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Abstract 
We present a critique of language-based modelling for 
text input research, and propose an alternative input-
based approach.  Current language-based statistical 
models are derived from large samples of text 
(corpora).  However, this text reflects only the output, 
or final result, of the text input task.  We argue that this 
weakens the utility of the model, because, (1) users’ 
language is typically quite different from that in any 
corpus;  punctuation symbols, acronyms, slang, etc. are 
frequently used.  (2) A corpus does not reflect the 
editing process used in its creation.  (3) No existing 
corpus captures the input modalities of text input 
devices.  Actions associated with keys such as Shift, 
Alt, and Ctrl are missing. 
 We present a study to validate our arguments.  
Keystroke data from four subjects were collected over a 
one-month period.  Results are presented that support 
the need for input-based language modelling for text 
input. 
Key words: Text input, Input-based language modelling 
1 Introduction 
This paper explores the difficulty of constructing statis-
tical language models for use in text input research.  
This work is timely because of the tremendous interest, 
particularly recently [1-19], in developing mobile text 
input techniques that are optimised or otherwise en-
hanced by exploiting the statistical properties of a lan-
guage.  Our view is that such efforts are misguided or, 
at the very least, limited, by not accounting for the way 
text is input.  We will argue that the language model for 
developing optimised text input techniques should be 
input-based rather than output-based, as is the current 
practice.  The importance of input-based text modelling 
is demonstrated with a small study of keystrokes gath-
ered during text entry on desktop systems.  These terms 
and their implications are explained in more detail later. 
 Our intent is to demonstrate a methodology for 
observing the text input process.  Further, we hope to 
stimulate further work toward building input-based 
models of text entry.  We begin with the observation 
that natural languages are highly redundant. 

1.1 Language Redundancy 
Youcanunderstandthissentenceandguesswhat 
___missingwordsare,becausethereisanenormo
usamountofredundancyin___Englishlanguage. 
 There are 22 spaces, and two three-letter words 
missing from the above sentence, leaving one hundred 
and sixteen characters.  Yet, the sentence remains un-
derstandable.  It is true that the phrase is difficult to 
read and some uncertainty remains about the missing 
words.  But, we understand the message, and so the 
information content remains unchanged.  Arguably, 
about 19% of the original sentence was unnecessary (28 
of 144 characters were removed).  This phenomenon is 
due to the high redundancy in the English language. 
 The redundancy of a natural language such as 
English is an important quality that most speakers take 
for granted.  It is like a built-in checksum that is 
automatically included in every English phrase.  
Without the checksum, we couldn’t understand speech 
over a noisy telephone line, or proof-read someone 
else’s writing, or use short-hand, or speed-read, or play 
the word game Hangman.  All of these activities require 
us to fill in missing parts of words or sentences, or to 
recognise mistakes using only the surrounding context.  
Language redundancy allows speakers not only to 
identify mistakes or omissions, but usually to correct 
them;  without the redundancy, omitting part of a 
sentence would be catastrophic. 
 The redundancy is a result of the spelling and 
grammatical properties of the language.  Rules like “I 
follows E except after C”, colloquial phrases like “on 
the other hand…”, digraphs like “th” and “sh”, and the 
non-homogeneous frequencies of letters (the letter “e” 
occurs more often than “q”), give rise to the high 
redundancy of a language.  Each letter, syllable, word, 
phrase, and sentence is statistically dependant upon not 
only the context in close proximity, but also on the 
context extended over great numbers of characters.  
Consider the following text taken from a paper by 
Shannon: 

“…anyone speaking a language possesses, 
implicitly, an enormous knowledge of the statistics 
of the language.  Familiarity with the words, 
idioms, clichés and grammar enables him to fill in 



missing or incorrect letters in proof-reading, or to 
complete an unfinished phrase in conversation.” 
[20, page 54] 

 Shannon wrote “an enormous” instead of “a 
enormous” which has identical meaning but is 
grammatically incorrect.  The additional “n” doesn’t 
provide any more information;  it is only there because 
the following word begins with a vowel.  The “n” 
depends upon context, and the choice between “a” or 
“an” depends upon the first letter of the following word, 
two characters away. 
 But what if Shannon had instead wrote “people 
speaking a language possess…”?  Replacing the 
singular “anyone” with the plural “people” requires the 
word “possesses” to become “possess”.  In this case, 
the terminal “es” of “possesses” is dependant upon a 
word 28 characters away.  As well, the word “him” in 
the following sentence doesn’t agree in number with 
“people” and must change, perhaps to “them”; “him” is 
affected by the word “people” which is 166 characters 
away and in a different sentence!  Clearly the 
interdependence within English text is not limited to the 
local context, but can extend to distant parts of other 
sentences many characters away. 
 This introduction has demonstrated that natural 
languages, such as English, are highly redundant and 
that redundancy is a result of the statistical properties of 
the language.  (Although we are using English as an 
example in this paper, language redundancy is a 
property of all natural languages, and we intend our 
arguments to apply to other languages as well.)  We 
now consider how the redundancy within English is 
exploited by recent research in text input techniques. 
2 Applications of Language Redundancy 
There are many areas of research where language 
redundancy has been applied.  Verdu [21] reports that 
as early as the 14th century frequencies of letters were 
tabulated to aid in the decryption of secret messages.  
Redundancy still plays a role in cryptography, has an 
important role in data compression (where the goal is to 
remove redundancy via a reversible process), and is of 
concern in database retrieval. 
 However, our interest is text input.  In general, 
designers of text input techniques construct statistical 
models of a language, and these are used in one of two 
ways.  Movement-minimizing techniques exploit a lan-
guage’s statistical properties to construct input tech-
niques wherein device or hand movement is as efficient 
as possible [2, 3, 5-7].  Predictive input techniques ex-
ploit the same properties, but use a predictive engine 
that increases text throughput by guessing or suggesting 
what the user will enter next [9-12].  Examples of both 
of these approaches and two hybrid approaches [16-18] 
are discussed in the following sections. 

2.1 Movement-Minimising Input Techniques 
Although Qwerty reins supreme on the desktop, recent 
consumer interest in small hand-held personal digital 
assistants (PDAs) and text messaging on pagers and 
mobile phones has driven the search for more efficient, 
portable, text input methods.  This interest has produced 
new keyboard designs that require smaller and more 
efficient physical layouts, or that can be optimised for 
stylus (or single-finger) typing instead of two-handed 
typing.  Soukoreff and MacKenzie presented a model 
[1] which predicts the maximum (expert) and minimum 
(novice) typing speeds for a given keyboard layout with 
stylus typing.  They calculated character frequencies for 
the 26 alphabetic characters and the space character, 
and corresponding digram frequencies for all 27 × 27 
character pairs, and coupled this statistical data with 
Fitts’ law to construct a model of stylus typing.  Zhang 
and MacKenzie used the model to propose a new 
keyboard layout with four space keys called OPTI [2, 
3].  The inventors of the Fitaly keyboard 
(www.textwaresolutions.com) used an ad hoc 
optimisation approach to minimise the distance between 
common digrams.  The resulting keyboard contains two 
space bars and the letters are arranged so that common 
pairs of letters are physically close to one another.  An 
evaluation of these and other keyboards was presented 
by MacKenzie, Zhang, and Soukoreff [4].  Hunter, 
Zhai, and Smith [5] took a physics-based approach to 
find an optimised keyboard arrangement.  They adopted 
the model of Soukoreff and MacKenzie and attempted 
to optimise the model using mechanical simulation and 
a Monte Carlo approach known as the Metropolis 
method.  Their Metropolis Keyboard has hexagonal 
keys and is centred around the space key.  In further 
work [6, 7], they compare their Metropolis keyboard to 
other common layouts, and present a user evaluation.  
For a more detailed review of these and other text input 
technologies see [8].  Clearly, statistical language data 
are useful to researchers trying to optimise movement 
during text entry. 
2.2 Predictive Input Techniques 
Language prediction has been of interest since well 
before Shannon’s Prediction and Entropy of Printed 
English [20], the seminal work in language prediction 
research.  In Jonathan Swift’s Gulliver’s Travels, 
published in 1726, in the Letter from Capt. Gulliver to 
his Cousin Sympson in the Forward Matter, Gulliver 
describes a machine controlling a printing-press that 
can automatically construct academic writing in any 
field using “proportion data” of the parts of speech.  (It 
would save researchers a lot of work if such a machine 
were available today!) 
 An interesting real technology utilising prediction 
to aid in text input is POBox.  POBox [9, 10] allows 



users to enter part of a word and then search for similar 
words by spelling, pronunciation, or shape (for 
pictograph-based languages).  It uses a static database 
for the searching functionality. 
 Another predictive input technology is the Reactive 
Keyboard [11, 12].  The Reactive Keyboard monitors 
what a user enters and presents text predictions for the 
user to choose from.  The predictions are generated by 
finding longest matching sub-strings in the previously 
entered text.  So, not only is the Reactive Keyboard 
predictive, but it adapts to the user’s input and hence is 
not limited to a static set of words or phrases. 
 One final predictive text input technology deserves 
mention because the technology has been licensed 
widely and is currently available on PDAs and cellular 
telephones.  The T9 input technology (www.tegic.com) 
uses a conventional telephone keypad, which is 
significant because the telephone keypad is ubiquitous 
and the letter arrangement is defined by an international 
standard [13].  As the user types, the text is not 
completely deterministic, because each keypress does 
not map to a single letter, but, instead, to one of three or 
four letters on each key.  To overcome the ambiguity, 
word possibilities are presented as the user enters text.  
Although the disambiguating algorithm is proprietary, it 
likely uses character and word frequencies.  Three 
evaluations of T9 exist [13-15]. 
 Predictive text input technologies rely heavily upon 
statistical language models, and their ultimate perform-
ance will always be limited by the quality of the model. 
2.3 Hybrid Input Techniques 
Some text input techniques have been developed with 
both movement-minimizing and predictive features.  
Dasher [16, 17] is a predictive text input technique 
using a pointing device to select from predicted options.  
The options are presented to the user in boxes sized 
according to their relative probabilities, to optimise the 
movement time.  The boxes expand as the pointing de-
vice hovers near them using video-game-like animation 
for fast text entry.  Thus, the technique is both 
movement-minimizing and predictive.  The technique is 
difficult to visualise without a demonstration.  
Conveniently, a demo is available online 
(http://www.inference.phy.cam.ac.uk/dasher/).  Dasher 
uses a fixed set of character probabilities calculated 
with a prediction and partial match (PPM) algorithm. 
 Fluctuating optimal character layout (FOCL) [18] 
is a hybrid text input technique designed for text entry 
on small devices with a limited display (only three rows 
of text) and five buttons.  Four cursor keys and an enter 
button are used to scroll around a 3 × 12 (approximate) 
grid containing all of the characters that can be entered.  
The characters are rearranged after each keystroke so as 
to minimise the number of cursor movements to select 

the next character.  Rearrangement is guided by digram 
probabilities and knowledge of the previous character. 
 The text input techniques reviewed vary widely, 
and yet all (with the exception of Dasher [16, 17]) rely 
on fixed tables of language statistics culled from 
language models.  Any inaccuracy in these models 
results in reduced performance of the interface.  All of 
the techniques, including Dasher, focused on rapid 
inputting of text, and none provided the editing 
functionality that desktop users take for granted such as 
backspace, delete, shift, caps-lock, etc. 
3 Caveats of Language Modelling 
With respect to the input process, statistical language 
models are constructed in an attempt to capture the 
relative likelihood of letters, words, and phrases as they 
relate to all possible contexts as a user types.  Text 
input researchers put a lot of effort into building their 
statistical models, often overlooking the importance of 
selecting the right “collection of symbols” from which 
to calculate the statistics of their model.  While input 
technologies differ significantly in approach, they are 
similar in that they are all limited by the quality of the 
language model used.  The quality of the language 
model, in turn, is limited by the body of raw text or 
symbols the model is based on. 
 Typically, researchers needing statistical language 
data construct or adopt a corpus of text from which to 
build their statistical models.  A corpus is constructed 
by obtaining large quantities of text in the language of 
interest.  Project Gutenburg (http://promo.net/pg/) is an 
on-line repository of electronic documents (mostly 
English), and is a common source of these texts.  
Alternatively, some researchers use published tables of 
statistical language data [22, 23].  These Project 
Gutenburg texts and statistical language tables are well 
suited to research in database retrieval, text 
compression, and other areas of applied linguistic 
research.  All of these areas of research, however, use 
“finished” documents.  By this we mean the text that 
remains after the text input task is over.  However, text 
input research is different, because, to be effective it 
must focus on the dialog that occurs between the user 
and the input device during the text entry task.  We will 
elaborate on this point in the following section. 
3.1 Input-based Language Modelling 
When constructing language models for text input 
research statistical data are typically derived from the 
output (final static product) of text entry.  We suggest 
that the data should be obtained from the input (the 
creation process), because the goal is to exploit 
redundancy in a language in optimising text input.  
Therefore, for text input research, a corpus should be 
constructed from input text and editing actions captured 
during the creation process with a technology as similar 



as possible to the text input method under investigation.  
We have three reasons for making this 
recommendation, (1) corpus text is not representative of 
the user language, (2) corpus text does not reflect the 
editing process, and, (3) corpus text does not capture 
input modalities.  A detailed explanation of these points 
follows. 
Corpus Text is Not Representative of User Language  
The idea that a corpus is “representative of a language” 
is naive when the domain is users interacting with com-
puting technology.  Users typically use a much richer 
set of characters than appear in any corpus, and the sta-
tistical properties in that set are distinctly different from 
that in typical corpora.  A simple example is the space 
key, which is the most common character in English 
text [1].  Yet, the space character is typically missing in 
tables of letter or digraph probabilities used to build 
language models (e.g., [22, 23]1).  Typically, only   
alphabetic characters are included. 
 As well, punctuation symbols are rarely included in 
letter or digraph tables.  Both Isokoski [19] and Zhai et 
al. [6, 7] observe that some punctuation occurs more 
frequently than some of the less frequent letters.  
Inclusion of the space character and simple punctuation 
symbols is the first step, but we feel it is important to 
fully open the character set. 
 The characteristics of the text users enter are de-
pendent on the application used to create the text.  For 
example, we expect more formal prose to be entered 
using a word processor than an e-mail application.  Ad-
ditionally, the type of application depends upon the 
input device available – few people have the patience to 
enter volumes of text into a hand-held PDA device.  
The kind of text most likely entered in this context is 
short notes, phone numbers, URLs, acronyms, slang, 
etc., the statistical properties of which differ from for-
mal English texts.  Highly cryptic messages are      
common for text entry on cell phones and pagers. 
Corpus Text Ignores the Editing Process 
A corpus contains no information about the editing 
process, and we feel this is an unfortunate omission.  
Users are fallible and the creation of a text message – or 
interaction with a system on a larger scale – involves 
much more than the perfect linear input of 
alphanumeric symbols.  The input process is really the 
                                                           
1 Although the linguistic data provided by Mayzner and 
Tresselt [23] does not include the space character, it 
does indirectly provide some data on spaces.  Fre-
quency data for alphabetic characters appearing at the 
beginning and end of words is presented.  It is possible 
to obtain an estimate of the frequency of the space 
character from these data.  Such an analysis [1] sug-
gests that the frequency of space characters was 18%. 

editing process.  Users do not produce text – they 
produce a series of editing commands that are 
interpreted by a text-box widget, wordprocessor, or 
command-line interface, resulting in text. 2 
 We define input actions as the set of physical acts 
that the user can perform during the editing process 
such as hitting a key, using a mouse, writing with a 
stylus, depending upon the system used.  Input actions 
result in tokens.  A token is an instruction to the 
application.  For example, when using a word 
processor, typing the letter “a” on the keyboard is an 
input action, the token is the instruction “insert the 
letter ‘a’ at the current cursor position”.  In this 
example, the input action produces a token that has an 
effect upon the final document.  However, consider 
what happens as a user of Microsoft Word on the 
Windows operating system presses Alt-f, and then the 
letter “s”.  There are four input actions: 

1. Press the Alt key 
2. Press and release the “f” key 
3. Release the Alt key 
4. Press and release the “s” key 

 These keystrokes result in two tokens.  Actions 1 
through 3 cause the file menu to be displayed, and the 
word processor to enter a mode wherein it interprets the 
following keystroke as a selection from this menu.  
Action 4 creates the second token which is the 
instruction to the application to save the current open 
document, and then return to the normal editing mode.  
In this example, there were three keystrokes and no 
changes to the document itself; the text of the document 
does not contain a record of these keystrokes.  When 
this happens, we say the result is unrepresented 
keystrokes. 
 An observation about this example is that it 
includes three unrepresented keystrokes for a very 
common task.  Currently, the proportion of 
unrepresented keystrokes to total keystrokes that occurs 
during text input is unknown, but we believe that the 
proportion is probably high.  Consider the 
unrepresented keys on the typical 101-key PC Qwerty 
keyboard: backspace, shift, control, caps-lock, escape, 
alt, cursor keys (including page-up, home, etc.), 
function keys, num-lock, insert, delete, and system keys 
like print-screen.  Some unrepresented keys such as alt 

                                                           
2 The word “edit” can be used to describe two different 
processes.  It can mean to correct minor typing mis-
takes, or to describe the larger task that a newspaper 
editor performs, improving a text document by reorgan-
ising and rewriting sections of it.  Here, we mean both.  
Users need to be able to correct minor mistakes, and to 
perform larger editing tasks. 



and control usually work in conjunction with other keys 
which also then become unrepresented. 
 One final observation is that it is the application 
(and the operating system) that determines the tokens, 
and hence the input actions, that are unrepresented. 
Corpus Text Does not Capture Input Modalities 
Text documents do not account for how they were 
created.  For example, a corpus includes both uppercase 
and lowercase characters.  In simple language models 
this distinction is ignored (e.g., “A” and “a” are 
considered the same).  A more expansive model can 
easily accommodate this distinction simply by treating 
uppercase and lowercase characters as distinct symbols.  
Yet, from the input perspective, both approaches are 
wrong.  Uppercase and lowercase characters are never 
entered via separate keys on a keyboard;  thus, the 
seemingly more accurate treatment of uppercase and 
lowercase characters as distinct symbols is just as 
wrong from the input perspective. 
 For the user’s interaction with the shift and caps-
lock keys to be accommodated in a model of text input, 
activity with these and related keys must be captured 
during the creation of text.  In the terminology of the 
previous section, we say that the mode shift keys are 
partially unrepresented keystrokes;  the shift key itself 
is not recorded in text, but the mode change to capital 
letters is evident in the final body of text.  However, the 
capital letters in a text document only indicate that the 
shift mode was activated.  The capital letters do not 
indicate whether the mode shift was activated with the 
caps-lock, left shift, or right shift keys on the keyboard, 
so the shift state is partially unrepresented. 
 The partial unrepresentation of the shift keys is a 
natural consequence of the input modalities of the 
technology – in other words, the multiple ways of 
enabling the shift mode with a Qwerty keyboard. 
3.2 Currently, There Is No Text Input Corpus 
We hope that our arguments have convinced the reader 
of the necessity of considering the input stream, as op-
posed to static text documents, when modelling text 
input.  Just as it would be pointless to try to build a lan-
guage model of the English language using a corpus 
containing only French text, building a model of text 
entry using only completed text documents is similarly 
misguided.  However, no corpus of text input exists. 
 Next we present the results of a study we con-
ducted.  The purpose of the experiment was not to pro-
duce a new corpus of text input-stream data, but to jus-
tify the arguments made earlier in this paper, and to 
obtain some data.  This study is preliminary;  produc-
tion of a text input stream corpus is a worthwhile en-
deavour, although not one that we have yet taken on. 

4 A Study of a Typical Text Input Stream 
We constructed software that records what users type as 
they go about their regular activities using computers.  
We used this software to collect keystroke data from 
four subjects for approximately one month. 
4.1 Materials and Method 
Software 
To capture raw input text data, we wrote the 
KeyCapture software using Visual C++, for the 
Windows 98 operating system.  This software takes 
advantage of several hooks in Windows to log user 
interaction at a low level.  The hooks enable 
KeyCapture to receive keystroke data (both key presses 
and releases), mouse movement and mouse button 
clicks, before the active application receives this data.  
KeyCapture also monitors the window focus to record 
the active application during typing.  The user’s 
keyboard and mouse activity are recorded to a log file, 
and each entry is time-stamped with millisecond 
resolution.  The KeyCapture software was designed so 
that when it is operating (recording the user’s actions) it 
is essentially invisible, it has no open windows and no 
entry in the task bar, so the user is not aware of it or 
disturbed by it.  We anticipate that the KeyCapture 
software will be of interest to others, and so the 
software with its source code are available at 
http://dynamicnetservices.com/~will/academic/textinput. 
 The reader may be surprised to find that we used 
desktop computers to gather our text input data, after 
identifying handheld computers as the focus of 
contemporary text input research.  We found it very 
difficult to find subjects willing to have their keystrokes 
logged.  As well as mundane text communications, our 
software captured passwords, personal e-mails, and 
confidential letters.  The difficulty in finding enough 
willing subjects, with similar PDAs, that entered 
sufficient text using their PDAs, for an exploratory 
study, led us to this decision. 
Participants 
Five volunteer participants were solicited, although one 
coincidentally stopped using his computer just as we 
began our study and so we considered his data insuffi-
cient.  Of the remaining four subjects, 3 were male, 1 
was female; ages ranged from 25 to 45 years.  All par-
ticipants are computer literate and use their computers 
on a regular basis.  Three subjects were frequent users 
of standard desktop applications, such as email, word 
processing, and web browsing.  One subject spent al-
most all of his time using Visual Basic;  the three others 
split their time between word processing and e-mail. 
 Although this is a small number of users, we feel 
the data collected is sufficient for this preliminary study 
of text-input-based language modelling. 



4.2 Results and Discussion 
In total approximately 590 megabytes of log files were 
collected over the course of one month, corresponding 
to approximately 360,000 individual keystrokes, and 
almost seven million mouse events (movements and 
button clicks). 
Applications Used  
In analysing the data from our study, we calculated the 
percentage of keystrokes users typed into each of the 
applications they used.  Table 1 presents the most 
frequently used applications, and the proportion of 
keystrokes received by these applications.  The “Notes” 
column indicates applications other than word 
processing and e-mail, that received a large percentage 
of subjects’ keystrokes.  The data in Table 1 suggest 
that word processing and e-mail consumed a large 
number of the total keystrokes entered by our subjects. 
Keystroke Frequency Data 
We used the keystroke data files generated by our study 
to calculate keystroke frequency data.  Table 2 presents 
the top 15 keystrokes entered by each subject, and in 
total.  Notice that the second most probable character, 
accounting for 6.74% of the characters typed by our 
subjects, was the backspace key.  This is an important 
result.  Earlier we reported several recent keyboard 
designs using statistical language modelling, none of 
which optimised for the second most probable key – the 
backspace key. 
 It is interesting that every subject other than s2 had 
backspace as the second most frequent keystroke.  We 
investigated this and found that while the other subjects 
were heavy users of the backspace key, s2 preferred to 
use the cursor keys, control key, and shift key to select 
errant text for correction.   This accounts for s2’s higher 
than typical prevalence of cursor keys.  In general, this 
suggests that the second most frequent key is an editing 

key, either backspace or a cursor key, depending upon 
the editing style of the user.  This also demonstrates one 
strength of input-based analysis – we have identified 
two quite different editing strategies.  This observation 
would have gone unnoticed if output based text analysis 
was performed. 
 The importance of distinguishing upper and lower 
case alphabetic characters is illustrated by the high fre-
quency of the shift key.  It was the sixth most frequent 
key, accounting for slightly over 4% of the keystrokes. 
 Our data show that several punctuation marks are 
more likely than some of the less frequent letters, which 
agrees with observations by Isokoski [19] and Zhai [6, 
7].  The most probable punctuation character is the 
period with a frequency of 1.4% making it more likely 
than P, W, F, Y, G, V, B, comma, apostrophe, K, X, 
tab, hyphen, Z, semicolon, J and Q (listed here in order 
by decreasing frequency). 
Unrepresented Keystrokes 
Table 3 supports our contention that a typical corpus 
does not account for the editing process, as it misses a 
great deal of input activity.  Of the subjects’ keystrokes, 
31.4% of them are keys classified as unrepresented.  
This implies that corpora not based on data captured 
during the input process are missing 31.4% of the key-
stroke input.  Additionally, several unrepresented keys 
(such as control, alt, delete and backspace) cause other 
regular alphabetic keystrokes to become unrepresented, 
so the 31.4% statistic presented in Table 3 is a lower-
bound for the proportion of unrepresented keystrokes. 
 Our measure of the relative occurrence of the space 
keystroke was 9.69% – lower than the 18% in common 
English cited earlier.  This could be a result of corpora 
[22, 23] not accounting for unrepresented characters, or 
possibly our subjects used words with a longer average 
length (and hence fewer spaces per character). 
 

 
 

Table 1  -  Application Usage by Percent Received Keystrokes 

Subject Total 
Keystrokes 

Word 
Processor E-mail Other 

s1 31,328 55% 25%  
s2 82,875 30% 16% 42% C coding 
s3 232,372 26% 66%  

s4 10,148 0% † 0% † 75% Visual Basic 
13% Netscape 

Average  28% 27%  
†  Subject s4 did not use his computer for e-mail or word processing, once the 

KeyCapture software was installed. 



Table 2  -  Frequencies of the Fifteen Most Common Keystrokes 

s1 s2 s3 s4 All 
 9.18  Space 10.42  Down 12.87  Space  8.75  Space   9.69  Space 
 7.14  Back   7.95  Space   8.69  Back  8.72  Back   6.74  Back 
 5.29  Down   5.57  Up   7.36  E  4.85  E   5.28  E 
 4.93  E   5.35  Shift   6.07  T  4.39  Down   5.13  Down 
 4.19  A   5.33  Right   5.05  O  4.29  Return   4.15  T 
 3.85  Shift   4.49  Control   4.64  I  4.01  T   4.14  Shift 
 3.84  I   4.00  E   4.45  A  3.89  Shift   3.72  O 
 3.42  O   3.96  Left   4.18  S  3.88  O   3.68  I 
 3.28  T   3.73  Delete   4.16  N  3.83  I   3.62  A 
 3.27  R   3.25  T   3.79  R  3.57  R   3.31  S 
 3.22  N   3.12  S   3.46  Shift  3.31  A   3.17  N 
 2.98  Up   2.54  O   2.68  H  3.21  S   3.16  R 
 2.92  Right   2.54  A   2.32  L  3.18  N   2.66  Up 
 2.72  S   2.42  Back   2.24  C  2.84  D   2.62  Return 
 2.48  Delete   2.38  I   2.14  D  2.26  H   2.30  Right 

Remaining Represented Keystrokes:    28.86 % 
Remaining Unrepresented Keystrokes:      7.76 % 

 
Table 2:  The numbers represent the proportion of each keystroke indicated, as a percentage.  For 
example, the number 9.18 for “space” under s1 means that 9.18% of the keystrokes entered by s1 
were spaces.  The keystrokes are ordered by their frequency of occurrences.  The percentages for 
the subjects do not sum to 100% because this table only shows the most frequent 15 characters. 

 
 

Table 3  -  Frequency of Unrepresented Characters 

Frequency (%) Unrepresented Key 
6.7 Back 
5.1 Down 
4.1 Shift 
2.7 Up 
2.6 Return 
2.3 Right 
2.1 Delete 
1.7 Left 
1.6 Control 
0.8 Next 
1.6 The Rest 

31.4 Total 
 
A revealing calculation to perform is the normalisation 
of the space keystroke frequency.  From Table 3 it is 
apparent that no more than3 (100 - 31.4 =) 68.6% of 
                                                           
3 We say “no more than” because delete, backspace, alt, 
and control keystrokes cause other keystrokes to be-
come unrepresented.  So the percentage of represented 
keystrokes is actually lower than this figure. 

keystrokes are represented.  Of these, 9.69% were 
spaces.  Thus, if the final text was used to measure the 
frequency of the space character it would find a 
frequency of at least (9.69 / 68.6 =) 14.1% for the space 
character.  If we assume that each backspace, delete, 
and control character cause one represented keystroke 
to become unrepresented, then (68.6 - 6.7 - 2.1 - 1.6 =) 
58.2% of keystrokes remain represented, and 16.6% of 
these are spaces.  Thus, our 9.69% figure is likely the 
result of both factors, corpora omitting unrepresented 
keystrokes, and subjects entering longer words. 
5 Conclusions 
While we do not present a novel statistical model of 
English here, nor a new comprehensive corpus text of 
input data;  we suggest that output-based models are 
lacking in their ability to represent the text input task.  
The output-based approach makes the models weak or 
unsuitable for research in text input problems for the 
following reasons: (a) typical text files used in language 
modelling are not representative of the user language, 
(b) these texts contain no data from the editing process, 
and (c) the text corpus does not account for the input 
modalities of the technology used to create the text. 
 The utility of input text language models can be 
improved if the corpus is collected using an input task 



similar to that which the users will ultimately face in 
terms of both the physical device used, and the type of 
text entered. 
 We would very much like a corpus of text input 
data to be created and made available to the research 
community.  However, this would be difficult;  it is 
hard to find subjects willing to have their personal 
communications made public.  Yet such a corpus would 
be invaluable to the text input community.  Until such a 
corpus becomes available, capturing text input data 
with tools like the KeyCapture software is possible. 
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