
Efficient Bounded Adaptive Tessellation of
Displacement Maps

Kevin Moule Michael D. McCool

Computer Graphics Lab
Department of Computer Science

University of Waterloo

(a) (b) (c) (d)

Figure 1: (a) Bump-mapping only (882 triangles), (b) Uniform tessellation (56448 triangles), (c) Adaptive tessellation
with a tolerance of 5 pixels (34377 triangles), (d) Adaptive tessellation with a tolerance of 10 pixels (21521 triangles).

Abstract
Displacement mapping is a technique for applying fine

geometric detail to a simpler base surface. The displace-
ment is often specified as a scalar function which makes it
relatively easy to increase visual complexity without the
difficulties inherent in more general modeling techniques.
We would like to use displacement mapping in real-time
applications. Ideally, a graphics accelerator should create
a polygonal tessellation of the displaced surface on the
fly to avoid storage and host bandwidth overheads.

We present an online, adaptive, crack-free tessella-
tion scheme for real-time displacement mapping that
uses only local information for each triangle to per-
form a view-dependent tessellation. The tessella-
tion works in homogeneous coordinates and avoids re-
transformation of displaced points, making it suitable for
high-performance hardware implementation. The use of
interval analysis produces meshes with good error bounds
that converge quickly to the true surface.

Key words: Hardware acceleration. Bump mapping. Dis-
placement mapping. Adaptive tessellation.

1 Introduction

Displacement mapping is a technique for adding surface
detail to a base surface. The base surface is moved along
its normal at each point on the surface. The distances
moved, called the displacements, are generated either by
a function defined procedurally or are interpolated from a
2D array. Rendering displacement maps has traditionally
been either space-inefficient or computationally expen-
sive (or both). Many techniques neither map onto hard-
ware implementations nor fit within the standard hard-
ware pipeline.

We propose a technique for rendering displacement
maps that is targeted towards real time rendering us-
ing hardware acceleration. Our technique is not tar-
geted at current accelerators; instead, it is an algorithm
suitable for implementation in future hardware. How-
ever, the technique is simple and efficient enough that a
high-performance implementation can be obtained using
a software implementation along with the use of a stan-
dard accelerator as a back end.

Several restrictions are imposed in the context of hard-

ware accelerated rendering. Firstly, the nature of the
graphics pipeline is such that geometric primitives are
processed one at a time without any knowledge of the
primitive that came before or will come after. Secondly,
memory systems in graphics accelerators are specialized
for access to coherent data structures. Storing informa-
tion in general linked structures is usually avoided since
variability in access time would adversely effect the rest
of the pipeline. This implies that we cannot use or ma-
nipulate a complete representation of the geometry, but
should design a technique that operates locally.

Under these restrictions we will present a technique
that can render displacement mapped surfaces in real-
time on current graphics hardware but that is also suit-
able for direct implementation in future hardware. The
technique performs an online adaptive tessellation which
tries to minimize the complexity of the resulting mesh.
A brute-force technique could also be used. We chose to
pursue an adaptive technique so that displacement map-
ping would produce fewer primitives on average, would
access less memory on average, and also to support a sim-
ple form of adaptive geometry suitable for terrains, char-
acters, etc.

Our technique uses a hierarchical array structured data
representation based on interval analysis as a representa-
tion of the displacement function. The extra hierarchical
bounding information is used to guide a recursive tessel-
lation process. In hardware, a stack would be used to
implement the recursion. At each stage of the recursion,
an oracle is used to determine if a given triangle is a suf-
ficient approximation of the displaced surface using an
interval error metric. We use a view-dependent, division-
free error metric that bounds error in screen space. We
also combine displacement with bump-mapped per-pixel
lighting. This hides changes in tessellation that would be
objectionable under Gouraud shading.

In Section 2, we will define displacement mapping
more precisely. Section 3 describes the recursive adap-
tive tessellation scheme we use. Then, in Section 4 we
describe our hierarchical displacement map representa-
tion, which provides an efficient interval extension of tex-
ture mapping. Section 5 defines an oracle which can ef-
ficiently and accurately determine the need for additional
mesh subdivision. We evaluate the quality and perfor-
mance of our algorithm in Section 6. Finally, we summa-
rize our results in Section 7.

2 Displacement Mapping

Displacement mapping is a general technique for apply-
ing fine geometric detail to a simpler base surface and
can be formulated in many ways. A common approach
uses scalar displacement values and the normals at each

base surface point to generate the displaced surface (Fig-
ure 2). Given a surfaces(u, v) parameterized byu andv
the displaced surfacesd(u, v) can be defined as

sd(u, v) = s(u, v) + d(u, v)n̂(u, v) (1)

wheren̂(u, v) is the unit base surface normal andd(u, v)
is the scalar displacement function. The displacement
function can be defined procedurally or interpolated from
samples stored in an array (a displacement texture).

In the context of hardware based triangle rasterization
the displaced surface can be approximated by displacing
the vertices of a sufficiently dense subdivision of the base
surface. Image-based warping techniques can also be
used, but these provide fewer opportunities for backward-
compatible deployment on older accelerators.

s

d

sd

Figure 2: Displacement Mapping.

Displacement mapping was first introduced by Cook
in the context of Shade Trees [2] and later in the REYES
architecture [3]. The REYES architecture uses sub-pixel
micro-polygons for rendering. These micro-polygons are
simply displaced at their vertices and this provides a very
dense tessellation which gives sufficient accuracy. The
REYES architecture is not targeted towards real-time ren-
dering and this micro-tessellation scheme is overkill for
real-time application.

Displacement mapping has also been applied in ray-
tracing. Early approaches used an inverse technique
[10, 11] to warp the base surface to flatten it; the warp
curves the ray. This curved ray is then intersected with
the displacement map as if it were a height field. Recent
techniques have explored direct ray tracing using tech-
niques such as affine arithmetic [7], sophisticated caching
schemes [13] and grid base intersections [15].

Alternatively, both image warping [14] and volume
rendering [8] techniques have been explored. How-
ever, warping techniques require special hardware sup-
port (and so would not be backward compatible with ex-
isting accelerators), while volumetric techniques require
a large texture bandwidth and fill rate.

Recently a few hardware-oriented algorithms for
tessellation-based displacement mapping have been pro-
posed. Gumhold and Ḧuttner [6] proposed a technique

that produces a uniform tessellation based on the screen
space projection of each base triangle. The technique also
tessellates in the z-direction generating triangles where
bump mapping would suffice. Doggett and Hirche [5]
proposed a technique similar to ours that performs an
adaptive tessellation. Their technique uses a combina-
tion of two heuristics to guide the tessellation, a point
sampled normal variation test and an average height test
based on summed area tables. Independently, neither test
is sufficient but the combination of the two produces good
results. However, their heuristic test is not guaranteed.
In particular, the use of average displacement rather than
maximum displace can result in the omission of small
features with large displacement. The view dependent el-
ement of their approach is limited to edge length in screen
space, the nature of the displacement on the untessellated
interior of the triangles is not considered. Doggett, Ku-
gler and Strasser [4] proposed a multiple pass technique
that first renders the geometry on a coarse screen space
displacing the coarse pixels. The coarse pixels are then
re-meshed into new triangles which are used in the final
rendering. The technique is not adaptive and the mem-
ory requirements would be comparable to the stack space
needed for our approach.

There are also indications that industry support is
growing for real-time displacement mapping. A recent
paper from NVIDIA proposes displacement mapped sub-
division surfaces as a general modeling technique [9]. In
a recent presentation by Microsoft on DX9 displacement
mapping was mentioned, although in a simple form: a
data stream synchronized to the vertex stream can be pro-
vided to vertex shaders. This approach is limited to the
displacement of the original vertices.

3 Adaptive Tessellation

Displacement mapping can always be implemented by
displacing a uniform subdivision of the base surface.
However, adaptive tessellation will produce fewer trian-
gles than brute force tessellation and, especially if view-
dependent, will make more efficient use of the rasteriza-
tion units.

If the base surface is approximated using a triangular
mesh with vertex normals, adaptive tessellation can be
implemented on a triangle by triangle basis. As an input
triangle is processed, a local decision can be made as to
whether the triangle needs to be split into several trian-
gles to approximate the displaced surface to sufficient ac-
curacy. If the triangle is split, the resultant sub-triangles
are then handled in a recursive fashion [1, 5].

Our tessellator is based on this concept. An input trian-
gle has three edges,E1, E2 andE3. Each of these edges
is tested independently using anoracle. The oracle is a

function which takes an edge and information attached to
the vertices at the ends of that edge as input, and returns
0 if the edge does not need to be split and 1 otherwise.
Triangle edges are always split at their midpoints, intro-
ducing new vertices whose properties are set by interpo-
lating the properties of the endpoints of the edge. Given
the results from oracle evaluations for all three triangle
edges a three bit code can be constructed. This code is
used to select one of eight tessellation patterns (Figure 3)
to generate a new set of sub-triangles combining the old
and new vertices. The resultant sub-triangles are evalu-
ated and possibly further tessellated recursively. Three
of the tessellation patterns produce a quadrilateral that
needs to be split into two triangles. We have chosen to
split the quadrilateral in an arbitrary but consistent fash-
ion. A more intelligent choice could be made by using
the displacement data to drive the split but this would in-
cur extra computation and in our tests did not have a huge
impact on the resultant tessellation.

Since the tessellation is based on edge splitting, a crack
free tessellation can be guaranteed provided the oracle is
deterministic and vertex symmetric, that is, it returns ex-
actly the same result given exactly the same edge. This
permits input triangles that share edges to be specified
and processed in any order. The information provided to
the oraclemustbe local to the edge (such as position and
texture coordinates) and should not include any informa-
tion unique to the triangle (such as the triangle normal).
Under these conditions two triangles that share an edge
will provide the same information to the oracle and the al-
gorithm will generate the same tessellation on either side
of the edge. This scheme is not guaranteed to generate an
optimal tessellation. It is, however, online, local, robust
(with a suitable oracle) and simple enough for hardware
implementation.

A naive implementation of this approach requires re-
dundant computation. As the recursion proceeds from
one level to the next any edges generated in the interior
of the input triangle will produce two sub-triangles that
share a common edge. In the naive approach the oracle
for this edge would need to be evaluated for both sub-
triangles that share it even though the result will be iden-
tical. Splitting this common edge will also require the
vertex position and any associated parameters to be in-
terpolated twice. As an example, if a triangle is split into
four at every step and the recursion depth is four then only
150 unique vertices are generated but 255 oracle evalua-
tions and edge splits are performed.

To reduce the number of redundant calculations we can
restructure the recursion such that the oracle evaluations
and interpolations are done one step ahead of time. The
evaluation work needed at leveli is done at leveli−1 and

is shared across all triangles at leveli. Likewise, level
i pre-calculates the evaluation for leveli + 1 and passes
this information on. This technique requires a larger stack
since up to nine extra oracle evaluations and interpolated
vertices need to be stored. However, oracle results take
only a small amount of space: one bit each. Also, we
would want to allocate memory in advance for the worst
case stack size anyway. Interpolation computations for
edge splits are computed regardless of the results of the
oracle, but are put into effect only if the oracle evalua-
tions return true. Our results have shown that this pre-
calculation technique greatly improves the performance
of a software implementation despite the “wasted” ora-
cle and interpolation computations. In a hardware con-
text, we might want to employ multiple arithmetic units
for evaluating the worst-case number of oracles and in-
terpolations in parallel. In the case of multiple evaluation
units, avoiding a single oracle evaluation or interpolation
would not save any time. However, we might want to
onlyprecompute the oracles, to save space on the stack.

Similar schemes to the one we present here have been
used previously for tessellating parametric surfaces [1]
and displacement maps [5]. On the one hand, hard-
ware supporting the algorithm proposed here could be ex-
tended to the tessellation of procedurally generated para-
metric surfaces in a future accelerator (supporting gen-
erative modeling [16], for instance). This would require
only programmable vertex-position functions and inter-
val evaluation of those functions, which is not completely
out of the question. However, to keep things simple,
we have focussed on displacement mapping. The differ-
ences between our technique and the prior use of a simi-
lar scheme for adaptive tessellation of displacement maps
[5] lie in our oracle and our representation of the displace-
ment map. Our approach is both more robust (it will not
miss small features) and operates in homogeneous coor-
dinates. The latter property means we can operate in de-
vice space and so do not have to re-transform the vertices
generated by the algorithm.

4 Displacement Map Representation

In addition to evaluation of the displacement at a point
our oracle requires an upper and lower bound on the range
of the displacement function given an area of its domain.
In other words, our algorithm is based on interval analysis
and we need an interval extension of the displacement
function.

More formally, given a displacement functiond(u, v)
we define its interval extensionD(U, V) as follows:

U = [uL, uH],
V = [vL, vH],

111

011 110 101

010 100 001

000

Figure 3: Tessellation patterns. Each pattern has a corre-
sponding three bit code.

dL(U, V) = min{d(u, v)|u ∈ U, v ∈ V },
dH(U, V) = max{d(u, v)|u ∈ U, v ∈ V },
D(U, V) = [dL(U, V), dH(U, V)].

If the displacement function is defined procedurally
then interval arithmetic techniques can be used [16]. This
approach was used by Heidrich [7] (using affine inter-
val arithmetic) for ray tracing procedural displacement
shaders. If the displacement function is tabulated in the
form of a 2D array (as a texture map), or if a texture is
used as part of a procedural displacement shader, then
an interval extension of the texture lookup operator is
needed.

4.1 Bounding a Tabulated Displacement Function
Upper and lower bounds could easily be calculated from a
tabulated displacement function by iterating over the de-
sired area,[uL, uH] × [vL, vH], to finddL anddH . This
provides the tightest bound but unfortunately the com-
putational cost is far too high. Instead we use a data
structure, similar to MIP-maps, that stores precomputed
bounds over predetermined areas.

For our representation, a hierarchy of arrays is built
containinglg(r) levels wherer is the resolution of the
initial array. Usually, as in MIP-maps, we would start
with a square array whose dimensions are a power of
two. Each level is a quarter of the size of the previous
level, obtained by reducing each dimension by a factor of
two. However, unlike MIP-maps, the coarser levels are
populated with theinterval that bounds the correspond-

ing area in the next finer level. Given a particular entry
(i, j) at level`, the entry will be populated with the inter-
val over the area[2`i, 2`(i + 1)] × [2`j, 2`(j + 1)]. The
entries can be calculated using the initial tabulated data.
Alternatively the entire hierarchy can be constructed in a
recursive fashion where entries for leveli are calculated
using four entries from leveli − 1. A one-dimensional
example hierarchy is shown in Figure 4.

The storage requirements for this representation are
similar to MIP-maps. The quarter reduction in size of
each subsequent level leads to a storage overhead of one
third the original size. The interval bound requires an up-
per and lower value, doubling the size of the hierarchy
which results in two thirds the original size.

In our experience, 8-bit displacements are too coarse
and at least 16-bit precision is required. However, 8-bit
precision can be used for the upper and lower bounds in
the internal nodes of the interval hierarchy if outward
(conservative) rounding is used. If this is done, then
each such interval would take as much space as one orig-
inal 16-bit sample. This means that a displacement map
would take exactly as much space as a single-channel 16-
bit MIP-map.

0 1 2 3 4

Figure 4: Example interval hierarchy.

The naive approach to acquire an interval bound us-
ing the hierarchy is to simply use the entry that com-
pletely encompasses the desired area[uL, uH]×[vL, vH].
This can be accomplished by finding the level`u that en-
compasses[uL, uH], and the level̀ v that encompasses
[vL, vH], and usè = max(`u, `v). Define the inte-
ger representations ofu as i = bNu + 0.5c and v as
j = bNv + 0.5c, whereN is the number of samples in
the finest level of the hierarchy. The level`u is the num-
ber of low-order bits that must be removed fromi before
(iL � `u) = (iH � `u), and likewise for̀ v (where�
is the right bit shift operator). The appropriate entry in
level ` can then be found by indexing a 2D array using

(iL�`) and(jL�`).
This approach tends to produce very loose bounds

compared to the optimal (exhaustive search) method be-
cause the entry selected usually corresponds to an area
much larger than the desired one. In particular, if one of
the dimensions of the desired area has an integer repre-
sentation of its interval bounds that are identical in only
the topmost bits then the resultant level may be arbitrar-
ily large. This leads to poor convergence and unnecessary
tessellation concentrated near the power of two areas in
the displacement map. This can be seen in Figure 6(c).

A better approach is to take the interval union of
several entries from the hierarchy to construct a tighter
bound. We use up to four entries. The possible config-
urations of the entries is shown in Figure 5. Other con-
figurations and methods for obtaining tighter bounds are
possible but in our experiments this set provides suffi-
ciently tight bounds while still being straightforward to
calculate.

First, for each dimension an appropriate level is found.
The initial level estimate for a given dimension is found
using only the width of the interval in that dimension,
rounded up to the nearest power of two. Without loss of
generality we will consider onlyu, in which case the level
estimate would be

wu = dlg(iH − iL + 1)e.

Define

au = (iL�(wu − 1)),
bu = (iH �(wu − 1)).

If bu − au > 1, then`u = wu. Otherwise,̀ u = wu − 1.
The initial estimatewu is sufficient to encompassiL and
iH . The valuesau andbu are the entry indices ifwu − 1
were used. Ifbu andau are consecutive entries thenwu−
1 would suffice, otherwisewu is necessary. After finding
`v in the same way, we compute` = max(`u, `v).

Second, once the level` is found each ofiL, iH , jL and
jH are right shifted̀ bits. Due the waỳ is constructed
there are four cases into which the shifted values fall:

1. If (iL�`) = (iH �`) and(jL�`) = (jH �`),
then only one entry is needed (Figure 5(a)).

2. If (iL�`) = (iH �`) and(jL�`) < (jH �`),
then two vertical entries are needed (Figure 5(b)).

3. If (iL�`) < (iH �`) and(jL�`) = (jH �`),
then two horizontal entries are needed (Figure 5(c)).

4. If (iL�`) < (iH �`) and(jL�`) < (jH �`),
then four entries are needed (Figure 5(d)).

The computational and bandwidth cost of this ap-
proach is higher than the naive approach, especially when
four entries are combined, which is in fact the predomi-
nant case. However, our results have shown that although
the cost of the multi-sampling oracle is higher the tighter
bounds and better convergence leads to an overall per-
formance that is significantly higher than the naive ap-
proach. The lookup cost of the multi-sampling oracle is
comparable to bilinear interpolation in ordinary 2D tex-
ture mapping (which also requires four samples).

(a) (b)

(c) (d)

Figure 5: Examples of bounding an edge by combining
several intervals.

A comparison of the optimal technique, the naive ap-
proach, and our approach are shown in Figure 6. Our
approach is significantly closer to the optimal approach,
focusing on the areas that require tessellation without ex-
cessive over-tessellation in unimportant areas.

5 Oracle

Our oracle function attempts to bound the maximum error
within anareaenclosing an edge. Using the texture coor-
dinates of the two world space coordinate endpoints,p1

andp2, we can define an area in texture space (Figure 7).
Over this area an interval,D, is found which bounds the
displacement using the method described in Section 4.
The union of the areas for the three edges that define an
input triangle will be guaranteed to cover the interior of
the triangle. This guarantees that even though the oracle
is evaluated over an edge any displacement details con-
tained on the interior of the triangle will be incorporated

(a) (b)

(c) (d)

Figure 6: Comparison of interval lookup techniques. (a)
Reference rendering, (b) Optimal (exhaustive search), (c)
Naive (enclosing interval), (d) Proposed technique (four
interval samples).

into one of the three oracle evaluations.
Using the interval boundD and an edge defined be-

tween pointsp1 andp2 with normalsn̂1 andn̂2, we can
find the position of the maximum displacement along the
edge as follows:

p(t) = p1 + t (p2 − p1),
~n(t) = n̂1 + t (n̂2 − n̂1),

pL(t) = p(t) + dL~n(t)
pH(t) = p(t) + dH~n(t)

t∗ = arg max
t∈[0,1]

(||pL(t)− pH(t)||) (2)

Given t∗, the location of the maximum width, we de-
cide if the edge should be split by comparing the width of
this interval point against a user-defined threshold,ε.

||pL(t∗)− pH(t∗)|| < ε. (3)

In world space coordinates the left hand side of Equa-
tion 3 reduces to||D||, the width of the interval. This can
be used to obtain a fixed world space tessellation.

However, in screen space with the distance measured
in x andy only a view dependent tessellation can be per-
formed. In screen space the maximum width will occur
at one of the end points, whichever is closer to the eye.
To determine if an edge needs to be split we can evaluate

u

v

Figure 7: Areas defined by edges in texture space. The
displacement is bounded over each of these areas when
evaluating the oracle for the corresponding edge.

Equation 3 att = 0 andt = 1. If both values are smaller
thanε the edge need not be split and the oracle returns 0;
otherwise the oracle returns 1 and the edge is split. Prob-
lems do arise when the edge crosses the eye plane, the
maximum displacement will occur at the crossover point.
This condition can be easily detected by inspecting the
signs of the homogeneousw coordinates ofp1 andp2. If
the signs are different then the edge cross the eye plane
and a split is automatic. In the following consider only
the case where the signs of thew values are equal.

Using the homogeneous components ofpL(t) and
pH(t),

pL(t) = (xL, yL, zL, wL),
pH(t) = (xH , yH , zH , wH).

Equation 3 reduces to√(
xH

wH
− xL

wL

)2

+
(

yH

wH
− yL

wL

)2

< ε.

After some further manipulation, this reduces to

(wLxH − wHxL)2 + (4)

(wLyH − wHyL)2 < (wHwLε)2.

This form of the oracle will not generate subdivisions
when the displacement is directly towards the eye (since
bump-mapping alone suffices in that case). It might be
interesting to include thezw term, for example if bump-
mapping is not used or the geometry for a shadow map

is needed. The nonlinear encoding of z would need to be
considered, in particular the interpretation of theε thresh-
old would need to be reconsidered.

6 Results

This algorithm has been implemented as a C library. The
library sits on top of OpenGL and exposes an OpenGL-
like API extended with displacement mapping function-
ality. An 866 Mhz Pentium III machine with an NVIDIA
GeForce3 running Linux was used to render the images
and collect timing information. Bump mapping was im-
plemented in all cases using the NVIDIA texture shader
extensions.

(a) (b) (c)

Figure 8: Venus example. Rendering at various distances
from the eye with a magnified wire-frame: (a) 21959 tri-
angles at 20fps, (b) 9269 triangles at 30fps and (c) 2516
triangles at 85fps.

Figure 8 shows the venus bust modeled as a displace-
ment mapped sphere. The displacement map was gen-
erated using a ray-tracing method similar to the one de-
scribed by Leeet al [9]. In Figure 8 the model is rendered
at various distances from the eye. The adjacent wire-
frame shows the adaptive tessellation in close-up. As the
model moves farther away the oracle decides that more
and more edges do not need to be split. This results in
significantly reduced tessellation while preserving visual
quality. The wire-frame images also demonstrate that
the face itself requires less tessellation since it is fairly
smooth and relatively perpendicular to the viewing direc-
tion. However, the silhouette and the neck require more

tessellation to maintain visual quality and henceforth a
higher tessellation level in these regions is apparent at all
distances.

Figure 9: Spike example: average of 700 triangles, frame
rate of 1000fps+.

Figure 9 demonstrates that the algorithm does not miss
details. The displacement map corresponds to a small
spike with a large displacement and no displacement else-
where. The initial model used is a plane consisting of two
large triangles. Several displacement maps are used with
the spike positioned at different locations along the diag-
onal. Although the amount of tessellation differs depend-
ing on the location of the spike, the spike is never missed.
The variation seen in the tessellation is due to interaction
between the spike position, the interval hierarchy, and the
initial tessellation. In particular, the interval hierarchy is
sensitive to power of two boundaries.

Since our tessellation splits triangle edges only at their
midpoints, the convergence to specific features in the dis-
placement map may be slower than that of more flexible
schemes. This is particularly noticeable when a displace-
ment map has discontinuities. Figure 10 shows several
displaced rectangles each rotated at a different angle (the
oracle used here uses produces a fixed, world space tes-
sellation). In the first few images the displacement map
has a sampling pattern that coincides with the underlying
model and the tessellation produces good visual results.
As the rectangle is rotated further, more tessellation is re-
quired to capture the discontinuity. The fixed recursion
depth in this example causes small “braiding” artifacts to
appear when the underlying geometry and the displace-
ment map discontinuities conflict.

We point out these limitations of our algorithm only

Figure 10: Spin example: average of 2100 triangles,
frame rate of 380fps.

for comparison purposes. It is important, however, to re-
member the specialized constraints under which our al-
gorithm operates. Also, it should be noted that our algo-
rithm doesnot fail in the presence of these difficult cases;
but does generate additional tessellation.

Name Oracle # Tris FPS

Torus (Figure 1(b)) True 56448 14
Torus (Figure 1(c) Adaptive 34377 21

Venus (not shown) True 51200 12
Venus (Figure 8(a)) Adaptive 21959 20
Venus (Figure 8(b)) Adaptive 9269 30
Venus (Figure 8(c)) Adaptive 2516 85

Earth (Figure 11(c)) True 204800 4
Earth (Figure 11(b)) Adaptive 31374 20

Table 1: Run-time statistics. The “True” in the Oracle
column refers to an oracle that always returns 1, giving a
uniform tessellation to the maximum depth. The “Adap-
tive” oracle is the one described in Section 5 using the
screen space distance measured in x and y.

7 Conclusions

Implementation of displacement mapping in hardware
would lower bandwidth requirements for complex mod-
els and would also permit simple adaptive tessellation of
complex models to be performed without software sup-

(a) (b)

Figure 11: Earth example: (a) uniform tessellation and
(b) adaptive tessellation.

port. We have presented an algorithm for implementing
displacement mapping, using adaptive tessellation and
hierarchical interval bounding of the displacement func-
tion. Our interval-based subdivision oracle is more robust
than previous approaches that did not consider variation
of the displacement over the interior of the input trian-
gles.

Our approach is simple enough to run in real time in
software, but would also be suitable for hardware im-
plementation. Since the software implementation runs
in real time, it could be added to a driver. Adoption of
such an architecture would permit eventual adoption of
a hardware displacement unit, while permitting partial
hardware acceleration even on current architectures. A
conceptual model of the pipeline including the displace-
ment unit is shown in Figure 12. The vertex shading unit
would need to be placed ahead of the displacement unit.
The displacement unit generates a potentially different
set of output vertices each frame. Shading these contin-
uously changing output vertices could possibly produce
frame-to-frame shading artifacts.

rasterizerdisplacervertex
shader

Figure 12: Location of displacement unit in pipeline.

Our approach could be extended in various ways. We
only consider splitting edges at their midpoints. This
leads to a simple interpolator and a symmetric edge split,
but splitting at other than the midpoint might lead to
higher convergence rates. It might be interesting, for in-
stance, to perform edge detection on the displacement
map and perform edge splits near locations of known dis-
continuities. Also, as stated in the introduction, it should
be possible to extend our scheme to the adaptive tessel-
lation of arbitrary procedural parametric geometry [16],
by simply adding a unit to perform programmable inter-
val analysis of “geometry shader” functions. This should
probably be performed using affine arithmetic, which
would require compiler support for efficient implemen-
tation, but would not require a radically new shader pro-
cessing architecture. It might also be interesting to extend
the representation of tabulated displacement functions to
a form suitable for affine arithmetic, by storing slope in-
formation as well as bounds. Finally, if information could
be attached to edges rather than just vertices it might be
possible to come up with better oracles that use, for in-
stance, the dihedral angle between adjacent faces.

Acknowledgements

This research was sponsored by research grants from
the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC), Communications and Informa-
tion Technology Ontario (CITO), Canadian Foundation
for Innovation (CFI), Ontario Innovation Trust (OIT) and
Bell University Labs (BUL). We also gratefully acknowl-
edge NVIDIA’s hardware donations and the ever helpful
members of the Computer Graphics Lab.

References

[1] A. J. Chung and A. J. Field. A simple recursive tes-
sellator for adaptive surface triangulation.Journal
of Graphics Tools, 5(3):1–9, 2000.

[2] Robert L. Cook. Shade tress.Proceedings of SIG-
GRAPH 84, pages 223–231, 1984.

[3] Robert L. Cook, Loren Carpenter, and Edwin Cat-
mull. The reyes image rendering architecture.Pro-
ceedings of SIGGRAPH 87, pages 95–102, 1987.

[4] M. Doggett, A. Kugler, and W. Strasser. Displace-
ment mapping using scan conversion hardware ar-
chitectures.Computer Graphics Forum, 20(1):13–
26, 2001.

[5] Michael Doggett and Johannes Hirche. Adap-
tive view dependent tessellation of displacement
maps. 2000 SIGGRAPH / Eurographics Workshop
on Graphics Hardware, pages 59–66, 2000.

[6] Stefan Gumhold and Tobias Hüttner. Multiresolu-
tion rendering with displacement mapping.1999
SIGGRAPH / Eurographics Workshop on Graphics
Hardware, pages 55–66, 1999.

[7] Wolfgang Heidrich and Hans-Peter Seidel. Ray-
tracing procedural displacement shaders.Graphics
Interface ’98, pages 8–16, 1998.

[8] Jan Kautz and Hans-Peter Seidel. Hardware ac-
celerated displacement mapping for image based
rendering. Graphics Interface 2001, pages 61–70,
2001.

[9] Aaron Lee, Henry Moreton, and Hugues Hoppe.
Displaced subdivision surfaces.Proceedings of
SIGGRAPH 2000, pages 85–94, 2000.

[10] J. R. Logie and J. W. Patterson. Inverse dis-
placement mapping in the general case.Computer
Graphics Forum, 14(5):261–273, 1995.

[11] J. W. Patterson, S. G. Hoggar, and J. R. Logie. In-
verse displacement mapping.Computer Graphics
Forum, 10(2):129–139, 1991.

[12] Hans Køhling Pedersen. Displacement mapping
using flow fields. Proceedings of SIGGRAPH 94,
pages 279–286, 1994.

[13] Matt Pharr and Pat Hanrahan. Geometry caching
for ray-tracing displacement maps.Eurographics
Rendering Workshop 1996, pages 31–40, 1996.

[14] Gernot Schaufler and Markus Priglinger. Efficient
displacement mapping by image warping.Euro-
graphics Rendering Workshop 1999, pages 175–
186, 1999.

[15] Brian Smits, Peter Shirley, and Michael M. Stark.
Direct ray tracing of displacement mapped trian-
gles.Rendering Techniques 2000: 11th Eurograph-
ics Workshop on Rendering, pages 307–318, 2000.

[16] John M. Snyder. Generative Modeling for Com-
puter Graphics and CAD: Symbolic Shape Design
Using Interval Analysis. Academic Press, 1992.

[17] Xiaochuan Corina Wang, Jérome Maillot, Eugene
Fiume, Victor Ng-Thow-Hing, Andrew Woo, and
Sanjay Bakshi. Feature-based displacement map-
ping.Rendering Techniques 2000: 11th Eurograph-
ics Workshop on Rendering, pages 257–268, 2000.

	Introduction
	Displacement Mapping
	Adaptive Tessellation
	Displacement Map Representation
	Bounding a Tabulated Displacement Function

	Oracle
	Results
	Conclusions

