions are discussed in He[10].

It is clear that our approach is quite effective for appli-
cations, such as off-road driving simulation, that require
only small localized terrain updates. We have not yet
carefully assessed the method’s practical effectiveness for
applications involving larger deformations of more exten-
sive terrain areas.

Acknowledgements

This work was supported in part by Automotive Research
Center Contract Number DAAE07-98-3-0022.

References

[1] J. Cremer, Y. He, and Y. Papelis. Dynamic terrain
for real-time ground vehicle simulation. InProceed-
ings of the Image 2000 Conference, pages 98–105,
July 2000.

[2] M. de Berg and K. T. G. Dobrindt. On levels of de-
tail in terrains. Technical Report UU-CS-1995-12,
Department of Computer Science, Utrecht Univer-
sity, 1995.

[3] L. De Floriani. A pyramidal data structure for
triangle-based surface description.IEEE Computer
Graphics and Applications, 9(2):67–78, March
1989.

[4] L. De Floriani, P. Magillo, and E. Puppo. Efficient
implementation of Multi-Triangulations. InPro-
ceedings IEEE Visualization ’98, October 1998.

[5] L. De Floriani, P. Marzano, and E. Puppo. Multires-
olution models for topographic surface description.
The Visual Computer, 12(7):317–345, August 1996.

[6] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C.
Miller, C. Aldrich, and M. B. Mineev-Weinstein.
ROAMing terrain: real-time optimally adapting
meshes. InProceedings IEEE Visualization ’97,
pages 81–88, 1997.

[7] M. Garland and P. S. Heckbert. Fast polygonal ap-
proximation of terrains and height fields. Technical
Report CMU-CS 95-181, Department of Computer
Science, Carnegie Mellon University, 1995.

[8] M. Garland and P. S. Heckbert. Surface simplifica-
tion using quadric error metrics.Computer Graph-
ics (SIGGRAPH ’97 Proceedings), pages 209–216,
1997.

[9] M. H. Gross, R. Gatti, and O. Staadt. Fast mul-
tiresolution surface meshing. InProceedings IEEE
Visualization ’95, July 1995.

[10] Y. He. Real-time visualization of dynamic terrain
for ground vehicle simulation. PhD thesis, The Uni-
versity of Iowa, December 2000.

[11] P. S. Heckbert and M. Garland. Survey of polygo-
nal surface simplification algorithms. InMultires-
olution surface modeling (SIGGRAPH ’97 Course
notes #25). ACM SIGGRAPH, 1997.

[12] H. Hoppe. Progressive meshes.Computer Graph-
ics (SIGGRAPH ’96 Proceedings), pages 99–108,
1996.

[13] H. Hoppe. View-dependent refinement of progres-
sive meshes.Computer Graphics (SIGGRAPH ’97
Proceedings), pages 189–198, 1997.

[14] H. Hoppe. Smooth view-dependent level-of-detail
control and its application to terrain rendering. In
Proceedings IEEE Visualization ’98, October 1998.

[15] P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges,
N. Faust, and G. Turner. Real-time, continuous
level of detail rendering of height fields.Computer
Graphics (SIGGRAPH ’96 Proceedings), pages
109–118, 1996.

[16] P. Lindstrom and V. Pascucci. Visualization of large
terrains made easy. InProceedings IEEE Visualiza-
tion ’01, pages 363–370, October 2001.

[17] D. Luebke. A survey of polygonal simplification al-
gorithms. Technical Report TR97-045, Department
of Computer Science, University of North Carolina
at Chapel Hill, 1997.

[18] D. Luebke and C. Erikson. View-dependent sim-
plification of arbitrary polygonal environments.
Computer Graphics (SIGGRAPH ’97 Proceedings),
pages 199–208, 1997.

[19] J. Rossignac and P. Borrel. Multi-resolution 3D
approximations for rendering complex scenes. In
B. Falcidieno and T. Kunii, editors,Modeling in
Computer Graphics: Methods and Applications,
pages 455–465. Springer-Verlag, Berlin, 1993.

[20] L. Scarlatos and T. Pavlidis. Hierarchical triangula-
tion using cartographic coherence.CVGIP: Graph-
ical Models and Image Processing, 54(2):147–161,
March 1992.

[21] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen.
Decimation of triangle meshes.Computer Graph-
ics, 26(2):65–70, July 1992.

[22] A. Shamir, V. Pascucci, and C. Bajaj. Multi-
resolution dynamic meshes with arbitrary deforma-
tions. InProceedings IEEE Visualization ’00, pages
423–430, October 2000.



[23] The National Advanced Driving Simulator. URL:
http://www.nads-sc.uiowa.edu.

[24] J. Xia and A. Varshney. A dynamic view-dependent
simplification for polygonal models. InProceedings
IEEE Visualization ’96, pages 327–334, 1996.

Figure 10: ROAM without DEXTER. Resolution 513 × 513,
on 44m× 44m square region.

Figure 11: ROAM with DEXTER. Basic resolution 129×129,
extended 2049× 2049, on 44m× 44m square region.

Figure 12: ROAM with DEXTER. Basic resolution 129×129,
extended 2049× 2049, on 44m× 44m square region.

Figure 13: ROAM with DEXTER. The triangles shown in yel-
low are from cells added to extend the initial hierarchy.


	Introduction
	Background and Related Work
	Real-time Visualization of Dynamic Terrain
	DEXTER: Dynamic EXTEnsion of Resolution
	Dynamic Terrain Extension to ROAM
	A Brief Review of ROAM
	Dynamic Terrain ROAM

	DEXTER Extension to ROAM
	Terrain Cells
	Extending ROAM's Mesh Hierarchy
	Transition Zones
	Updating Triangle Errors
	DEXTER Algorithm Outline

	Implementation Results
	Conclusion and Continuing Work

