
Image-Based Hair Capture by Inverse Lighting

St́ephane Grabli
iMAGIS -GRAVIR

François X. Sillion
iMAGIS -GRAVIR

Stephen R. Marschner
Stanford University

Jerome E. Lengyel
Microsoft Research

Abstract
We introduce an image-based method for modeling a

specific subject’s hair. The principle of the approach is to
study the variations of hair illumination under controlled
illumination. The use of a stationary viewpoint and the
assumption that the subject is still allows us to work with
perfectly registered images: all pixels in an image se-
quence represent the same portion of the hair, and the
particular illumination profile observed at each pixel can
be used to infer the missing degree of directional infor-
mation. This is accomplished by synthesizing reflection
profiles using a hair reflectance model, for a number of
candidate directions at each pixel, and choosing the ori-
entation that provides the best profile match. Our results
demonstrate the potential of this approach, by effectively
reconstructing accurate hair strands that are well high-
lighted by a particular light source movement.

Key words: Hair Reflectance, Hair Modeling, Re-
flectance Analysis, Shape from Shading.

1 Introduction

More and more computer graphics applications, for in-
stance video games or teleconferencing, require virtual
models of people. For this reason, recently, a great
amount of effort has gone toward digitizing people. How-
ever although hair plays a significant role in a person’s
appearance, the efficient acquisition of hair geometry re-
mains an important unsolved problem.

Indeed, the usual digitization techniques fail in the face
of the complex geometry of human hair, which is an intri-
cate gathering of tens of thousands of thin elements, that
are nearly invisible at human scale.

This article presents a method for retrieving the geom-
etry of hair strands by analyzing images. We investigate
how to extract as much information as possible from a
series of images of a subject’s hair, taken under a single
known viewpoint and a moving light source. Each lit hair
strand reflects light according to its orientation; the idea
is then to infer this orientation using a hair reflectance
model from the observed images. Although the discussed
method is complete as itself, it does not pretend to solve
the problem of hair acquisition. It must rather be viewed
as an innovative approach to this arduous task, that still

needs to be exploited. Furthermore, as we will see in
section 6, it must be combined with other more classical
approaches to become practical.

After a brief overview of previous work, we outline
the approach in section 3. Then, in section 4, we detail
a possible implementation. Lastly, in sections 5 and 6,
we present our results and conclude with directions for
future work.

2 Related work

Although a large body of work deals with modeling
[9, 5, 20, 18, 21], animating [9, 5, 18] and rendering
[15, 14, 19, 13] human hair, few articles treat the ques-
tion of its acquisition. Likewise, the extensive research
on “Shape from Shading” [3, 16] only addresses the case
of relatively continuous surfaces, and doesn’t offer tech-
niques suited to hair.

With [17], Nakajima is the only one, to our knowl-
edge, having considered hair modeling from pictures. His
approach is purely geometric and consists of building a
3D hair volume from pictures showing the subject’s hair
from various viewpoints. Hair strands are then gener-
ated inside this volume, without any mechanism to ensure
faithfulness in their directionality. This simple method
presents several limitations: in particular, it seems un-
likely to work well on complex hairstyles.

Our method requires a reliable model of reflectance
for hair. Kajiya and Kay [11] first introduced a lighting
model for hair, to render their “Teddy Bear”. It includes
two components: diffuse and specular. The diffuse com-
ponent is derived from the Lambertian model applied to a
very small cylinder, considering a hair strand to be lit on
the whole half-cylinder facing the light source. Goldman,
in [8], improved it by solving its lack of directionality.
This improvement is particularly interesting in the case
of backlighting simulation. Furthermore, in [1], Banks,
also aiming at rendering fur, adds a self-shadowing term
to the Kajiya-Kay model. The integration of a shadowing
treatment in the model is interesting, but, as we will see
in section 4, hardly applicable in our case.

3 Approach

Our approach consists of capturing the geometry of the
hair strands geometry by studying images taken under
controlled lighting conditions. We chose to observe the



hair from a few viewpoints, and, for each viewpoint, to
move the light source along a specific path, taking pic-
tures for many light source positions along this path. The
light source locations as well as the intrinsic camera pa-
rameters are known and controlled. The images produced
are organized in sequences, each corresponding to a sin-
gle camera position and a specific light source path. Fig-
ure 1a shows a sample of pictures from one sequence.

The main hypothesis concerns the chosen reflectance
model and the hair material. Our system is a pipeline,
taking sequences of hair pictures as input, and producing
the geometry of the hair strands as output. We describe
each step of this pipeline here in general terms, and pro-
vide implementation details in section 4.

3.1 Construction of a Sequence Mask

One of the main goals of this image analysis stage is to
detect the hair strands that are best highlighted in the se-
quence, and to characterize their direction in image space.
This step relies on the following assumption: for a given
pixel position, all pictures in the sequence show projec-
tions of the same hair strand.

First, on each image of the sequence we create a mask
indicating the pixels for which strands outlines are the
most visible. Each pixel of each mask has an associate
vector defined in the image plane. The vector’s direction
gives the direction of the hair strand projecting onto that
pixel, and its magnitude is proportional to the contrast
intensity of this hair strand in the picture. We then have,
for a given pixel position, a collection of vectors, the size
of which is at least equal to zero and at most equal to
the number of images in the sequence. All these vectors
are assumed to represent the projection of the same hair
strand. Figure 1a shows a sample of these masks.

In order to determine the orientation of the hair strand,
all the vectors of a single collection must agree. There-
fore, in a second step, we identify the relevant vectors
in each collection by an election mechanism. Then we
extract from each chosen collection a single representa-
tive vector and store it into a new mask, which we call
the sequence mask. This mask contains the pixels cor-
responding to the most visible hair strands in the whole
sequence, as well as the associated 2D vectors. Figure 1b
shows such a sequence mask. A possible implementation
for this construction is given in section 4.2

3.2 Construction of a Pixel Profile

The resolution of the input images must be good enough
to consider that we have a single hair strand projecting
onto one pixel (in order to have only one direction re-
lated to a given pixel position). The system’s basic idea
is that, for a given pixel position, the color sequence ob-
served across the picture sequence can be related to the

(a)

(b) (c)

Figure 1: a) For each picture in the sequence, a mask
is computed. b) The data set mask. It is displayed by
drawing the vector associated to each pixel marked in the
mask. c) A measured pixel profile. It shows the RGB
components (in picture, R:highest, G:middle, B:lowest)
of the colors taken on by on pixel through the sequence.

reflectance map of the hair strand projecting onto that
pixel position. The set of these three curves (for red,
green and blue) forms what we will call the “measured
pixel profile”, illustrated in Figure 1c.

3.3 Computing 3D vectors in the sequence Mask
We now have a set of 2D vectors defined in image space.
Each of these 2D vectors is the projection of a 3D vector
indicating the orientation of the corresponding hair strand
in space. From each 2D vector~t we want to infer the cor-
responding 3D vector~T . We use, for that, the geometric
information given by the 2D vector and the camera pa-
rameters as well as the observed reflectance. This step
can be divided into three parts:

Generation of 3D candidate vectors
Let us consider a 2D vector~t. Basic geometric considera-
tions show that the corresponding 3D vector~T lies in the
plane containing~t and the camera’s optical center. This
plane’s equation can thus be derived from the camera pa-
rameters. The idea is then to generate a dense set of 3D



candidate vectors lying in that plane, and finding the one
closest to the real hair strand. Figure 2 illustrates this
process.

(a) (b)

Figure 2: a) ~T (p) necessarily lies in the plane containing
the optical center of the camera and ~t(p) b) A collection of 3D
vectors (~Tk(p))k is generated in that plane.

Synthesis of Pixel Profiles
Using a hair reflectance model, we compute, for each
3D candidate vector, a reflectance map according to the
lighting and observing conditions of the sequence. These
maps are stored as pixel profiles, called “synthesized
pixel profiles”. For each pixel of the mask, we then have
a set of 3D candidate vectors, and for each of these 3D
vectors, a synthesized pixel profile. Section 4.3 provides
more details about the chosen illumination model, and the
synthesis of pixel profiles.

Election of a 3D candidate vector
Let us again consider a pixel of the mask. The real re-
flectance of the hair projecting onto that pixel is repre-
sented in the corresponding measured pixel profile. We
now search among the synthesized pixel profiles, for the
one that looks most like the measured one; the associated
3D vector will provide the hair strand orientation. The
analysis of the correlation between pixel profiles curves is
detailed in section 4.3 This stage finally extracts a mask
of 3D vectors from the sequence mask of 2D vectors.

3.4 Hair Strands
By chaining the resulting 3D vectors, we finally build hair
strands.

4 Implementation

4.1 Data Sequence Acquisition
Our approach requires viewpoints and light positions un-
der which the subject is observed and lit, to be known and
controlled. Furthermore, we need to keep the subject still
for the duration of each sequence acquisition. Concern-
ing the subject’s immobility, we decided to work with a
synthetic wig1, so that we could focus on the image pro-

1This allows a proof of concept, but naturally in the long term we
will have to work with human subjects.

cessing itself. To control the light source and camera po-
sitions, we used the Stanford Spherical Gantry [4] as our
acquisition apparatus. It consists of two arms which carry
a light source and a camera, and a turntable on which the
subject rests. Both arms and the turntable move under
computer control, allowing the subject to be viewed and
illuminated under practically any configuration.

The camera we used was a 3CCD video camera, and
to eliminate noise in the images, we combined images
taken using several different exposure times at each posi-
tion [6].

4.2 Sequence Mask building
Image analysis
The main visible phenomena concerning hair are due to
lighting, such as specular reflections or shadowing. We
chose to use the Sobel contrast detector [10] to charac-
terize the most visible hair strands in each picture. This
gradient-type filter detects contrasts in a particular direc-
tion. The result’s magnitude is proportional to the con-
trast. In our case, we apply the filter horizontally and ver-
tically in order to obtain a 2D vector in the image plane.
The resulting vector has the direction of maximum con-
trast, and is therefore perpendicular to the curve delimit-
ing the hair strand projecting there.

We finally get a vector per pixel, with direction per-
pendicular to the outline and magnitude proportional to
the contrast. Pixels showing an insufficient contrast are
of low magnitude, and are associated with uncertain di-
rections. Therefore, we set a threshold in order to keep
only vectors with high enough magnitude. By rotating
all the remaining vectors by 90 degrees, we produce, for
each image, a vector field giving the hair strand’s di-
rections for high contrast pixels. This step results in a
sequence of masks of pixel positions, with a 2D vec-
tor associated with each position (see figure 1b). Af-
terwards, letN refer to the number of images con-
tained in a sequence andp to the (x, y) coordinates of
a point in image space.p will be called “pixel” or “po-
sition”. The mask sequence produced previously is de-
noted (Li(p))i∈{0,...,N}. Li(p) = 1 means that the
pixel p of imagei succeeded the magnitude test, we then
say thatp is “marked” in Li. Lastly, the collection of
2D vectors associated with a positionp is referred to as
(~ti(p))i∈{0,...,N}. We consider thatLi(p) = 0⇒ ~ti(p) =
~0.

Election of relevant vectors
As mentioned before, each collection(~ti(p))i represents
the projection of a single hair vector. Although in theory
all the vectors of a same collection should be similar,
in reality some noise might appear, making difficult the
task of representing a collection by a single vector. Our



implementation uses two tests to check each collection’s
validity. Let us consider the collection(~ti(p))i associated
with the pixel positionp.

- Collection sizeWe consider that a collection must
contain a sufficient number of samples in order to avoid
noise and to be relevant. Therefore, we count the number
Np of masksLi for which Li(p) = 1 and set up a
threshold indicating the minimum number of pictures,
Nmin, in which a pixel p must be marked in order
to be selected. Thus,p passes the test if and only if
Np = card{Li(p),∀i ∈ {0, .., N}/Li(p) = 1} ≥ Nmin
This test helps eliminate noise as well as pixels that are
shadowed for too many pictures of the sequence, making
their pixel profile unusable.

- Homogeneity in the vector directionsEach collec-
tion is supposed to clearly indicate a single vector. For
that reason, this test concerns the direction of the vectors
(~ti(p))i associated with a pixel positionp. We calculate
the angle variancevθ(p) of the~ti(p) vectors through the
whole sequence, and we set a thresholdvθmax , to give the
maximum variance. So,p passes the test if and only if
vθ(p) ≤ vθmax . For each selected pixelp a single vector
~t(p) is obtained for the entire sequence by summing
and then normalizing the vectors of the corresponding
collection.

In this way we obtain the sequence mask as well as its
associated vectors field(~t(p))p(see figure 1b).

4.3 Retrieving 3D vectors
Generation of 3D candidate vectors
We showed in section 3.3 how a set of 3D candidate vec-
tors was generated for each pixel marked in the sequence
mask. Let(~Tk(p))k be the 3D candidate vectors associ-
ated to each pixelp of the mask.

Synthesis of Pixel Profiles
The synthesis of reflectance maps using the candidate
vectors~Tk(p), for a pixel p, requires a reliable hair re-
flectance model. We chose the one introduced by Kajiya
and Kay in [11], improved by including the backlighting
treatment presented by Goldman in [8]. Letting~T be the
hair tangent unit vector,~L the unit vector pointing from
the hair positionP to the light position and~E the unit
vector pointing to the eye from this same position, this
hair reflectance model can be written as:

Ψhair = fdir × (diffuse+ specular)

wherefdir is the directionality term introduced by [8],
characterizing the reflection and the transmission proper-

ties, wherediffuseis the model diffuse component,

diffuse(P ) = Kd × sin(~T , ~L)

Kd being the diffuse reflection coefficient and where
specularis the model specular component,

specular(P ) = Ks × cosα( ~E, ~E′)

Ks being the specular reflection coefficient,E′ the vector
of the reflection cone the nearest toE, andα the Phong
coefficient. Consider again a pixelp, supposing that we
wish to compute the reflectance map of the candidate vec-
tor ~Tk(P ). ~E is the unit vector lying on the ray joining
p to the optical center. In order to compute the vector~L,
we need to know the hair positionP in space. This posi-
tion necessarily lies on the line joining the optical center
to the pixel. If the hair volume was precisely known, we
could determine the exact hair position by computing the
intersection of this voulme with the line previously de-
fined. For the moment, as we do not have a model of
the hair volume, we use as first approximation a semi-
ellipsoid, to simulate long hair. This choice does not pe-
nalize our result insofar as the distance betweenP and the
light source is much greater than the distance between the
realP ’s position and the approximated one and as thus,
the computed~L is close to the real one. The vector~L is
then set, using the known and light position.
Kd andKs remain to be determined. They depend on

the hair material, whose definition constitutes our second
hypothesis. The model used to define a material distin-
guishes its diffuse, specular and ambient properties. Each
of them corresponds to a color, which can be extracted
from pictures using image segmentation2[7]. Kd andKs

are set using the diffuse and specular color thus obtained.
We can then calculate the reflectance profile for each

3D vector, under the experiment’s lighting and viewing
conditions. We finally have, for each pixelp of the mask,
a synthesized pixel profilef (k)

tp (x) for each candidate

vector ~Tk(p), k ∈ {0, ...,m}. Figure 3 shows a sam-
ple of synthesized pixel profiles. It is important to notice
that these profiles only consider the interactions between
a hair strand and the light source. The interactions with
neighboring hairs such as indirect reflections or shadow-
ing, are not taken into account.

Electing a 3D vector by studying correlation
The election of a vector among the candidate vectors is
done by studying the correlation between the measured
pixel profile and each of the synthesized pixel profiles.

2More precisely, using the k-mean algorithm withk = 3, we extract
three colors from the images. One color stands for a shadowed hair, the
second one represents the hair diffuse color and the last one corresponds
to the hair specular color.



Figure 3: A sample of synthesized pixel profiles (Intensity
versus light source position) for different candidate vectors.

Each pixel profile is composed of three curves (R, G and
B), and we study the correlation component by compo-
nent. Because the technique is the same for each of them,
we will describe our method for a single component. Let
fm(x) andft(x) be the measured and synthesized pixel
profiles. In the previous section, we stressed out that the
synthesized curves did not include any interaction with
the hair’s environment. Although inter-reflection is im-
portant in the case of hair, the phenomenon which most
perturbs our data is the shadowing due to the hair vol-
ume itself. Goldman in [8] and Banks in [1] include this
phenomenon in their model by specifying a term~N.~L, ~N
being the vector normal to the underlying surface at the
hair position, and~L the vector pointing to the light from
this same position. This term requires a precise knowl-
edge of the hair surface. Although this knowledge can
be available in the case of hair synthesis, this can hardly
be assumed in the analysis case. We first focus on un-
shadowed regions, leaving the issue of shadowed areas
for future work. We identify in the pictures a colorso,
corresponding to hair lying in the shadow.so is called
the “shadow threshold” and represents an intensity be-
low which a pixel is considered to be in shadow and is
not processed. This thresholding is equivalent to setting
up shadow maps in the pictures. When we process a mea-
sured pixel profile, curve points lying below the threshold
are ignored. Valid abscissas form valid intervalsIv:

Iv = {x ∈ [0, N ]/fmp(x) ≥ so}

The correlation computation between a measured pixel
profile and a synthesized one only involves these valid
intervals.

Setting up an Energy function for Correlation study
We now have to determine the most similar synthesized
curve, on the valid interval. We do not expect candidate
curves to match exactly the measured one, but to be simi-
lar in terms of shape. For example, a difference in ampli-
tude is not a valid criterion to dismiss a candidate curve.
Classic norms such asL2 norm would not be adapted to
this correlation study insofar as it is not invariant to an
amplitude difference. Thus, we need to define a mea-

sure suited to the evaluation of curves shape likeness. We
use two criteria, dealing with positions of extrema and
shape of the curves (first order derivatives). We introduce
a distance energyEdist, made of two termsEextrema and
Eshape, to quantify the similarity according to these cri-
teria.
Eextrema: distance energy measured at maxima.The
curves are such that the number of maxima is, except in
particular cases, equal to zero or one3. Our energy ex-
pression applies to two curves, each of them having one
maximum. Letxmax1 andxmax2 be these two maxima
abscissa. We define:

Eextrema = Ke × (|xmax1 − xmax2|)r

whereKe is a constant which includes parameters such
as the interval’s size and insuresEextrema ∈ [0, 1], andr
is the polynomial degree.Eextrema is defined as a poly-
nomial rather than as a linear curve so as to penalize very
distant maxima more than closer ones.r = 3 proved to
work well in our experiments.
Eshape: distance energy measured on the curve’s
shape.Eshape is supposed to measure the difference be-
tween the shapes of the two curves. Two curves having
the same shape show a constant gap between them. We
thus chose to first center each curve by substracting its
mean value, then to calculate the mean valued of the dis-
tance between these two centered curves. Let us consider
the two curvesfm and ft defined on the valid interval
[xmin, xmax]. fm and f t are the mean values calcu-
lated on this interval. Let̃fm(x) = fm(x) − fm and
f̃t(x) = ft(x) − f t be the centered curves. We define
d(x) = |f̃m(x)− f̃t(x)|, the distance betweeñfm andf̃t.
Eshape is defined as theL1 norm ofd(x):

Eshape = d =
1

(xmax − xmin)
×
∫ xmax

x=xmin

d(x)dx

Electing and measuring trust
We now select, for each pixelp, the profile with the
lowest energy and elect the associated candidate vec-
tor. In other words, if we letfdistp(k) be the value of

(E(k)
dist(p))k as a function ofk, we choose, for a pixelp,

the absolute minimum offdistp(k), if it exists. Unfortu-
nately, many cases are problematic. They can be grouped
into two families:

1. The cases where determining an absolute minimum
for fdist is impossible or ambiguous:

3A real continuous function on a compact set admits at least one
maximum, but we exclude the case where the maximum is realized on
one of the interval’s limits, making possible the case for which there is
no maximum.



(a) If there is more than one local minimum for
fdist, and if the two lowest minima values are
too close, choosing one of them is ambiguous.

(b) Whenfdist’s variation in amplitude is too low,
choosing a minimum is not necessarily signif-
icant.

2. The cases where measured distance energies are not
significant, because of a bad quality of the measured
pixel profile:

(a) If the amplitude of a measured pixel profile is
too low, it has a higher noise sensitivity result-
ing in bad quality data.

(b) If the valid interval’s size is too small, the
amount of data used to compare the two pro-
files is insufficient to produce reliable results.

These different cases are illustrated in figure 4.

Edist min

Fdist

Edist min

Fdist

(a) (b)

Edist min Edist min

Fdist Edist min Fdist

(c) (d)

Figure 4: (a) and (b): two curves examples for fdist where the
determination of a minimum is not ambiguous. (b) and (c): two
cases where this determination is ambiguous or not significant.

It is essential to identify these cases and to have a mea-
sure of the certainty with which a candidate vector has
been elected. Therefore, we introduce a trust coefficient
ctrust such thatctrust ∈ [0, 1] and ctrust = 0 in case
1a. In the other cases, its value is proportional to the
area of the part of the measured curve located above the
shadow threshold and tofdist’s variation in amplitude.
Let nminima be the number of minima found forfdist,
E

(min)
dist be fdist’s minimum andE(max)

dist its maximum
andxmax andxmin be the upper and lower limits of the
valid interval. Thenctrust equals0 if nminima 6= 1, and

λ

2
×
∫ xmax

xmin

(fm(x)− s)dx+ (E(max)
dist − E(min)

dist )

if nminima = 1. λ is a multiplicative term such that the
valid area contribution offm is equal to one when this
one equals half of(xmax − xmin)× (f (max)

m − f (min)
m ).

In practice, we ensure that this contribution never ex-
ceeds 1. Thus, for each mask pixelp, we elect a 3D
candidate vector~T (p), and we attribute to it a trust co-
efficientctrust(p), giving the certainty with which it has
been chosen. Figure 5a shows an example of 3D vector
sequence.

4.4 Thresholding the 3D vector mask
Since the trustctrust(p) tells how certain each 3D
vector election was, it is easy to refine a mask by select-
ing only vectors having a high enough trust coefficient:
L3D =
{p ∈ {0, ..., w × h}/L2D(p) = 1, ctrust(p) ≥ c(min)

trust }
cmintrust being the threshold parameter, andw and h the
width and height of the images. Withcmintrust = 0.5, we
obtain masks of good quality. Figure 5 shows a 3D
vector mask before and after thresholding.

(a) (b)

Figure 5: a) 3D vector mask before thresholding. Colors as-
signed to vectors indicate their trust coefficient (red standing for
low and green for high). b) 3D vector mask after thresholding.

4.5 Building 3D strands
We chose to build the final 3D hair strands in two steps.
First, we build chains of pixels in image space, using
the 2D vector field of the sequence mask and using the
“snakes” technique [12, 2]. Each node of each pixel chain
is related to a 2D vector, itself associated to a 3D vector
(see section 3.3). We finally get the third dimension, in
the building process, by using the information given by
3D vectors of each node.

5 Results

Our system allows the extraction of hair strand geometry
from picture sequences. The number of pictures in a se-
quence varies between 48 and 81, according to the light
path. Image resolution is 486x720. The number of pix-
els left in the sequence mask depends both on the chosen
viewpoint and light path. Indeed, the better the view-
point and light path, the greater the number of well con-



trasted hair strands on pictures. For example, a hair strand
which is parallel, in image space, to the light path pro-
duces good-quality data whereas pixel profiles obtained
for hair strands perpendicular to the light path can rarely
be exploited.

Figure 6a shows hair strands produced with one se-
quence, made of 81 images, with a vertical light path.
This configuration produces reliable pixel profiles since
a high number of hair strands are vertical, and therefore,
parallel to the light path. The number of pixels left in the
mask of that sequence is about 6,300 pixels before thresh-
olding, and about 3,900 after thresholding. Computing
of hair strands for a sequence takes timeO(n× k ×N),
wheren is the number of pixels marked in the sequence
mask,k is the number of 3D candidate vectors per pixel
of the mask, andN is the number of pictures in a se-
quence. Computing of this 2D sequence mask took ap-
proximately 9 minutes on a Pentium III 800 MHz with
256 Mb of RAM. The extraction of a 3D mask from this
2D mask lasts about 1 hour.
One can notice that the rebuilt hair strands distribution is
quite sparse with one sequence; indeed, one couple view-
point/light path exploits only part of the hair. However,
whatever the direction of a hair strand may be, there is a
light source path exploiting it. Thus, by combining the
hair strands built from complementary sequences, we ex-
pect to reconstruct most of the hair. This combination is
straightforward since our method produces hair strands
defined in world coordinates. The rebuilt strands that are
common to two or more sequences proved to match prop-
erly in 3D.

Figures 6b and 6c show hair strands obtained by com-
bining five sequences. We can validate our reconstruc-
tion’s accuracy using a set of pictures showing the wig
from various viewpoints, which ones are different from
the viewpoints used for the hair strands building pro-
cess. Thus, in figure 6, under each picture of rebuilt hair
strands is a picture showing the wig from the same view-
point, proving that the main hair strands directions are
correctly recovered. These results are partial inasmuch
as other data sequences, with different light source paths,
are needed in order to build hair strands on the whole
head.

Furthermore, this work serves to demonstrate the
accuracy of the reflectance model used for hair. Indeed,
the synthesized pixel profiles which were elected match
precisely the measured ones and produced, in most of
the cases, correct 3D vectors.

6 Summary and future work

We have shown that the method of analyzing reflectance
to retrieve shape is a particularly interesting approach to
the problem of modeling a specific subject’s hair. This
work suggests a number of areas for future research,
such as:
Developing a complementary geometric methodAs
said previously, our method is rather a contribution
to the problem of hair acquisition than its complete
solution, and therefore need to be used in addition to
other approachs. In particular, our technique shows some
limitation in the global positioning of hair strands in
space. An ideal solution to the problem of 3D hair model
acquisition could result from the joining of a purely
geometric method, such as the one presented in [17],
together with a reflectance analysis approach like ours.
Indeed, a preliminary reconstruction of the hair volume
would lead to a significant increase in the accuracy of
our results.

References
[1] David C. Banks. Illumination in diverse codimensions.

Computer Graphics Proceedings, Annual Conference Se-
ries, pages 327–334. ACM SIGGRAPH, ACM Press, July
1994.

[2] A. Blake and M. Isard.Active Contours. Springer-Verlag
1998, 1998.

[3] M. J. Brooks and B. K. P. Horn. Shape and source from
shading. In B. K. P. Horn and M. J. Brooks, editors,Shape
from Shading, pages 53–68. MIT Press, Cambridge, MA,
1989.

[4] Custom Scanner Spherical Gantry CyberWare.
http://www.cyberware.com/products/sphereinfo.html.

[5] A. Daldegan, N. M. Thalmann, T. Kurihara, and D. Thal-
mann. An integrated system for modeling, animating and
rendering hair.Computer Graphics Forum, 12(3):C211–
C221, 1993.

[6] Paul E. Debevec and Jitendra Malik. Recovering high dy-
namic range radiance maps from photographs.Computer
Graphics, 31(Annual Conference Series):369–378, 1997.

[7] Keinosuke Fukunaga.Introduction to Statistical Pattern
Recognition, Second Edition. Academic Press, Boston,
MA, 1990.

[8] Dan B. Goldman. Fake fur rendering. In Turner Whitted,
editor, SIGGRAPH 97 Conference Proceedings, Annual
Conference Series, pages 127–134. ACM SIGGRAPH,
Addison Wesley, August 1997.

[9] Ken ichi Anjyo, Yoshiaki Usami, and Tsuneya Kurihara.
A simple method for extracting the natural beauty of hair.
Computer Graphics, 26(2):111–120, July 1992.

[10] B. Jahne.Digital image processing. Springer-Verlag New
York, Incorporated, 1991.



(a) (b) (c)

Figure 6: a) Up: hair strands rebuilt with a single picture sequence and rendered using broad strands for visualization convenience.
Down: picture of the sequence (same viewpoint). b) and c) Up: hair strands rebuilt with five sequences, observed from two
different viewpoints and rendered using broad strands for visualization convenience. Down: pictures showing the wig from the
same respective viewpoints.

[11] James T. Kajiya and Timothy L. Kay. Rendering fur
with three dimensional textures. In Jeffrey Lane, editor,
Computer Graphics (SIGGRAPH ’89 Proceedings), vol-
ume 23, pages 271–280, July 1989.

[12] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour models. InProc. of IEEE Conference on Com-
puter Vision, pages 259–268, 8-11 1987.

[13] W. Kong and M. Nakajima. Hair rendering by jittering
and pseudo shadow. InProceedings of the Conference on
Computer Graphics International (CGI-00), pages 287–
294, Los Alamitos, CA, June 19–24 2000. IEEE.

[14] A. M. LeBlanc, R. Turner, and D. Thalmann. Rendering
hair using pixel blending and shadow buffers.The Jour-
nal of Visualization and Computer Animation, 2(3):92–97,
July–September 1991.

[15] Jerome Edward Lengyel. Real-time fur over arbitrary sur-
faces. InACM 2001 Symposium on Interactive 3D Graph-
ics, 2000.

[16] S. Magda, D. Kriegman, T. Zickler, and P. Belhumeur.
Beyond lambert: Reconstructing surfaces with arbitrary
brdfs. InICCV01, pages II: 391–398, 2001.

[17] Masayuki Nakajima, Kong Wai Ming, and Hiroki Takashi.
Generation of 3d hair model from multiple pictures. In
IEEE Computer Graphics & Applications (12) 1999 Mul-
timedia Modeling’97, 1999.

[18] R. E. Rosenblum, W. E. Carlson, and E. Tripp, III. Sim-
ulating the structure and dynamics of human hair: mod-
elling, rendering and animation.The Journal of Visual-
ization and Computer Animation, 2(4):141–148, October–
December 1991.

[19] Nadia M. Thalmann, Stephane Carion, Martin Courch-
esne, Pascal Volino, and Yin Wu. Virtual clothes, hair
and skin for beautiful top models. InComputer Graphics
International 1996, 1996.

[20] Allen Van Gelder and Jane Wilhelms. An interactive fur
modeling technique. In Wayne A. Davis, Marilyn Man-
tei, and R. Victor Klassen, editors,Graphics Interface ’97,
pages 181–188. Canadian Human-Computer Communica-
tions Society, May 1997.

[21] Watanabe Y. and Suenaga Y. Drawing human hair using
wisp model. InComputer Graphics International, 1989,
1989.


	Introduction
	Related work
	Approach
	Construction of a Sequence Mask
	Construction of a Pixel Profile
	Computing 3D vectors in the sequence Mask
	Hair Strands

	Implementation
	Data Sequence Acquisition
	Sequence Mask building
	Retrieving 3D vectors
	Thresholding the 3D vector mask
	Building 3D strands

	Results
	Summary and future work

