
Texture Partitioning and Packing
for Accelerating Texture-based Volume Rendering

Wei Li Arie Kaufman

Center for Visual Computing (CVC) and Department of Computer Science
Stony Brook University, Stony Brook, NY 11790-4400, USA

{liwei,ari}@cs.sunysb.edu

Abstract
To apply empty space skipping in texture-based vol-

ume rendering, we partition the texture space with a
box-growing algorithm. Each sub-texture comprises of
neighboring voxels with similar densities and gradient
magnitudes. Sub-textures with similar range of density
and gradient magnitude are then packed into larger ones
to reduce the number of textures. The partitioning and
packing is independent on the transfer function. During
rendering, the visibility of the boxes are determined by
whether any of the enclosed voxel is assigned a non-zero
opacity by the current transfer function. Only the sub-
textures from the visible boxes are blended and only the
packed textures containing visible sub-textures reside in
the texture memory. We arrange the densities and the gra-
dients into separate textures to avoid storing the empty
regions in the gradient texture, which is transfer function
independent. The partitioning and packing can be con-
sidered as a lossless texture compression with an average
compression rate of 3.1:1 for the gradient textures. Run-
ning on the same hardware and generating identical im-
ages, the proposed method however renders 3 to 6 times
faster on average than traditional approaches for various
datasets in different rendering modes.

Key words: Texture-based volume rendering, empty space
skipping, graphics hardware, box growing, lossless tex-
ture compression, texture partitioning, texture packing.

1 Introduction

A volumetric dataset typically contains a large amount
of voxels with zero values, and some parts of the vol-
ume are assigned a fully transparent (invisible) opacity,
depending on the transfer function. All these areas do not
contribute to the rendering and can be ignored. In tradi-
tional texture-based volume rendering, the whole volume
is represented as a 3D texture or stacks of 2D textures.
All the textures are loaded into the texture memory and
blended for rendering.

In this paper, we partition the volume space into sub-
volumes. The basic idea is to group voxels with similar

properties in both the volume domain (position) and the
transfer function domain (densities and gradient magni-
tudes) into the same sub-volume. Due to the coherence
in the transfer function domain, voxels having similar
properties are probably assigned similar opacities. A rea-
sonable transfer function generally maps certain densities
(or gradient magnitudes) clustered in a neighborhood of
the transfer function domain to fully transparent. Conse-
quently, some of the sub-volumes comprise of only invis-
ible voxels, which need to be neither stored nor rendered.
Since volumes are treated as textures, we use the words
volume (voxel) and texture (texel) interchangeably.

Note that the textures has to be axis-aligned rectangles.
Intuitively, the partitioning can be done by region grow-
ing, followed by dividing the connected regions so that
the region borders are approximated by their bounding
boxes. Instead, we propose the so-calledbox growing
method that combines the two steps and provides more
control over the partitioning. Figure 1a shows the pro-
jection of the boxes on a slice of the foot dataset, while
Figure 1d is a 3D view of the boxes. The color of the
boxes represent the type of the boxes. Red means uni-
form density, in that the voxel densities vary in a small
range, while blue boxes contain voxels with high gradi-
ent magnitude. The box growing works on unclassified
data, hence is transfer-function-independent.

To achieve real time or interactive rendering, all or
most of the textures needed for generating the current
view are required to reside in the texture memory. When
the size of a dataset exceeds the memory capacity, swap-
ping between the texture memory and the main memory
degrades the performance, due to the limited bandwidth
of the AGP bus. This scenario is more likely to happen
when the gradients are also stored to achieve various il-
lumination effects, whose storage is usually three times
larger than that of the densities. Fortunately, a gradi-
ent volume generally has more zero values than the cor-
responding densities, since both zero and uniform den-
sity regions correspond to gradients with zero magnitude.
Fortunately, the empty regions in the gradient volume



are transfer-function-independent. Therefore, we choose
to store the densities and the gradients in separate tex-
tures. Both the density textures and the gradient textures
are partitioned by the same set of boxes, but the gradient
sub-textures with only zero gradient magnitude are sim-
ply skipped for storage and rendering.

To reduce the number of textures as well as the over-
head of texture setup and switching, we propose a greedy
algorithm that packs multiple variable-sized smaller tex-
tures into larger ones. The smaller textures have similar
densities or gradient magnitudes, but are not necessarily
neighbors in the volume space. Figure 1b displays only
the boxes with a non-zero gradient magnitude, while Fig-
ure 1c shows the packed gradient texture. It can be seen
that texture partitioning and packing also serves as a loss-
less texture compression with no explicit decoding for the
gradient textures that account for most of the memory re-
quirement. An alternative is to exploit texture compres-
sion available in standard graphics APIs, such as OpenGL
and D3D. However, to date, neither of the two supports
lossless compression, while with the lossy compression,
the errors in the textures, especially those in the gradients,
significantly degrade image quality [9]. Furthermore, our
texture partitioning and packing is a combination of com-
pression and acceleration in that it reduces not only the
memory requirement, but also the number of texels ren-
dered. Even if there is a hardware support for lossless
texture compression and the decompression has no im-
pact on performance, it only saves memory.

In our method, every box is associated with summa-
rized properties of the enclosed voxels, such as the ranges
of the densities and the gradient magnitudes. Before ren-
dering an image, the visibility of each box is determined
according to whether any of the enclosed voxel is as-
signed a non-zero opacity by the current transfer func-
tion. Only the sub-textures from the visible boxes are
rendered and only the packed textures containing visible
sub-textures are required to reside in the texture memory.
Figure 1e shows a mixed rendering of boxes and textures.
Note that it renders only a portion of all the boxes dis-
played in Figure 1d. We also apply gradient magnitude
modulation and thus only boxes with non-zero gradient
magnitude (blue) are visible in Figure 1e.

In the rest of the paper, after a brief review of related
work, we present texture partitioning by box growing.
Specifically, we discuss how voxels with different den-
sities and gradient magnitudes are partitioned with the
aim of accelerating the rendering. We then present a
greedy algorithm for texture packing. For convenience,
we coined the phrasePPed texture, short for partitioned
and packed texture. Next, we discuss volume rendering
with PPedtextures. Finally, we present experimental re-

sults showing the effectiveness of our techniques.

2 Previous Work

Empty space skipping has been extensively exploited to
accelerate volume rendering, mainly for software-based
methods. It avoids processing empty voxels with the help
of various pre-computed data structures, such as proxim-
ity cloud [3] and bounding convex polyhedra [1]. On the
other hand, contiguous empty regions and other redun-
dancy inside volumetric datasets have been utilized for
compression to reduce memory requirement as well as
to accelerate rendering. Examples of such compression
are transform-based compression (e.g., [5]) and 3D adja-
cency data structure [10], to name a few.

Due to the recent advances of commodity graphics
hardware, texture-based volume rendering [4, 11] has
achieved frame rate better than software-based methods
with satisfying image quality. Applying empty space
skipping in texture-based volume rendering has the po-
tential to further accelerate the rendering or makes it pos-
sible to handle larger datasets. Since the shape of a tex-
ture has to be a rectangle or a box, it is not straightforward
for many of the empty-space-skipping and compression
techniques, which are designed for software renderers, to
be applied to hardware accelerated rendering.

Both Boada et al. [2] and LaMar et al. [7] subdi-
vide the texture space into an octree. They skip nodes of
empty regions and use low-resolution textures for regions
far from the view point or of lower interest. In this paper,
our growing box is not restricted to any regular grid or
octree and BSP tree node, hence better approximates the
boundaries of different regions with fewer partitions.

Our previous work [8] computes the texture hulls of all
the connected non-empty regions. Only the sub-textures
defined by the bounding rectangles are stored and the
texels inside the hulls are rendered. However, the tex-
ture hulls have to be recomputed as the transfer function
changes and is less efficient in reducing storage for empty
regions enclosed by non-empty regions, which unfortu-
nately is common in a gradient volume. Besides, tex-
ture hulls are limited to 2D textures. ThePPed texture
is transfer function independent and can be exploited for
either 2D or 3D texture-based methods.

Kraus and Ertl [6] integrate decoders for texture data
into the programable texture hardware. They pack regu-
larly divided sub-textures into uniform-sized larger tex-
tures. The packing is similar in purpose to our work.
However, their texture blocks are uniformly shaped with
power-of-two sizes along each axis, while in our work,
sub-textures are of arbitrary size, and the decoding is im-
plicit by transforming the texture coordinates. Beside,
our focus is on acceleration rather than compression. Ac-



tually, we achieve significant speedup even without the
compression by simply mapping the unpartitioned tex-
tures on the partitioning boxes.

3 Texture Partitioning

3.1 Partitioning with Boxes

Texture partitioning divides the volume (texture) into a
set of sub-textures. The partitioning results in a set of
boxes, each defining a sub-volume. The boxes don’t over-
lap and each box is visited at most once, which guaran-
tees that no voxel is blended multiple times. Recall that
during rendering, we determine the visibility of a box
based on whether the current transfer function maps any
of its enclosed voxel opacity to a non-zero value. Ob-
viously, just rendering the sub-textures defined by those
visible boxes generates exactly the same image as that of
rendering all the textures. With the aim of accelerating
volume rendering, the visible box subset of a good par-
titioning should encloses as few invisible voxels as pos-
sible for various reasonable transfer functions. Naively,
it can be approached by decreasing the size, or equiva-
lently, increasing the number of the boxes. However, the
more boxes we have, the more textures we need to render,
and the more overhead in setting-up, binding and switch-
ing the textures. Besides, to ensure proper linear inter-
polation, we need to replicate voxels at the border of the
boxes [6]. Hence, more boxes, more duplicated storage.

The most commonly used transfer function is a 1D
lookup table mapping density to color and opacity. Non-
zero opacity in the transfer function domain usually cor-
responds to one or more density ranges. It is natural
to partition neighboring texels whose densities vary in a
small range (a typical value is 32 for 8-bit volume) into
a sub-texture. We refer to a box enclosing such a sub-
texture as auniformbox. To determine visibility, we only
need to compare the density range of the sub-texture with
the non-zero density range of the transfer function. This
strategy encourages the border of the boxes to separate
neighboring voxels with large density difference where
there is an edge or a surface.

However, this only works well for unilluminated ren-
dering. For volume rendering with lighting, only the
voxels near edges or surfaces contribute to the lighting.
In most cases, the uniform boxes on both sides of the
edge/surface are visible which involves many voxels with
zero gradient magnitude for lighting computation. To
avoid such inefficiency, we first separate the voxels with
non-zero gradient magnitude from the rest by a set ofgra-
dient boxes. Then, we cover the uniform regions with
uniform boxes. Because we place a restriction on the
minimal size ofuniform boxes, there may still be some
spaces left, which are filled byother boxes. Figure 1a

shows the projection of the box set onto a slice, while
Figure 1d shows the boxes in a 3D view. The type of the
boxes is represented by color, red foruniform, blue for
gradient, and green forother.

As discussed before, we separate the storage of the gra-
dient textures from the density textures. The gradient
and the density textures are partitioned by the same set
of boxes. Density sub-textures are created for each box
while only gradient boxes are associated with gradient
textures. During rendering, the visibility of the density
textures and the gradient textures, if any, of the same box
is determined independently. We usedensity-visibility
andgradient-visibility to differentiate them. Obviously,
only agradientbox can begradient-visible.

We define a cost function for each box. For auniform
box, its cost function is the density range of its voxels,
while for a gradientbox, it is the percentage of its vox-
els with zero gradient magnitude. The cost function for
another box is the negative value of its area or volume.
Since we search for different types of boxes at different
stages, it is unnecessary to compare the cost functions of
different box types. The partitioning should balance be-
tween the number of boxes and the total cost of the boxes.

3.2 Box Growing
An intuitive way of computing the boxes by region grow-
ing is to find all the connected regions each observing a
certain criteria, such as low density variance, followed
by dividing the connected regions so that they can be ap-
proximated by a set of boxes. Instead, we propose box
growing that allows boxes to grow by themselves. The
general rule is to let the boxes grow as large as possi-
ble while keeping the accumulated cost function smaller
than a predetermined threshold. We illustrate below box
growing on 2D textures, although it extends naturally to
3D.

Each box is started from a seed texel. The criteria of
the seed texel depends on the type of the box to be grown.
For any box type, a seed texel should not be enclosed in
any of an existing box. We refer to a texel with nonzero
gradient magnitude as agradient texel. For agradient
box, a seed has to be agradient texel. For auniform box
or another box, any untaken texel suffices. Every step
of growing merges one row or column of texels onto its
side (one slice for 3D box growing). Each potential re-
gion to merge is a box as well, which we refer to as a
side-box. Naturally, we pick the side-box with the mini-
mal cost function. If after merging the selected side-box,
the accumulated cost function of the box being grown is
less than a given threshold, the growing step is executed.
Otherwise, the growth for this box is completed.

For convenience, we number the sides with an index
starting from zero. The sides are then visited in ascend-



ing order of the index. It is possible that a cost function
of a side-box reaches the smallest possible value, for ex-
ample, 0 for auniform box. In such a case, we don’t need
to test the remaining sides. To prevent a box from grow-
ing on the same side, we pick the first side to compute
the cost function at each step in a round-robin fashion,
which is the next side of the side-box being merged in
the previous step. If the side of the largest index has been
reached and there is still an unvisited side for the current
growing step, the index wraps around to0. While grow-
ing, the ranges of the densities and the gradients of the
voxels are recorded. For auniform box, we maintain a
singlerangestructure that stores the minimum and max-
imum of the densities. For agradient box or another
box, we maintain a list of suchranges, since their maxi-
mal and minimal densities usually differ greatly, whereas
all the densities cluster into two or more small ranges. A
range of gradient magnitude is associated with each den-
sity range.

The following is the box growing algorithm: (1) Take
a remaining seed texel, start a new box containing only
that texel. (2) Find the side-box having the least cost.
The cost is set to infinity, if the side-box encloses any
takentexel or the side-box is outside the volume, which
prevents the box from overlapping with other boxes or
getting out of the dataset. (3) Compute the accumulated
cost by assuming the side-box is merged. If the cost is
smaller than a given threshold, merge and mark all the
newly added texels astaken. Otherwise, the growth of
the current box ends; go to step (1).

To compute the cost function, we need to traverse all
the texels inside the side-boxes. This is done incremen-
tally. For example, if a box grew left in the previous step,
then the cost function for the right remains unchanged,
while those for the top and the bottom are the previous
values combined with the statistics (e.g., range of the den-
sity and the gradient magnitude) of the corner texels at the
top-left and the bottom-left, respectively.

3.3 Mapping the Partitioned Textures
For rendering, the sub-textures are mapped on geomet-
ric primitives derived from the corresponding boxes. For
2D, the primitive is simply the box itself; for 3D, it is
the intersection of the box with a plane at proper position
and orientation. Like Kraus and Ertl [6], we consider that
the texel values are sampled at the lower corner of the
domain that the texel occupies, rather than the center of
the domain as specified in OpenGL. When implement-
ing our algorithm in OpenGL, all the texture coordinates
are shifted by the size of one half texel divided by the
corresponding size of the texture. (For Nvidia’s texture
rectangle extension, it is simply the size of one half texel
if using .)

In Figure 2, the center of each large dot represents the
sample point of a texel and the rectangle is the border of
a box. All the texels enclosed or crossed by the box are
included in a sub-texture associated with the box and are
mapped onto the box. Note that the texels on the bor-
der of the box are shared by the neighboring boxes (not
drawn). Because of the sharing, after a box is grown, we
replace thetakenmark of any texel crossed by the box
edges toborder, so long as the texel has at least oneun-
takenneighbor. For example, in Figure 2, texelT1 is left
as taken, while texelT2 is changed toborder so that it
can be included in the neighboring box on the right.

With linear interpolation, each non-empty texel
spreads the ”non-emptiness” to its neighbors in a cir-
cle of radius one. If a border between empty and non-
empty texels lies inside a box, the linear interpolation be-
tween them is implicitly done by texture mapping. Since
our rendering algorithm discards textures from invisible
boxes completely, we need to consider the case when
a section of the border coincides with the boundary of
boxes. For gradients, we dilate the regions of thegra-
dient texelsby one (texel) before partitioning. Therefore,
nogradient texellies on a border that is not shared by two
gradientboxes. Since all thegradientboxes aregradient-
visible, it is guaranteed that anygradient texelon one side
of the border has agradientneighbor on the other side in
a neighboringgradientbox. Both of thegradient texels
contribute to the lighting computation. The density range
of a box considers the texels that are shared with other
boxes. Therefore, all the boxes sharing the border texels
aredensity-visibleand contribute to the interpolation.

3.4 Controlling the Number and Shape of Boxes
Increasing the number of boxes is likely to increase the
approximation accuracy of the region boundaries. How-
ever, the number of textures increases as well, so does
the number of the replicated texels and texture overhead.
Besides, too many boxes can possibly turn the geomet-
ric transformation stage into the bottleneck of the ren-
dering pipeline and make the rendering even slower than
that with the unpartitioned textures. Therefore, we need a
scheme to keep the number of boxes at a reasonable level.
During box growing, the thresholds for the cost function
affect the size of the boxes, or equivalently, the number
of boxes. However, it is not easy to control the number of
boxes simply by adjusting these thresholds.

Generally, the number of boxes is not an issue for
small datasets, which inspires us to apply box grow-
ing on down-sampled volumes for large datasets. The
down-sampling is applied by dividing the volume into
uniformly sized blocks and each block is then converted
into a single voxel. For the gradient volume, the value
of each down-sampled voxel is the maximal gradient



magnitude of the corresponding block. For the density
volume, the value of a down-sampled voxel is a range,
storing the minimal and maximal densities of the block.
Note that the dilation of the gradient is applied before
the down-sampling. Otherwise, the dilated region will
be larger than necessary. The down-sampling is only for
box growing. The grown boxes are then scaled back and
sub-textures are extracted from the original volume. The
thresholds for determining whether a down-sampling is
necessary are different for the gradient volume and the
density volume, which we chose empirically to be1283

and2563, respectively.

After a box is grown, if any of its axis-aligned side
is too small, the box is discarded and all the texels en-
closed are flagged asattempted. The box growing con-
tinues from different seed texels. Discarding small and
sliver boxes improves the shape and the distribution of
the boxes. As shown in Figure 3, without discarding, the
partitioning contains many sliver boxes, which increases
the surface of the boxes as well as the texel duplication.
This is also the reason that we need to haveother boxes
to fill in the uncovered regions. An important trick is that
no attemptedtexel is used as a seed for growing a box of
the same type, without which, the time for box growing is
typically an order of magnitude longer. Most sliver boxes
are prevented from further growing by existing boxes. It
is very likely that using any of theattemptedtexel as a
seed results in the same sliver box. If anattemptedtexel
will be in a good shaped box, it can be reached from a
texel outside the sliver box.

4 Texture Packing

Texture partitioning increases substantially the number of
textures, as well as the overhead of texture set up and
switching. The impact is evident when textures are trans-
ferred between the graphics card and the host computer.
Many subdivided textures take several times longer than
a single large texture, even though the aggregate size of
the former may be just half of the latter. To solve this
problem, we pack the sub-textures into a box as tight as
possible with no overlap, and stitch them together to cre-
ate a larger texture. Like partitioning, sub-textures with
similar texel properties that are likely to be rendered or
skipped together are packed into the same texture. The
sub-textures are not required to be neighbors in the vol-
ume domain. The offsets and the orientations of the sub-
textures are book-kept in the enclosing boxes which are
used to compute the texture coordinates in the packed tex-
tures.

Texture packing is similar to the NP-hard bin packing
or strip packing problems. Therefore, we don’t attempt to
find an optimal solution, which is also unnecessary. In-

stead, we have developed a greedy algorithm. The basic
ideas are similar to the box growing, in that, the target
box grows as necessary to add in more textures. The al-
gorithm is as follows: (1) Sort the textures by area (vol-
ume) in descending order. (2) Initialize the target box
to be empty. (3) Add the largest texture to the target.
There are four choices: add-right, add-right-transposed,
add-top, and add-top-transposed. We choose the one that
generates the smallest empty region. The target box then
grows accordingly. (4) Find the largest texture in the list
that fills into the empty region generated in the previ-
ous step, either in the original pose or transposed. Then,
subdivide the rest of the empty regions into two smaller
empty regions, and repeat this step recursively. (5) Go
back to step (3) until the box list is empty.

Figure 1c shows the result of the algorithm by packing
the sub-textures in Figure 1b. Note that the packed texture
is smaller than half of the unpartitioned texture.

There are three strategies for the packing: (1) Pack
3D sub-textures defined by the box; (2) Pack 2D sub-
textures, in which all the sub-textures from the same box
are in the same packed texture; (3) Pack 2D sub-textures,
with all the sub-textures from the same slice of the orig-
inal volume are in the same packed texture. Strategy 1
is for 3D textures while the other two are restricted to
2D textures. The proposed greedy algorithm works for
all the three. However, for strategy 2, many sub-textures
are of the same size since they are from the same box,
hence there are other optimizations to improve the pack-
ing. Choosing the strategy of packing is correlated to the
choice of the compositing order, discussed next.

5 Volume Rendering withPPedTextures

Generally, densities and gradients have different empty
spaces for skipping. The empty space in the densities
depends on the transfer function, while that in the gra-
dients corresponds to regions of uniform densities. As
mentioned above, we adopt the strategy of storing densi-
ties and gradients in separate textures with the advantage
of being stored in different layouts, with different com-
pression methods, and even have different resolutions.
The gradient textures are significantly compressed with
the proposed approach (see Experimental Results below).
Furthermore, we utilize the remaining channel in the gra-
dient texture for gradient magnitude for efficient imple-
mentation of gradient magnitude modulation. Another
advantage is that it is less expensive if the user just wants
unilluminated volume rendering so that the gradient tex-
tures are not created and loaded at all. It is especially true
for large datasets, when the texture memory can’t hold
both the density textures and gradient textures anyway.

There are two choices for the compositing order of



the textures. One is slice-by-slice, in which we slice
the dataset in either front-to-back or back-to-front order.
For each slicing plane, we render the corresponding sub-
textures from the boxes intersected by the plane. The
other is box-by-box, in which we first determine the visi-
bility order of the boxes. Then, for each box, slices from
the sub-texture are rendered in order. In our experiments
we found that slice-by-slice outperforms box-by-box no-
ticeably on current graphics hardware. Therefore, we
adopt strategy 3, which is slice-by-slice 2D packing, to
put all the sub-textures from the same slice into the same
texture.

Whenever the transfer function is changed, the visibil-
ity of the boxes are refreshed. Recall that the visibility
of the gradient textures and density textures are indepen-
dent. The density values with non-zero opacity of the
transfer function are clustered into one or more ranges.
For each box, we then test whether these ranges overlap
with the density range(s) of the box. If so, the box is vis-
ible, otherwise, invisible. The transfer function does not
affectgradient visibility.

Our system supports three modes of rendering: unil-
luminated, normal illumination, and gradient modula-
tion. In the last two modes, the colors and opacities
of a rendered image come from two sources: the trans-
fer function mapped intensities that can be considered as
self-emission, and the lighting computed from the light
sources and the gradients using the Phong lighting model.
Different rendering modes have different criteria to deter-
mine whether the textures associated with a box is ren-
dered. For unilluminated rendering, only the density tex-
tures ofdensity-visibleboxes are rendered. For render-
ing with gradient magnitude modulation, only boxes that
are bothdensity-visibleandgradient-visibleare rendered.
Their density textures and gradient textures are used to
compute self-emission and lighting, respectively, and the
opacity is multiplied by the gradient magnitude. The illu-
minated rendering without gradient modulation is divided
into two interchangeable steps for each slice. In one
step, the boxes that are bothdensity-visibleandgradient-
visibleare rendered to contribute both self-emission and
lighting. In the other step, boxes that aredensity-visible
but not gradient-visibleare rendered for self-emission
only. Note that the projections onto the image plane of
the boxes rendered in the two steps do not overlap.

6 Experimental Results

In our implementation, the density volume is stored
as paletted textures, while the gradient textures contain
the normalized gradients and the gradient magnitudes in
RGBA format. Considering that accessing a 3D texture
is still much slower than accessing a 2D texture on to-

day’s graphics hardware, the current implementation of
the rendering and the texture packing only supports 2D
textures, although the partitioning is done in 3D. Because
all the density voxels have to be held in textures to ac-
commodate all possible transfer functions and we adopt
the slice-by-slice compositing order, we actually use the
original density-texture stacks, instead of cutting out sub-
textures and packing them. However, the density textures
are still mapped to the boxes so that empty regions can be
skipped for rendering. Whereas for the gradient textures,
which account for 80% of the memory requirement, both
partitioning and packing are applied. If we choose the
box-by-box order, both the density and gradient textures
are preferred to bePPed. We implement the technique
proposed by Rezk-Salama et al. [11] to achieve trilinear
interpolation with 2D textures for both the densities and
the gradients and use dot-products for per-pixel lighting.
Although not implemented yet, it is not difficult forPPed
textures to support pre-integrated rendering [4] and light-
ing by environment maps [9].

We have tested our proposed methods on a 128MB
GeForce 4 Ti 4600 card. Figures 4, 5, and 1e show the
volume-rendered images of four datasets. To save space,
only one image is shown for each dataset, although all
of them are timed for all the three rendering modes. The
size of each dataset is given in Table 1.

Figure 4 shows the unilluminated rendering of the neu-
ron dataset. Table 1 compares the frame rates of the pro-
posed approach (PPT) with the traditional method (Ba-
sic). The average acceleration rates for the four datasets
are 3.8, while the rendered images fromPPed textures
is exactly the same as those from the traditional texture-
based volume rendering. Note that the rendering speed
depends on several factors, such as the size of the win-
dow, the zoom factor, the sampling distance, and when
rendering withPPed texture, also the transfer function.
However, within each row of the tables showing the frame
rates, the values are obtained under exactly the same con-
dition, except for employing different rendering methods.

Dataset Size Basic PPT Speedup
foot 152× 256× 220 10.3 35.6 3.5

neuron 384× 256× 200 12.0 60.0 5.0
head 256× 256× 225 8.7 16.8 1.9

engine 256× 256× 110 18.3 35.1 1.9

Table 1: Rendering speed (frames/sec) of unilluminated
rendering with unpartitioned textures (Basic) and PPed
textures (PPT).



(a) (b) (c) (d) (e)

Figure 1: Algorithm overview: (a) A slice of the foot dataset is partitioned by growing boxes. (b) Gradient sub-textures
defined by the boxes enclosing all the voxels of non-zero gradient magnitude. (c) The gradient sub-textures in (b) are
packed into a single larger texture, which is significantly smaller than the original slice. (d) A 3D view of all the boxes.
(e) Rendering of the foot with mixed boxes and textures. Only the visible boxes are rendered, according to the current
transfer function.

taken

box B

untaken
border

T2T1

Figure 2: The alignment of a
box with its enclosed texels.

Figures 5 and 1e
are images lighted
with PPed gradient
textures using the
Phong model. Like
unilluminated ren-
dering, the image
quality is identical to
those rendered from
the unpartitioned
textures. Figure 5a is rendered with normal illumination,
while Figures 5b and 1e show images rendered with
gradient magnitude modulation.

(a) (b)

Figure 3: (a) Without and (b) with discarding small and
sliver boxes.

Table 2 shows the compression rates of the gradient
textures. The original size (in MB) is the number of vox-
els times four, since each gradient (and its magnitude)
requires four bytes. The columns under ”Before pack-
ing” and ”After packing” are the total size (in MB) of the
partitioned sub-textures, including the replicated texels,
before and after packing, respectively. Note that pack-
ing increases the requirement of texture memory by 10%.
The mean value of the compression rate is 3.1:1.

Data Original Before After Compre.
Set size packing packing rate
foot 34.2 12.6 14.9 2.3

neuron 78.6 11.1 12.2 6.4
head 59.0 29.5 33.9 1.7

engine 28.8 12.8 14.6 2.0

Table 2: Compression rates of the gradient textures

(a)Head. (b) Engine.

Figure 5: Datasets rendered with Phong lighting.

Figure 4: Dataset rendered
without illumination.

Table 3 demonstrates
the system performance
on illuminated render-
ing. ”Basic” denotes
the rendering speed us-
ing unpartitioned tex-
tures for either normal
illumination or gradient
magnitude modulation,
since the two run at the
same speed for unparti-
tioned textures. ”Illum.” and ”Mod.” refer to normal il-
lumination and gradient modulation based on thePPed
textures. The average speedup factors for normal illu-



Data Basic Illum. Mod. Illum. Mod.
set FPS FPS FPS speedup speedup
foot 12.0 56.5 68.5 4.7 5.1

neuron 10.2 42.6 56.5 4.2 5.5
head 3.1 23.9 24.0 7.7 7.7

engine 12.4 19.0 24.5 1.5 2.0

Table 3: Rendering Speed (frames/sec) with unparti-
tioned textures (Basic), and PPedtextures in normal il-
lumination (Illum.) and gradient magnitude modulation
(Mod.).

mination and gradient modulation are 4.5 and 5.1 on
the GeForce 4 for the four datasets. Remember that
with PPed textures, gradient modulation never renders
more boxes than normal illumination for the same trans-
fer function (see Section 5), and we use the same number
of register combiner stages for the two lighting modes.
Consequently, the frame rates and the speedup factors
of the gradient modulation are greater than or equal to
those of the normal illumination mode. In gradient mod-
ulation mode, the ratio of the number of texels rendered
with PPed textures versus unpartitioned textures equals
approximately to the compression rate. However, the
speedup factors are always greater than the corresponding
compression rates, since fewer textures improve cache
performance. In some cases, such as for the head dataset,
texture compression enables the texture memory to hold
all the PPedtextures while it can’t for the unpartitioned
texture, hence the acceleration rate is significantly larger.

7 Conclusion

We propose texture partitioning and packing as a loss-
less texture compression which is suitable for applica-
tions based on graphics hardware. We propose box grow-
ing to efficiently divide the texture domain into a set of
boxes. The sub-textures defined by the boxes are then
packed with a greedy algorithm. With our technique, we
have achieved average speedup factors ranging from 3 to
6 for various datasets at different rendering mode. The
partitioning and packing are independent on the transfer
function.

In texture partitioning, allowing sub-textures to ro-
tate or shear produces smaller boxes. Besides, the sub-
textures for packing do not need to have the same reso-
lution. In either case, the compression becomes lossy. In
the future, we will attempt to improve thePPedtexture
with such lossy compression.

Acknowledgments

This work has been supported by ONR grant
N000140110034 and NIH grant CA82402, and CAT
Biotechnology grant. The datasets are courtesy of
National Library of Medicine Visible Human, Center for
Visual Computing of Stony Brook University, and UNC.

References

[1] R. Avila, L. Sobierajski, and A. Kaufman. To-
wards a Comprehensive Volume Visualization Sys-
tem. IEEE Visualization, pages 13–20, 1992.

[2] I. Boada, I. Navazo, and R. Scopigno. Mul-
tiresolution Volume Visualization with a Texture-
Based Octree.The Visual Computer, 17(3):185–
197, 2001.

[3] D. Cohen and Z. Sheffer. Proximity clouds, an ac-
celeration technique for 3D grid traversal.The Vi-
sual Computer, 11(1):27–28, 1994.

[4] K. Engel, M. Kraus, and T. Ertl. High-Quality
Pre-Integrated Volume Rendering Using Hardware-
Accelerated Pixel Shading.Workshop on Graphics
Hardware, pages 9–17, 2001.

[5] S. Guthe, S. Roettger, A. Schieber, W. Strasser, and
T. Ertl. High-quality unstructured volume rendering
on the pc platform.Workshop on Graphics Hard-
ware, pages 53–60, 2002.

[6] M. Kraus and T. Ertl. Adaptive Texture Maps.
Workshop on Graphics Hardware, pages 7–15,
2002.

[7] E. LaMar, B. Hamann, and K. Joy. Multiresolu-
tion techniques for interactive texture-based volume
visualization. IEEE Visualization, pages 355–362,
October 1999.

[8] W. Li and A. Kaufman. Accelerating volume ren-
dering with texture hulls.Symposium on Volume Vi-
sualization and Graphics, pages 115–122, October
2002.

[9] M. Meißner, S. Guthe, and W. Straßer. Interactive
Lighting Models and Pre-Integration for Volume
Rendering on PC Graphics Accelerators.Graphics
Interface, pages 209–218, May 2002.

[10] J. Orchard and T. M̈oller. Accelerated splatting us-
ing a 3D adjacency data structure.Graphics Inter-
face, pages 191–200, June 2001.

[11] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner,
and T. Ertl. Interactive volume rendering on stan-
dard PC graphics hardware using multi-textures and
multi-stage rasterization.Workshop on Graphics
Hardware, pages 109–118, August 2000.


	Introduction
	Previous Work
	Texture Partitioning
	Partitioning with Boxes
	Box Growing
	Mapping the Partitioned Textures
	Controlling the Number and Shape of Boxes

	Texture Packing
	Volume Rendering with PPed Textures
	Experimental Results
	Conclusion

