
Single Sample Soft Shadows using Depth Maps

Stefan Brabec Hans-Peter Seidel

Max-Planck-Institut f̈ur Informatik

Abstract
In this paper we propose a new method for rendering

soft shadows at interactive frame rates. Although the
algorithm only uses information obtained from a single
light source sample, it is capable of producing subjec-
tively realistic penumbra regions. We do not claim that
the proposed method is physically correct but rather that
it is aesthetically correct. Since the algorithm operates on
sampled representations of the scene, the shadow compu-
tation does not directly depend on the scene complexity.
Having only a single depth and object ID map represent-
ing the pixels seen by the light source, we can approxi-
mate penumbrae by searching the neighborhood of pixels
warped from the camera view for relevant blocker infor-
mation.

We explain the basic technique in detail, showing how
simple observations can yield satisfying results. We also
address sampling issues relevant to the quality of the
computed shadows, as well as speed-up techniques that
are able to bring the performance up to interactive frame
rates.

1 Introduction

One of the most problematic tasks in computer graphics
is the accurate and efficient computation of soft shadows
caused by extended light sources. Although there have
been enormous efforts in this specific area, only a small
subset of algorithms are really appropriate for interactive
rendering applications.

In this paper we will present a way of computing soft
shadows using only sampled images taken from the view
of a point light source. This soft shadow algorithm can
be seen as an extension of the classical shadow map algo-
rithm for calculating hard shadows. Instead of computing
only a binary value (shadowed or lit) for each pixel seen
by the camera, our algorithm processes the neighborhood
of the corresponding depth map entry to gather informa-
tion about what the shadow might look like in the case of
an area light source.

Even though the input data contains no information
about the characteristics of an area light, the resulting
shadows are yet of very good quality and give the impres-
sion of a physically plausible computation. Using only a
minimal amount of input data and a very compact algo-

rithm, we can achieve extremely high computation speed.
This way we can also utilize graphics hardware and spe-
cialized processor instruction sets.

2 Previous Work

Since a vast number of hard and soft shadow methods ex-
ist for general and very specific situations, we will only
briefly discuss some methods here, focusing on those
suitable for interactive and real-time applications, as well
as on algorithms which are related to our method. As
a good starting point we recommend Woo’s survey on
shadow algorithms [21].

In the field of hardware accelerated, interactive ren-
dering, shadow algorithms are mainly categorized by
the space in which the calculation takes place. One of
the fundamental shadow algorithms, Crow’s shadow vol-
umes [5], processes the geometry of the scene. By ex-
tending occluder polygons to form semi-infinite volumes,
so called shadow volumes, shadowed pixels can be deter-
mined by simply testing if the pixel lies in at least one
shadow volume. A hardware-accelerated implementation
of Crow’s shadow algorithm was later proposed by Hei-
dmann [10]. McCool [15] presented an algorithm that
reduces the often problematic geometry complexity of
Crow’s method by reconstructing shadow volumes from
a sampled depth map. Complexity issues were also ad-
dressed by Chrysanthou and Slater [4]. They propose the
use of BSP trees for efficient shadow volume calculations
in dynamic scenes. Brotman and Badler [3] came up with
a soft shadow version of Crow’s algorithm where they
generated shadow volumes for a number of light source
samples and computed the overlap using a depth buffer
algorithm. Discontinuity Meshing, e.g. [14], is another
exact way for computing soft shadows in object-space.
Here surfaces are subdivided in order to determine areas
where the visible part of the area light source is constant.

William’s shadow map algorithm [20] is the funda-
mental idea of most methods working on sampled rep-
resentations of the scene. The depths of visible pixels are
computed for the view of the light source and stored away
in a so called depth or shadow map. In the final render-
ing pass, pixels seen by the camera are transformed to the
light source coordinate system and tested against the pre-
computed depth values. A hardware-based shadow map

technique was presented by Segal et al. [18].
William’s original work suffered from sampling arti-

facts during the generation of the shadow map as well as
when performing the shadow test. Reeves et al. [17] pro-
posed a filtering method called percentage closer filtering
which solved these problems and generates smooth, an-
tialiased shadow edges. Reeves’ approach is also often
used to approximate penumbra regions by varying the fil-
ter kernel with respect to the projected footprint. This is
somewhat similar to our approach but in general requires
a very high resolution depth map in order to obtain soft
shadows with reasonable quality.

Brabec et al. [2] showed how Reeves’ filtering scheme
can be efficiently mapped to hardware. Hourcade and
Nicolas [12] also addressed the shadow map sampling
problems and came up with a method using object iden-
tifiers (priority information) and prefiltering.

To compute soft shadow textures for receiver poly-
gons, Herf and Heckbert [9] combined a number of hard
shadow images using an accumulation buffer [7]. Al-
though this method uses graphics hardware, it still re-
quires a large number of light source samples to achieve
smooth penumbra regions.

An approximative approach to soft shadowing was pre-
sented by Soler and Sillion [19] using convolution of
blocker images. On modern hardware this method can
utilize specialized DSP features to convolve images, lead-
ing to interactive rendering times. The main drawback of
the method is the clustering of geometry, as the number of
clusters is directly related to the amount of texture mem-
ory and convolution operations.

Heidrich et al. [11] showed that soft shadows for linear
light sources can be computed using only a minimal num-
ber of light source samples. Depth maps are generated for
each sample point and processed using an edge detection
step. The resulting discontinuities are then triangulated
and warped to a so called visibility map, in which a per-
centage visibility value is stored. Although the method
works very well for linear lights, it can not directly be
applied to the case of area light sources.

Keating and Max [13] used multi-layered depth images
(MDIs) to approximate penumbra regions. This method
is related to our algorithm because MDIs are obtained
from only a single light source sample. However, in con-
trast to this multi-layer approach, our algorithm operates
just on a single depth map taken from the view of the light
source sample.

Agrawala et al. [1] efficiently adopted image-based
methods to compute soft shadows. Although their
coherence-based ray tracing method does not perform at
interactive rates, they also presented an approach using
layered attenuation maps, which can be used in interac-

Figure 1: Computing penumbrae for a point light source.

tive applications.
A fast soft shadow method, especially suited for tech-

nical illustrations, was proposed by Gooch et al. [6]. Here
the authors project the same shadow mask multiple times
onto a series of stacked planes and translate and accumu-
late the results onto the receiver plane.

Haines [8] proposed a method for approximating soft
shadows by first generating a hard shadow image on the
receiver plane and then compute penumbra regions us-
ing distance information obtained from the occluder’s sil-
houette edges. This paper is related to our work since
it is also based on the work of Parker et al. [16], which
will be explained in detail in Section 3.1. Drawbacks of
Haines’ method are that receivers need to be planar and
that penumbra regions are only generated for regions out-
side the initial hard shadow.

3 Soft Shadow Generation using Depth Maps

3.1 Single Sample Soft Shadows
Parker et al. [16] showed how soft penumbra regions can
be generated by defining an extended hull for each pos-
sible occluder object. By treating theinner object as
opaque and having the opacity of theouterobject fall off
towards the outer boundary one can dim the contribution
of a point light source according to the relative distances
of light, occluder and receiver. Figure 1 illustrates this
scheme.

In order to avoid light leaks occurring for adjacent ob-
jects the size of the inner object needs to be at least as
large as the original occluder geometry. Since this causes
relatively large umbra regions, which would not occur in
a physically correct shadow computation, the approxima-
tion still produces reasonably looking shadows as long
as the occluder objects aren’t too small compared to the
simulated light source area. Parker et al. implemented

this scheme using standard ray tracing. In this case, it is
a comparatively easy task to compute the extended hulls
for primitives like spheres and triangles, and ray intersec-
tion directly calculates the distances to the outer and inner
boundaries, which are used to compute a corresponding
attenuation factor.

Although it was shown that the algorithm only intro-
duces about 20% of computation overhead (compared to
normal ray tracing), it is still far from being suitable for
interactive rendering. Especially when it comes to more
complex scenes, too much computation is spent on ex-
tending the geometric primitives and computing attenua-
tion factors that later will be discarded.

In the following sections we will show that this method
can be adopted to work on sampled data (depth maps) in
a much more efficient manner, while still achieving good
shadow quality.

3.2 A Sampling Based Approach
Just like the traditional shadow map algorithm presented
in [20], we start with the computation of two depth im-
ages, one taken from the view of the point light source
and one taken from the camera. To compute hard shad-
ows we simply have to compare the transformed z value
of each frontmost pixel (as seen by the camera) to the cor-
responding entry in the light source depth map, according
to the following algorithm:

foreach(x, y) {
P = (x, y, depth camera [x, y])
P ′ =warp to light(P)
if (depth light [P ′x, P

′
y] < P ′z)

pixel is blocked
else

pixel is lit
}

To modify this method to add anoutsidepenumbra re-
gion, we have to extend theelse branch of the shadow
test to determine if the pixel is really lit or lies in a
penumbra region. According to the ray tracing scheme
explained in the previous section, we have to trace back
the ray from the surface point towards the light source
and see if any outer object is intersected. If we con-
sider the light source depth map as a collection ofvir-
tual layers, where each layer is a binary mask describing
which pixels between the light and the layer got blocked
by an occluder inbetween (hard shadow test result), we
can simulate the intensity fall-off caused by an area light
source by choosing the nearest layer toP ′z that is still
in front, and compute the distance between(P ′x, P

′
y) and

the nearest blocked pixel in that specific layer. This is in
a sense similar to Parker’s method since finding the min-
imum distance corresponds to intersecting the outer hull

and computing the distance to the inner boundary. The
main difference is of course that we use a sampled repre-
sentation containing all possible occluders rather than the
exact geometry of only one occluder.

�

���

� ���	��
������� �

���	���	���	��� ���

�

Figure 2: Projecting and searching for the nearest blocker
pixel.

Figure 2 illustrates the search scheme using a very sim-
ple setup consisting of the umbra generated by an ellip-
soid as an occluder and a ground plane as the receiver
polygon. For a given pointP which does not lie inside
the umbra, we first warpP to the view of the light source
(P ′). Since the original pointP was somewhere near the
umbra, we find the transformed pointP ′ in the neighbor-
hood of the blocker image which causes the umbra. To
calculate an attenuation factor forP , we start searching
the neighborhood ofP ′ till we either find a blocked pixel
or a certain maximal search radiusrmax is exceeded. The
attenuation factorf is now simply the minimal distance
r (or r = rmax if no blocking pixel is found) divided by
the maximal radiusrmax. Sof = r

rmax
rises up from0

(no illumination) to1 (full illumination) as the distance
to the blocker increases.

In other words, we can now generate smooth shadow
penumbra regions of a given maximal extentrmax. To
simulate the behavior of areal area light source, we now
have to define which properties affect the size of the
penumbra and how these can be realized with our search
scheme. As widely known, the following two distances
mainly define the extend of the penumbra1:

• the distance between occluder and receiver, and

• the distance between receiver and light source.

For our search scheme the distance between receiver
and light source can be integrated by varyingrmax ac-
cording to the distance between a given surface pointP
and the light source position. Assuming a fixed occluder,

1Apart from other properties like orientation of receiver and light
source etc.

a receiver far away from the light source will get a larger
penumbra whereas a receiver near to the light source will
have a smallerrmax assigned.

Taking into account the distance between occluder and
receiver is a little bit tricky: Since finding an appropriate
occluder is the stop criterion for our search routine, we do
not know in advance what this distance will be. What we
do know is that the occluder has to be inside the region
determined by the maximal extend, which is computed
using the distance between receiver and light source.

In other words, the finalrmax may be less the initial
search radius. For our search routine this means that we
first search the maximal extend since an occluder pixel
is found and then re-scale the initial search radius by a
factor computed using the distance between the surface
point P and the found occluder pixel and use thisrmax
as the denominator for computingf (attenuation factor).

Assuming that the position of the point light in light
source space is located at(0, 0, 0) and that the light di-
rection is along thez axis, we set the inital search radius

rmax = rscale ∗ |P ′z|+ rbias ,

whererscale andrbias are user defined constants describ-
ing the area light effect2. Since shadow maps are usually
generated for the very limited cut-off angle of spotlights,
the difference of usingP ′z instead of computing an eu-
clidean distance is negligible. We can now rewrite the
hard shadow algorithm to produce soft shadows by sim-
ply adding this search function:

foreach(x, y) {
P = (x, y,depth camera [x, y])
P ′ =warp to light(P)
if (depth light [P ′x, P

′
y] < P ′z)

pixel is blocked
else
f = search(P ′)
modulate pixel by f

}
search(P ′) {
r = 0
rmax = rscale ∗ |P ′z|+ rbias
while(r < rmax) {

if ∃(s, t) : ‖(P ′x, P ′y)− (s, t)‖ = r∧
depth light [s, t] < P ′z {

rmax∗ = rshrink ∗ (P ′z − depth light [s, t])
return clamp0,1(r/rmax)

}
else

increase r
}
return 1.0

}
2rbias can be used to force a certain penumbra width even for re-

ceivers very near to the light source.

In the first loop we iterate over all frontmost pixels as
seen by the camera performing the hard shadow test. For
each lit pixel we start a search routine where we search
in the light source depth map in order to find a suitable
blocker pixel at a minimal distance to the transformed
surface point. If a blocker pixel is found we then re-scale
the inital rmax by a factor computed using the distance
between the surface point and the occluder pixel. An
user-defined scaling factorrshrink is used to give addi-
tional control on the effect of this distance.

As can be seen in the pseudo code the describedvirtual
layers are implicitly selected by processing only those
pixels in the depth map where a blocker lies in front of
the potential receiver (depth light [s, t] < P ′z).

Up to now we have restricted ourselves to a very simple
setup where the receiver was parallel to the light source
image plane. This has the effect thatP ′z remains con-
stant during the soft shadow search, or in other words,
the search takes place in a constant virtual layer. This is
no longer the case if we consider an arbitrary receiver as
depicted in Figure 3.

� ���

����� 	�
�� � ���
�� ����������������

� ������ �!#"%$'& (

Figure 3: Wrong self shadowing due to layer crossing.

If we performed a search on the constant layerz <
P ′z we would immediately end up in the receiver’s own
shadow since the receiver plane may cross several of the
virtual layers. This can be seen in the virtual layer image
in Figure 3 where about two thirds of the layer contain
blocked pixels belonging to the receiver polygon.

To solve this problem, we either have to divide the
scene into disjunct occluders and receivers3, which would
make the algorithm only suitable for very special situ-
ations, or we need to supply more information to the

3Which is e.g. suitable for games where a character moves in a static
environment.

search routine. To define an additional search criterion,
which gives the answer to the question ”does this blocker
pixel belong to me?”, we follow Hourcade’s [12] ap-
proach and assign object IDs. These IDs are identifica-
tion numbers grouping logical, spatially related, objects
of the scene.

It must be pointed out that all triangles belonging to
a certain object in the scene must be assigned the same
object ID, otherwise self shadowing artifacts would occur
if the search exceeded the projected area of the triangle
belonging toP . Of course there are situations where also
the ID approach fails, e.g. if distinct objects are nearly
adjacent, but for most real-time applications there should
exist a reasonable grouping of objects.

3.3 Handling of Hard Shadow Regions

Up to now we have concentrated on the computation of
the outer part of the hard shadow region and simply as-
sumed that the hard shadow region is not lit at all. In the
case of an area light source, which we would like to sim-
ulate, this is of course an indefensible assumption. What
we would like to obtain is of course a penumbra region
which also smoothes thisinner region. This can be eas-
ily achieved if we apply the same search technique for
pixels that are initially blocked by an occluder. Instead
of searching for the nearest blocker pixel within a given
search radius we now have to search for the nearest pixel
that is lit by the light source.

To combine this with theouterpenumbra result we as-
sume thatouterandinner regions meet at an attenuation
value of 0.5 (or some user defined constant). The fi-
nal algorithm (including the object ID test) that produces
penumbra regions can then be implemented according to
the following pseudo code:

foreach(x, y) {
P = (x, y,depth camera [x, y])
P ′ =warp to light(P)
P ′ID =id camera [x, y]
inner = depth light [P ′x, P

′
y] < P ′z

f = search(P ′, inner)
modulate pixel by f

}
search(P ′, inner) {
r = 0
rmax = rscale ∗ |P ′z|+ rbias
while(r < rmax) {

if inner
if ∃(s, t) : ‖(P ′x, P ′y)− (s, t)‖ = r ∧

depth light [s, t] >= P ′z ∧
id light [s, t] == P ′ID

rmax∗ = rshrink ∗ (depth light [s, t]− P ′z)
return 0.5 ∗ clamp0,1(r/rmax)

else
if ∃(s, t) : ‖(P ′x, P ′y)− (s, t)‖ = r ∧

depth light [s, t] < P ′z ∧
id light [s, t] 6= P ′ID

rmax∗ = rshrink ∗ (P ′z − depth light [s, t])
return 1.0− 0.5 ∗ clamp0,1(r/rmax)

increase r
}
return inner ? 0.0 : 1.0

}

3.4 Discussion
The presented algorithm is capable of producing percep-
tually pleasing, rather than physically correct soft shad-
ows using a total of four sampled images of the scene
(two object ID maps, two depth maps). The behavior (ex-
tent) of the area light can be controlled by user defined
constants. Using unique object IDs to group primitives
into logical groups, soft shadows are computed for ev-
ery occluder/receiver combination not sharing the same
object ID.

4 Implementation

4.1 Generating the Input Data
Since our algorithm relies on sampled input data, graph-
ics hardware can be used to generate the input data
needed for the shadow computation. In a first step we
render the scene as seen by the light source and encode
object IDs as color values. For very complex scenes we
either use all available color channels (RGBA) or restrict
ourselves to one channel (alpha) and assign object IDs
modulo2n (n bits precision in the alpha channel). This
gives us the depth map (z-buffer) and the object IDs of
the frontmost pixels according to the light source view,
which we transfer back to the host memory. We then re-
peat the same procedure for the camera view. If only the
alpha channel is used for encoding the object IDs, we can
combine this rendering pass with the rendering of the fi-
nal scene (without shadows).

In cases where 8 bits are enough we could also use a
special depth/stencil format available on newer NVIDIA
GeForce cards. With this mode we simply encode IDs as
stencil values and obtain a packed ID/depth map (8 bits
stencil, 24 bit depth) using only one frame buffer read.
Another benefit of this format is that memory accesses to
id/depth pairs are more cache friendly.

4.2 Shadow Computation
The actual shadow computation takes place at the host
CPU. According to the pseudo code in Section 3.3, we it-
erate over all pixels seen by the camera and warp them to
the light source coordinate system. Next we start search-
ing for either the nearest blocker pixel (outer penumbra

Figure 4: Computing distances at subpixel accuracy.

region) or the nearest pixel that is lit (inner penumbra re-
gion).

Since memory accesses (and the resulting cache
misses) are the main bottleneck, we do not search cir-
cularly around the warped pixel but search linearly using
an axis aligned bounding box. Doing so we are actually
computing more than needed but this way we can utilize
SIMD (single instruction, multiple data) features of the
CPU, e.g. MMX, 3DNow, or SSE, which allows us to
compute severalr in parallel. If an appropriate blocking
pixel is found (object ID test, minimal distance), we store
the resulting attenuation factor for the given camera space
pixel. If the search fails, a value of1.0 or 0.0 is assigned
(full illumination, hard shadow).

At the end, the contribution of the point light source is
modulated by the attenuation map using alpha blending.

4.3 Improvements

Subpixel Accuracy

When warping pixels from camera to light there are two
ways to initialize the search routine. One would be to
simply round(P ′x, P

′
y) to the nearest integer position and

compute distances using only integer operations. While
this should give the maximum performance, the quality of
the computed penumbrae would suffer from quantization
artifacts. Consider the case where pixels representing a
large area in camera screen space are warped to the same
pixel in the light source depth map. Since all pixels will
find the same blocker pixel at the same distance, a con-
stant attenuation factor will be computed for the whole
area. This can be avoided by not rounding to the nearest
integer but performing the distance calculation at floating
point precision. As depicted in Figure 4, we compute the
distance of the warped pixel (grey) to the next blocker
pixels, which lie at integer position. Quantization arti-
facts can be further reduced if we also slightly jitter the
integer position of the blocker pixels. In practice we ob-
served that the latter is only needed for very low resolu-
tion depth maps.

�����������
	��
�������� ��� ���

���������
��� ����� ��!#"%$�& '�(�))�*

+�,�-�.�/�0
1

2
3

4

5

6

7

8

9

:

;

<

=

>

?

Figure 5: Subdivision and interpolation.

Adaptive Sampling
Up to now we only briefly discussed the cost of searching
the depth map. Consider a scene where only 5% of the
frontmost pixels are in hard shadow. To compute accurate
penumbra regions we would need to perform neighbor-
hood searches for 95% of the pixels in the worst case4. So
for all completely lit pixels we have searched the largest
region (rmax) without finding any blocker pixel. Even
with a highly optimized search routine and depth maps of
moderate size it would be very difficult to reach interac-
tive frame rates.

Instead we propose an interpolation scheme that effi-
ciently reduces the number of exhaustive searches needed
for accurate shadowing. The interpolation starts by iter-
ating over the columns of the camera depth map. In each
iteration step, we take groups of 5 pixels and do the hard
shadow test for all of them. Additionally, we also store
the corresponding object IDs of the blockers, or, in the
case of lit pixels, the object ID of the receiver pixel. Next,
we perform a soft shadow search for the two border pix-
els in this group. As a criterion for the inner pixels we
check if

• the object IDs are equal and

• the hard shadow test results are equal.

If this is true, we assume that there will be no dramatic
shadow change within the pixel group and simply linearly
interpolate the attenuation factors of the border pixels
across the middle pixels. If the group test fails we refine
by doing the soft shadow search for the middle pixel and
subdivide the group into two three pixel groups for which
we repeat the group test, interpolation and subdivision.

Figure 5 shows an example of such an interpolation
step. Let us assume that the object ID of pixel3 differs
from the rest. In the first phase we perform hard shadow

4Worst case occurs when all pixels are in the view of the light source.

tests for all pixels and soft shadow searches for the two
border ones. Since the interpolation criterion fails (IDs
not equal), the pixel group is refined by a soft shadow
search for pixel2 and subdivided into two groups. Pixel
group(0, 1, 2) fulfills the criterion and an interpolated at-
tenuation factor is assigned to pixel1, whereas for pixel
group (2, 3, 4) we need to compute the attenuation by
search. As we will later also need object IDs for inter-
polated pixels, we simply use the object ID of one inter-
polant in that case. We repeat this for all pixel groups in
this and every 4th column, leaving a gap of three pixel in
horizontal direction.

Having linearly interpolated over the columns we now
process all rows in the same manner and fill up the hor-
izontal gaps. This bi-linear interpolation mechanism is
capable of reducing the number of expensive searches. In
the best case, the searching is only done for one pixel in
a 16 pixel block. Since this case normally occurs very
often (e.g. in fully illuminated areas), we can achieve a
great speed-up using the interpolation. On the other hand,
quality loss is negligible or non-existent because of the
very conservative refinement.

The size of the pixel group used for interpolation
should depend on the image size. In experiments
we observed that blocks of4×4 pixels are a good
speed/quality tradeoff when rendering images of mod-
erate size (512×512, 800×600 pixels), whereas larger
block sizes may introduce artifacts due to the non-
perspectively correct interpolation.

5 Results

We have implemented our soft shadow technique on
an Intel Pentium 4 1.7GHz computer equipped with an
NVIDIA GeForce3 graphics card. Since the generation
of depth and ID maps is done using graphics hardware,
we get an additional overhead due to the two frame buffer
reads needed to transfer the sampled images back to host
memory.

Figure 7 shows the results of our soft shadow algorithm
for a very simple scene consisting of one torus (occluder)
and a receiver plane. We rendered the same scene three
times varying only the position and orientation of the oc-
cluder.

All images in Figure 7 were rendered using an image
resolution of 512×512 pixels and a light depth/ID map
resolution of 256×256 pixels. By default, we always use
the full image resolution when computing the depth and
ID map for the camera view. Frame rates for this scene
are about10 − 15fps. Computing only the hard shad-
ows (shadow test done on the host CPU) the scene can be
rendered at about30fps.

In the left imagermax was set to 20 (20 pixel search

0

5

10

15

20

25

30

0 10 20 30 40 50 60

fp
s �

search radius

Timings - Torus1

Figure 6: Frame rates for the torus test scene (Figure 8)

radius) for the inner and outer penumbra. The receiver
plane does not reach this maximum (due to the distance
between receiver and light source). The average search
radius for pixels on the receiver plane is about16 pixels.
The effect of increasing or decreasingrmax for this scene
is plotted in Figure 6. It must be pointed out that the
distance between occluder and receiver does not affect
the inital search radius. Therefore the cost of computing
soft shadows for the three images in Figure 7 is nearly
constant.

In the left image artifacts can be seen (ring), where the
inner and outer penumbra meet. This is because the atten-
uation factors for inner and outer regions are computed in
a slightly different way (see Section 3.3). Theoretically
this transition should be smooth.

Figure 8 (left) shows a more crowded example scene
with objects placed at various heights. It can be seen that
objects very near to the floor plane cast very sharp shad-
ows, whereas the shadows from the three tori are much
smoother. The other two images in Figure 8 show the
scene with hard shadows and hard shadows with outer
penumbra. Since our soft shadow algorithm is based on
the shadow map technique, we are independent of the
scene geometry, which means we can generate soft shad-
ows for arbitrary geometry. There is no distinction be-
tween receiver and occluder objects (apart from the miss-
ing self shadowing due to the ID test).

Figure 9 shows two more complex scenes where we
used our soft shadow algorithm for penumbra genera-
tion. In order to assign reasonable object IDs we simply
group polygons using the tree structure obtained when
parsing the scene file. This way all polygons sharing the
same transformation and material node are assigned the
same object ID. Both images were taken using a low-

resolution light depth/ID map of 256×256 pixels and an
image resolution of 512×512 pixel. In the right image we
choose a very large cutoff angle for the spotlight which
would normally generate very coarse hard shadows. Here
the subpixel accuracy explained in Section 4.3 efficiently
smoothes the shadows. Both images can be rendered at
interactive frame rates (≈ 15fps).

Note that all the timings strongly vary with the size
of the penumbra, so changing the light position or alter-
ing rmax may speed up or slow down the computation,
depending on the number of searches that have to be per-
formed. When examining the shape of the penumbrae,
one can observe that they do not perfectly correspond to
the occluder shape. This is due to the circular nature of
the search routine, which rounds off corners when search-
ing for the minimal distance.

6 Conclusions and Future Work

In this paper we have shown how good-looking, soft
penumbra regions can be generated using only informa-
tion obtained from a single light source sample. Although
the method is a very crude approximation it gives a dra-
matic change in image quality, while still being compu-
tationally efficient. We showed how the time consum-
ing depth map search can be avoided for many regions
by interpolating attenuation factors across blocks of pix-
els. Since the algorithm works on sampled representa-
tions of the scene, computation time depends mostly on
the shadow sizes and image resolutions and not on geo-
metric complexity, which makes the method suitable for
general situations.

In it is current state the algorithm still relies on a num-
ber of user parameters (rmax, rshrink, etc.) which where
introducedad-hoc. As future work we would like to to
hide these parameters and compute them based on one
intuitive parameter (e.g. the radius of a spherical light
source, defined in the scene’s coordinate system). This
way it would also be possible to compare our method to
more accurate algorithms.

With real time frame rates as a future goal, another
focus will be on more sophisticated search algorithms
that work on hierarchical and/or tiled depth maps as well
as investigating methods of pre-computed or cached dis-
tance information. Further speed improvements could
also be achieved by using graphics hardware, e.g. inter-
leaved frame buffer reads, as well as on the host CPU by
using special processor instructions sets.

Another research direction will be the quality of shad-
ows. Up to now we simply used a linear intensity fall-
off, which of course is not correct. Assuming a diffuse
spherical light and an occluder with a straight edge (simi-
lar to Parker’s original algorithm), a better approximation

would be a sinusoid as the attenuation function.
Finally, we have only slightly addressed aliasing issues

that occur when working on sampled data. Our algorithm
can work on very low-resolution image data since the
search technique efficiently smoothes blocky hard shad-
ows. However, we expect an additional improvement
of quality by using filtering schemes that also take into
account the stamp size of the warped pixel or work on
super-sampled depth maps.

Acknowledgements

We would like to thank Prof. Wolfgang Heidrich of the
University of British Columbia, Canada, and the anony-
mous reviewers for valuable discussions and comments
on this topic.

References

[1] Maneesh Agrawala, Ravi Ramamoorthi, Alan
Heirich, and Laurent Moll. Efficient image-based
methods for rendering soft shadows.Proceedings of
SIGGRAPH 2000, pages 375–384, July 2000. ISBN
1-58113-208-5.

[2] Stefan Brabec and Hans-Peter Seidel. Hardware-
accelerated rendering of antialiased shadows with
shadow maps.To appear in: Computer Graphics
International 2001, 2001.

[3] L. S. Brotman and N. I. Badler. Generating soft
shadows with a depth buffer algorithm.IEEE Com-
puter Graphics and Applications, 4(10):71–81, Oc-
tober 1984.

[4] Yiorgos Chrysanthou and Mel Slater. Shadow vol-
ume bsp trees for computation of shadows in dy-
namic scenes.1995 Symposium on Interactive 3D
Graphics, pages 45–50, April 1995. ISBN 0-89791-
736-7.

[5] Franklin C. Crow. Shadow algorithms for computer
graphics. InComputer Graphics (SIGGRAPH ’77
Proceedings), pages 242–248, July 1977.

[6] Bruce Gooch, Peter-Pike J. Sloan, Amy Gooch, Pe-
ter S. Shirley, and Rich Riesenfeld. Interactive tech-
nical illustration. In1999 ACM Symposium on In-
teractive 3D Graphics, pages 31–38. ACM SIG-
GRAPH, April 1999. ISBN 1-58113-082-1.

[7] Paul E. Haeberli and Kurt Akeley. The accumula-
tion buffer: Hardware support for high-quality ren-
dering. In Computer Graphics (SIGGRAPH ’90
Proceedings), pages 309–318, August 1990.

[8] E. Haines. Soft planar shadows using plateaus.
Journal of Graphic Tools, 6(1):19–27, 2001.

[9] Paul Heckbert and Michael Herf. Simulating soft
shadows with graphics hardware. Technical Report
CMU-CS-97-104, Carnegie Mellon University, Jan-
uary 1997.

[10] T. Heidmann. Real shadows real time.IRIS Uni-
verse, 18:28–31, November 1991.

[11] Wolfgang Heidrich, Stefan Brabec, and Hans-Peter
Seidel. Soft shadow maps for linear lights.Render-
ing Techniques 2000: 11th Eurographics Workshop
on Rendering, pages 269–280, June 2000. ISBN
3-211-83535-0.

[12] J. C. Hourcade and A. Nicolas. Algorithms for
antialiased cast shadows.Computers & Graphics,
9(3):259–265, 1985.

[13] Brett Keating and Nelson Max. Shadow penumbras
for complex objects by depth-dependent filtering of
multi-layer depth images. InRendering Techniques
’99 (Proc. of Eurographics Rendering Workshop),
pages 197–212, June 1999.

[14] Daniel Lischinski, Filippo Tampieri, and Donald P.
Greenberg. Discontinuity meshing for accurate ra-
diosity. IEEE Computer Graphics & Applications,
12(6):25–39, November 1992.

[15] Michael D. McCool. Shadow volume reconstruc-
tion from depth maps. ACM Transactions on
Graphics, 19(1):1–26, January 2000.

[16] Steven Parker, Peter Shirley, and Brian Smits.
Single sample soft shadows. Technical Re-
port UUCS-98-019, Computer Science Depart-
ment, University of Utah, 1998. Available from
http://www.cs.utah.edu/vissim/bibliography/.

[17] William T. Reeves, David H. Salesin, and Robert L.
Cook. Rendering antialiased shadows with depth
maps. InComputer Graphics (SIGGRAPH ’87 Pro-
ceedings), pages 283–291, July 1987.

[18] Marc Segal, Carl Korobkin, Rolf van Widenfelt, Jim
Foran, and Paul Haeberli. Fast shadow and lighting
effects using texture mapping. InComputer Graph-
ics (SIGGRAPH ’92 Proceedings), pages 249–252,
July 1992.

[19] Cyril Soler and François X. Sillion. Fast calcula-
tion of soft shadow textures using convolution. In
Computer Graphics (SIGGRAPH ’98 Proceedings),
pages 321–332, July 1998.

[20] Lance Williams. Casting curved shadows on curved
surfaces. InComputer Graphics (SIGGRAPH ’78
Proceedings), pages 270–274, August 1978.

[21] Andrew Woo, Pierre Poulin, and Alain Fournier.
A survey of shadow algorithms.IEEE Computer

Graphics & Applications, 10(6):13–32, November
1990.

Figure 7: A simple test scene showing the effect of varying distance between receiver and occluder.

Figure 8: A more crowdedscene. Left: soft shadows, middle: hard shadows, right: hard shadows with outer penumbra.

Figure 9: Two more complex scenes rendered with our soft shadow algorithm.

	Introduction
	Previous Work
	Soft Shadow Generation using Depth Maps
	Single Sample Soft Shadows
	A Sampling Based Approach
	Handling of Hard Shadow Regions
	Discussion

	Implementation
	Generating the Input Data
	Shadow Computation
	Improvements

	Results
	Conclusions and Future Work

