
Input-based Language Modelling in the Design
of High Performance Text Input Techniques

 R. William Soukoreff a I. Scott MacKenzie a,b

 a Department of Computer Science b Unit for Computer-Human Interaction (TAUCHI)
 York University Dept. of Computer & Information Sciences
 Toronto, Ontario, Canada M3J 1P3 FIN-33014 University of Tampere
 {will, smackenzie}@acm.org Tampere, Finland

Abstract
We present a critique of language-based modelling for
text input research, and propose an alternative input-
based approach. Current language-based statistical
models are derived from large samples of text
(corpora). However, this text reflects only the output,
or final result, of the text input task. We argue that this
weakens the utility of the model, because, (1) users’
language is typically quite different from that in any
corpus; punctuation symbols, acronyms, slang, etc. are
frequently used. (2) A corpus does not reflect the
editing process used in its creation. (3) No existing
corpus captures the input modalities of text input
devices. Actions associated with keys such as Shift,
Alt, and Ctrl are missing.
 We present a study to validate our arguments.
Keystroke data from four subjects were collected over a
one-month period. Results are presented that support
the need for input-based language modelling for text
input.
Key words: Text input, Input-based language modelling
1 Introduction
This paper explores the difficulty of constructing statis-
tical language models for use in text input research.
This work is timely because of the tremendous interest,
particularly recently [1-19], in developing mobile text
input techniques that are optimised or otherwise en-
hanced by exploiting the statistical properties of a lan-
guage. Our view is that such efforts are misguided or,
at the very least, limited, by not accounting for the way
text is input. We will argue that the language model for
developing optimised text input techniques should be
input-based rather than output-based, as is the current
practice. The importance of input-based text modelling
is demonstrated with a small study of keystrokes gath-
ered during text entry on desktop systems. These terms
and their implications are explained in more detail later.
 Our intent is to demonstrate a methodology for
observing the text input process. Further, we hope to
stimulate further work toward building input-based
models of text entry. We begin with the observation
that natural languages are highly redundant.

1.1 Language Redundancy
Youcanunderstandthissentenceandguesswhat
___missingwordsare,becausethereisanenormo
usamountofredundancyin___Englishlanguage.
 There are 22 spaces, and two three-letter words
missing from the above sentence, leaving one hundred
and sixteen characters. Yet, the sentence remains un-
derstandable. It is true that the phrase is difficult to
read and some uncertainty remains about the missing
words. But, we understand the message, and so the
information content remains unchanged. Arguably,
about 19% of the original sentence was unnecessary (28
of 144 characters were removed). This phenomenon is
due to the high redundancy in the English language.
 The redundancy of a natural language such as
English is an important quality that most speakers take
for granted. It is like a built-in checksum that is
automatically included in every English phrase.
Without the checksum, we couldn’t understand speech
over a noisy telephone line, or proof-read someone
else’s writing, or use short-hand, or speed-read, or play
the word game Hangman. All of these activities require
us to fill in missing parts of words or sentences, or to
recognise mistakes using only the surrounding context.
Language redundancy allows speakers not only to
identify mistakes or omissions, but usually to correct
them; without the redundancy, omitting part of a
sentence would be catastrophic.
 The redundancy is a result of the spelling and
grammatical properties of the language. Rules like “I
follows E except after C”, colloquial phrases like “on
the other hand…”, digraphs like “th” and “sh”, and the
non-homogeneous frequencies of letters (the letter “e”
occurs more often than “q”), give rise to the high
redundancy of a language. Each letter, syllable, word,
phrase, and sentence is statistically dependant upon not
only the context in close proximity, but also on the
context extended over great numbers of characters.
Consider the following text taken from a paper by
Shannon:

“…anyone speaking a language possesses,
implicitly, an enormous knowledge of the statistics
of the language. Familiarity with the words,
idioms, clichés and grammar enables him to fill in

missing or incorrect letters in proof-reading, or to
complete an unfinished phrase in conversation.”
[20, page 54]

 Shannon wrote “an enormous” instead of “a
enormous” which has identical meaning but is
grammatically incorrect. The additional “n” doesn’t
provide any more information; it is only there because
the following word begins with a vowel. The “n”
depends upon context, and the choice between “a” or
“an” depends upon the first letter of the following word,
two characters away.
 But what if Shannon had instead wrote “people
speaking a language possess…”? Replacing the
singular “anyone” with the plural “people” requires the
word “possesses” to become “possess”. In this case,
the terminal “es” of “possesses” is dependant upon a
word 28 characters away. As well, the word “him” in
the following sentence doesn’t agree in number with
“people” and must change, perhaps to “them”; “him” is
affected by the word “people” which is 166 characters
away and in a different sentence! Clearly the
interdependence within English text is not limited to the
local context, but can extend to distant parts of other
sentences many characters away.
 This introduction has demonstrated that natural
languages, such as English, are highly redundant and
that redundancy is a result of the statistical properties of
the language. (Although we are using English as an
example in this paper, language redundancy is a
property of all natural languages, and we intend our
arguments to apply to other languages as well.) We
now consider how the redundancy within English is
exploited by recent research in text input techniques.
2 Applications of Language Redundancy
There are many areas of research where language
redundancy has been applied. Verdu [21] reports that
as early as the 14th century frequencies of letters were
tabulated to aid in the decryption of secret messages.
Redundancy still plays a role in cryptography, has an
important role in data compression (where the goal is to
remove redundancy via a reversible process), and is of
concern in database retrieval.
 However, our interest is text input. In general,
designers of text input techniques construct statistical
models of a language, and these are used in one of two
ways. Movement-minimizing techniques exploit a lan-
guage’s statistical properties to construct input tech-
niques wherein device or hand movement is as efficient
as possible [2, 3, 5-7]. Predictive input techniques ex-
ploit the same properties, but use a predictive engine
that increases text throughput by guessing or suggesting
what the user will enter next [9-12]. Examples of both
of these approaches and two hybrid approaches [16-18]
are discussed in the following sections.

2.1 Movement-Minimising Input Techniques
Although Qwerty reins supreme on the desktop, recent
consumer interest in small hand-held personal digital
assistants (PDAs) and text messaging on pagers and
mobile phones has driven the search for more efficient,
portable, text input methods. This interest has produced
new keyboard designs that require smaller and more
efficient physical layouts, or that can be optimised for
stylus (or single-finger) typing instead of two-handed
typing. Soukoreff and MacKenzie presented a model
[1] which predicts the maximum (expert) and minimum
(novice) typing speeds for a given keyboard layout with
stylus typing. They calculated character frequencies for
the 26 alphabetic characters and the space character,
and corresponding digram frequencies for all 27 × 27
character pairs, and coupled this statistical data with
Fitts’ law to construct a model of stylus typing. Zhang
and MacKenzie used the model to propose a new
keyboard layout with four space keys called OPTI [2,
3]. The inventors of the Fitaly keyboard
(www.textwaresolutions.com) used an ad hoc
optimisation approach to minimise the distance between
common digrams. The resulting keyboard contains two
space bars and the letters are arranged so that common
pairs of letters are physically close to one another. An
evaluation of these and other keyboards was presented
by MacKenzie, Zhang, and Soukoreff [4]. Hunter,
Zhai, and Smith [5] took a physics-based approach to
find an optimised keyboard arrangement. They adopted
the model of Soukoreff and MacKenzie and attempted
to optimise the model using mechanical simulation and
a Monte Carlo approach known as the Metropolis
method. Their Metropolis Keyboard has hexagonal
keys and is centred around the space key. In further
work [6, 7], they compare their Metropolis keyboard to
other common layouts, and present a user evaluation.
For a more detailed review of these and other text input
technologies see [8]. Clearly, statistical language data
are useful to researchers trying to optimise movement
during text entry.
2.2 Predictive Input Techniques
Language prediction has been of interest since well
before Shannon’s Prediction and Entropy of Printed
English [20], the seminal work in language prediction
research. In Jonathan Swift’s Gulliver’s Travels,
published in 1726, in the Letter from Capt. Gulliver to
his Cousin Sympson in the Forward Matter, Gulliver
describes a machine controlling a printing-press that
can automatically construct academic writing in any
field using “proportion data” of the parts of speech. (It
would save researchers a lot of work if such a machine
were available today!)
 An interesting real technology utilising prediction
to aid in text input is POBox. POBox [9, 10] allows

users to enter part of a word and then search for similar
words by spelling, pronunciation, or shape (for
pictograph-based languages). It uses a static database
for the searching functionality.
 Another predictive input technology is the Reactive
Keyboard [11, 12]. The Reactive Keyboard monitors
what a user enters and presents text predictions for the
user to choose from. The predictions are generated by
finding longest matching sub-strings in the previously
entered text. So, not only is the Reactive Keyboard
predictive, but it adapts to the user’s input and hence is
not limited to a static set of words or phrases.
 One final predictive text input technology deserves
mention because the technology has been licensed
widely and is currently available on PDAs and cellular
telephones. The T9 input technology (www.tegic.com)
uses a conventional telephone keypad, which is
significant because the telephone keypad is ubiquitous
and the letter arrangement is defined by an international
standard [13]. As the user types, the text is not
completely deterministic, because each keypress does
not map to a single letter, but, instead, to one of three or
four letters on each key. To overcome the ambiguity,
word possibilities are presented as the user enters text.
Although the disambiguating algorithm is proprietary, it
likely uses character and word frequencies. Three
evaluations of T9 exist [13-15].
 Predictive text input technologies rely heavily upon
statistical language models, and their ultimate perform-
ance will always be limited by the quality of the model.
2.3 Hybrid Input Techniques
Some text input techniques have been developed with
both movement-minimizing and predictive features.
Dasher [16, 17] is a predictive text input technique
using a pointing device to select from predicted options.
The options are presented to the user in boxes sized
according to their relative probabilities, to optimise the
movement time. The boxes expand as the pointing de-
vice hovers near them using video-game-like animation
for fast text entry. Thus, the technique is both
movement-minimizing and predictive. The technique is
difficult to visualise without a demonstration.
Conveniently, a demo is available online
(http://www.inference.phy.cam.ac.uk/dasher/). Dasher
uses a fixed set of character probabilities calculated
with a prediction and partial match (PPM) algorithm.
 Fluctuating optimal character layout (FOCL) [18]
is a hybrid text input technique designed for text entry
on small devices with a limited display (only three rows
of text) and five buttons. Four cursor keys and an enter
button are used to scroll around a 3 × 12 (approximate)
grid containing all of the characters that can be entered.
The characters are rearranged after each keystroke so as
to minimise the number of cursor movements to select

the next character. Rearrangement is guided by digram
probabilities and knowledge of the previous character.
 The text input techniques reviewed vary widely,
and yet all (with the exception of Dasher [16, 17]) rely
on fixed tables of language statistics culled from
language models. Any inaccuracy in these models
results in reduced performance of the interface. All of
the techniques, including Dasher, focused on rapid
inputting of text, and none provided the editing
functionality that desktop users take for granted such as
backspace, delete, shift, caps-lock, etc.
3 Caveats of Language Modelling
With respect to the input process, statistical language
models are constructed in an attempt to capture the
relative likelihood of letters, words, and phrases as they
relate to all possible contexts as a user types. Text
input researchers put a lot of effort into building their
statistical models, often overlooking the importance of
selecting the right “collection of symbols” from which
to calculate the statistics of their model. While input
technologies differ significantly in approach, they are
similar in that they are all limited by the quality of the
language model used. The quality of the language
model, in turn, is limited by the body of raw text or
symbols the model is based on.
 Typically, researchers needing statistical language
data construct or adopt a corpus of text from which to
build their statistical models. A corpus is constructed
by obtaining large quantities of text in the language of
interest. Project Gutenburg (http://promo.net/pg/) is an
on-line repository of electronic documents (mostly
English), and is a common source of these texts.
Alternatively, some researchers use published tables of
statistical language data [22, 23]. These Project
Gutenburg texts and statistical language tables are well
suited to research in database retrieval, text
compression, and other areas of applied linguistic
research. All of these areas of research, however, use
“finished” documents. By this we mean the text that
remains after the text input task is over. However, text
input research is different, because, to be effective it
must focus on the dialog that occurs between the user
and the input device during the text entry task. We will
elaborate on this point in the following section.
3.1 Input-based Language Modelling
When constructing language models for text input
research statistical data are typically derived from the
output (final static product) of text entry. We suggest
that the data should be obtained from the input (the
creation process), because the goal is to exploit
redundancy in a language in optimising text input.
Therefore, for text input research, a corpus should be
constructed from input text and editing actions captured
during the creation process with a technology as similar

as possible to the text input method under investigation.
We have three reasons for making this
recommendation, (1) corpus text is not representative of
the user language, (2) corpus text does not reflect the
editing process, and, (3) corpus text does not capture
input modalities. A detailed explanation of these points
follows.
Corpus Text is Not Representative of User Language
The idea that a corpus is “representative of a language”
is naive when the domain is users interacting with com-
puting technology. Users typically use a much richer
set of characters than appear in any corpus, and the sta-
tistical properties in that set are distinctly different from
that in typical corpora. A simple example is the space
key, which is the most common character in English
text [1]. Yet, the space character is typically missing in
tables of letter or digraph probabilities used to build
language models (e.g., [22, 23]1). Typically, only
alphabetic characters are included.
 As well, punctuation symbols are rarely included in
letter or digraph tables. Both Isokoski [19] and Zhai et
al. [6, 7] observe that some punctuation occurs more
frequently than some of the less frequent letters.
Inclusion of the space character and simple punctuation
symbols is the first step, but we feel it is important to
fully open the character set.
 The characteristics of the text users enter are de-
pendent on the application used to create the text. For
example, we expect more formal prose to be entered
using a word processor than an e-mail application. Ad-
ditionally, the type of application depends upon the
input device available – few people have the patience to
enter volumes of text into a hand-held PDA device.
The kind of text most likely entered in this context is
short notes, phone numbers, URLs, acronyms, slang,
etc., the statistical properties of which differ from for-
mal English texts. Highly cryptic messages are
common for text entry on cell phones and pagers.
Corpus Text Ignores the Editing Process
A corpus contains no information about the editing
process, and we feel this is an unfortunate omission.
Users are fallible and the creation of a text message – or
interaction with a system on a larger scale – involves
much more than the perfect linear input of
alphanumeric symbols. The input process is really the

1 Although the linguistic data provided by Mayzner and
Tresselt [23] does not include the space character, it
does indirectly provide some data on spaces. Fre-
quency data for alphabetic characters appearing at the
beginning and end of words is presented. It is possible
to obtain an estimate of the frequency of the space
character from these data. Such an analysis [1] sug-
gests that the frequency of space characters was 18%.

editing process. Users do not produce text – they
produce a series of editing commands that are
interpreted by a text-box widget, wordprocessor, or
command-line interface, resulting in text. 2
 We define input actions as the set of physical acts
that the user can perform during the editing process
such as hitting a key, using a mouse, writing with a
stylus, depending upon the system used. Input actions
result in tokens. A token is an instruction to the
application. For example, when using a word
processor, typing the letter “a” on the keyboard is an
input action, the token is the instruction “insert the
letter ‘a’ at the current cursor position”. In this
example, the input action produces a token that has an
effect upon the final document. However, consider
what happens as a user of Microsoft Word on the
Windows operating system presses Alt-f, and then the
letter “s”. There are four input actions:

1. Press the Alt key
2. Press and release the “f” key
3. Release the Alt key
4. Press and release the “s” key

 These keystrokes result in two tokens. Actions 1
through 3 cause the file menu to be displayed, and the
word processor to enter a mode wherein it interprets the
following keystroke as a selection from this menu.
Action 4 creates the second token which is the
instruction to the application to save the current open
document, and then return to the normal editing mode.
In this example, there were three keystrokes and no
changes to the document itself; the text of the document
does not contain a record of these keystrokes. When
this happens, we say the result is unrepresented
keystrokes.
 An observation about this example is that it
includes three unrepresented keystrokes for a very
common task. Currently, the proportion of
unrepresented keystrokes to total keystrokes that occurs
during text input is unknown, but we believe that the
proportion is probably high. Consider the
unrepresented keys on the typical 101-key PC Qwerty
keyboard: backspace, shift, control, caps-lock, escape,
alt, cursor keys (including page-up, home, etc.),
function keys, num-lock, insert, delete, and system keys
like print-screen. Some unrepresented keys such as alt

2 The word “edit” can be used to describe two different
processes. It can mean to correct minor typing mis-
takes, or to describe the larger task that a newspaper
editor performs, improving a text document by reorgan-
ising and rewriting sections of it. Here, we mean both.
Users need to be able to correct minor mistakes, and to
perform larger editing tasks.

and control usually work in conjunction with other keys
which also then become unrepresented.
 One final observation is that it is the application
(and the operating system) that determines the tokens,
and hence the input actions, that are unrepresented.
Corpus Text Does not Capture Input Modalities
Text documents do not account for how they were
created. For example, a corpus includes both uppercase
and lowercase characters. In simple language models
this distinction is ignored (e.g., “A” and “a” are
considered the same). A more expansive model can
easily accommodate this distinction simply by treating
uppercase and lowercase characters as distinct symbols.
Yet, from the input perspective, both approaches are
wrong. Uppercase and lowercase characters are never
entered via separate keys on a keyboard; thus, the
seemingly more accurate treatment of uppercase and
lowercase characters as distinct symbols is just as
wrong from the input perspective.
 For the user’s interaction with the shift and caps-
lock keys to be accommodated in a model of text input,
activity with these and related keys must be captured
during the creation of text. In the terminology of the
previous section, we say that the mode shift keys are
partially unrepresented keystrokes; the shift key itself
is not recorded in text, but the mode change to capital
letters is evident in the final body of text. However, the
capital letters in a text document only indicate that the
shift mode was activated. The capital letters do not
indicate whether the mode shift was activated with the
caps-lock, left shift, or right shift keys on the keyboard,
so the shift state is partially unrepresented.
 The partial unrepresentation of the shift keys is a
natural consequence of the input modalities of the
technology – in other words, the multiple ways of
enabling the shift mode with a Qwerty keyboard.
3.2 Currently, There Is No Text Input Corpus
We hope that our arguments have convinced the reader
of the necessity of considering the input stream, as op-
posed to static text documents, when modelling text
input. Just as it would be pointless to try to build a lan-
guage model of the English language using a corpus
containing only French text, building a model of text
entry using only completed text documents is similarly
misguided. However, no corpus of text input exists.
 Next we present the results of a study we con-
ducted. The purpose of the experiment was not to pro-
duce a new corpus of text input-stream data, but to jus-
tify the arguments made earlier in this paper, and to
obtain some data. This study is preliminary; produc-
tion of a text input stream corpus is a worthwhile en-
deavour, although not one that we have yet taken on.

4 A Study of a Typical Text Input Stream
We constructed software that records what users type as
they go about their regular activities using computers.
We used this software to collect keystroke data from
four subjects for approximately one month.
4.1 Materials and Method
Software
To capture raw input text data, we wrote the
KeyCapture software using Visual C++, for the
Windows 98 operating system. This software takes
advantage of several hooks in Windows to log user
interaction at a low level. The hooks enable
KeyCapture to receive keystroke data (both key presses
and releases), mouse movement and mouse button
clicks, before the active application receives this data.
KeyCapture also monitors the window focus to record
the active application during typing. The user’s
keyboard and mouse activity are recorded to a log file,
and each entry is time-stamped with millisecond
resolution. The KeyCapture software was designed so
that when it is operating (recording the user’s actions) it
is essentially invisible, it has no open windows and no
entry in the task bar, so the user is not aware of it or
disturbed by it. We anticipate that the KeyCapture
software will be of interest to others, and so the
software with its source code are available at
http://dynamicnetservices.com/~will/academic/textinput.
 The reader may be surprised to find that we used
desktop computers to gather our text input data, after
identifying handheld computers as the focus of
contemporary text input research. We found it very
difficult to find subjects willing to have their keystrokes
logged. As well as mundane text communications, our
software captured passwords, personal e-mails, and
confidential letters. The difficulty in finding enough
willing subjects, with similar PDAs, that entered
sufficient text using their PDAs, for an exploratory
study, led us to this decision.
Participants
Five volunteer participants were solicited, although one
coincidentally stopped using his computer just as we
began our study and so we considered his data insuffi-
cient. Of the remaining four subjects, 3 were male, 1
was female; ages ranged from 25 to 45 years. All par-
ticipants are computer literate and use their computers
on a regular basis. Three subjects were frequent users
of standard desktop applications, such as email, word
processing, and web browsing. One subject spent al-
most all of his time using Visual Basic; the three others
split their time between word processing and e-mail.
 Although this is a small number of users, we feel
the data collected is sufficient for this preliminary study
of text-input-based language modelling.

4.2 Results and Discussion
In total approximately 590 megabytes of log files were
collected over the course of one month, corresponding
to approximately 360,000 individual keystrokes, and
almost seven million mouse events (movements and
button clicks).
Applications Used
In analysing the data from our study, we calculated the
percentage of keystrokes users typed into each of the
applications they used. Table 1 presents the most
frequently used applications, and the proportion of
keystrokes received by these applications. The “Notes”
column indicates applications other than word
processing and e-mail, that received a large percentage
of subjects’ keystrokes. The data in Table 1 suggest
that word processing and e-mail consumed a large
number of the total keystrokes entered by our subjects.
Keystroke Frequency Data
We used the keystroke data files generated by our study
to calculate keystroke frequency data. Table 2 presents
the top 15 keystrokes entered by each subject, and in
total. Notice that the second most probable character,
accounting for 6.74% of the characters typed by our
subjects, was the backspace key. This is an important
result. Earlier we reported several recent keyboard
designs using statistical language modelling, none of
which optimised for the second most probable key – the
backspace key.
 It is interesting that every subject other than s2 had
backspace as the second most frequent keystroke. We
investigated this and found that while the other subjects
were heavy users of the backspace key, s2 preferred to
use the cursor keys, control key, and shift key to select
errant text for correction. This accounts for s2’s higher
than typical prevalence of cursor keys. In general, this
suggests that the second most frequent key is an editing

key, either backspace or a cursor key, depending upon
the editing style of the user. This also demonstrates one
strength of input-based analysis – we have identified
two quite different editing strategies. This observation
would have gone unnoticed if output based text analysis
was performed.
 The importance of distinguishing upper and lower
case alphabetic characters is illustrated by the high fre-
quency of the shift key. It was the sixth most frequent
key, accounting for slightly over 4% of the keystrokes.
 Our data show that several punctuation marks are
more likely than some of the less frequent letters, which
agrees with observations by Isokoski [19] and Zhai [6,
7]. The most probable punctuation character is the
period with a frequency of 1.4% making it more likely
than P, W, F, Y, G, V, B, comma, apostrophe, K, X,
tab, hyphen, Z, semicolon, J and Q (listed here in order
by decreasing frequency).
Unrepresented Keystrokes
Table 3 supports our contention that a typical corpus
does not account for the editing process, as it misses a
great deal of input activity. Of the subjects’ keystrokes,
31.4% of them are keys classified as unrepresented.
This implies that corpora not based on data captured
during the input process are missing 31.4% of the key-
stroke input. Additionally, several unrepresented keys
(such as control, alt, delete and backspace) cause other
regular alphabetic keystrokes to become unrepresented,
so the 31.4% statistic presented in Table 3 is a lower-
bound for the proportion of unrepresented keystrokes.
 Our measure of the relative occurrence of the space
keystroke was 9.69% – lower than the 18% in common
English cited earlier. This could be a result of corpora
[22, 23] not accounting for unrepresented characters, or
possibly our subjects used words with a longer average
length (and hence fewer spaces per character).

Table 1 - Application Usage by Percent Received Keystrokes

Subject Total
Keystrokes

Word
Processor E-mail Other

s1 31,328 55% 25%
s2 82,875 30% 16% 42% C coding
s3 232,372 26% 66%

s4 10,148 0% † 0% † 75% Visual Basic
13% Netscape

Average 28% 27%
† Subject s4 did not use his computer for e-mail or word processing, once the

KeyCapture software was installed.

Table 2 - Frequencies of the Fifteen Most Common Keystrokes

s1 s2 s3 s4 All
 9.18 Space 10.42 Down 12.87 Space 8.75 Space 9.69 Space
 7.14 Back 7.95 Space 8.69 Back 8.72 Back 6.74 Back
 5.29 Down 5.57 Up 7.36 E 4.85 E 5.28 E
 4.93 E 5.35 Shift 6.07 T 4.39 Down 5.13 Down
 4.19 A 5.33 Right 5.05 O 4.29 Return 4.15 T
 3.85 Shift 4.49 Control 4.64 I 4.01 T 4.14 Shift
 3.84 I 4.00 E 4.45 A 3.89 Shift 3.72 O
 3.42 O 3.96 Left 4.18 S 3.88 O 3.68 I
 3.28 T 3.73 Delete 4.16 N 3.83 I 3.62 A
 3.27 R 3.25 T 3.79 R 3.57 R 3.31 S
 3.22 N 3.12 S 3.46 Shift 3.31 A 3.17 N
 2.98 Up 2.54 O 2.68 H 3.21 S 3.16 R
 2.92 Right 2.54 A 2.32 L 3.18 N 2.66 Up
 2.72 S 2.42 Back 2.24 C 2.84 D 2.62 Return
 2.48 Delete 2.38 I 2.14 D 2.26 H 2.30 Right

Remaining Represented Keystrokes: 28.86 %
Remaining Unrepresented Keystrokes: 7.76 %

Table 2: The numbers represent the proportion of each keystroke indicated, as a percentage. For
example, the number 9.18 for “space” under s1 means that 9.18% of the keystrokes entered by s1
were spaces. The keystrokes are ordered by their frequency of occurrences. The percentages for
the subjects do not sum to 100% because this table only shows the most frequent 15 characters.

Table 3 - Frequency of Unrepresented Characters

Frequency (%) Unrepresented Key
6.7 Back
5.1 Down
4.1 Shift
2.7 Up
2.6 Return
2.3 Right
2.1 Delete
1.7 Left
1.6 Control
0.8 Next
1.6 The Rest

31.4 Total

A revealing calculation to perform is the normalisation
of the space keystroke frequency. From Table 3 it is
apparent that no more than3 (100 - 31.4 =) 68.6% of

3 We say “no more than” because delete, backspace, alt,
and control keystrokes cause other keystrokes to be-
come unrepresented. So the percentage of represented
keystrokes is actually lower than this figure.

keystrokes are represented. Of these, 9.69% were
spaces. Thus, if the final text was used to measure the
frequency of the space character it would find a
frequency of at least (9.69 / 68.6 =) 14.1% for the space
character. If we assume that each backspace, delete,
and control character cause one represented keystroke
to become unrepresented, then (68.6 - 6.7 - 2.1 - 1.6 =)
58.2% of keystrokes remain represented, and 16.6% of
these are spaces. Thus, our 9.69% figure is likely the
result of both factors, corpora omitting unrepresented
keystrokes, and subjects entering longer words.
5 Conclusions
While we do not present a novel statistical model of
English here, nor a new comprehensive corpus text of
input data; we suggest that output-based models are
lacking in their ability to represent the text input task.
The output-based approach makes the models weak or
unsuitable for research in text input problems for the
following reasons: (a) typical text files used in language
modelling are not representative of the user language,
(b) these texts contain no data from the editing process,
and (c) the text corpus does not account for the input
modalities of the technology used to create the text.
 The utility of input text language models can be
improved if the corpus is collected using an input task

similar to that which the users will ultimately face in
terms of both the physical device used, and the type of
text entered.
 We would very much like a corpus of text input
data to be created and made available to the research
community. However, this would be difficult; it is
hard to find subjects willing to have their personal
communications made public. Yet such a corpus would
be invaluable to the text input community. Until such a
corpus becomes available, capturing text input data
with tools like the KeyCapture software is possible.
References
1. Soukoreff, R. W. and MacKenzie, I. S. (1995).

Theoretical upper and lower bounds on typing
speeds using a stylus and soft keyboard. Behaviour
& Information Technology, 14(6), 370-379.

2. Zhang, S. X. (1998). A high performance soft
keyboard for mobile systems (M.Sc. Thesis).
University of Guelph.

3. MacKenzie, I. S. and Zhang, S. X. (1999). The
design and evaluation of a high-performance soft
keyboard. Proceedings of the ACM Conference on
Human Factors in Computing Systems - CHI '99,
25-31. New York: ACM.

4. MacKenzie, I. S., Zhang, S. X., and Soukoreff, R.
W. (1999). Text entry using soft keyboards.
Behaviour & Information Technology, 18(4), 235-
244.

5. Hunter, M., Zhai, S., and Smith, B. A. (2000).
Physics-based graphical keyboard design. Extended
Abstracts of the ACM Conference on Human
Factors in Computing Systems - CHI 2000, 157-
158. New York: ACM.

6. Zhai, S., Hunter, M., and Smith, B. A. (2000). The
Metropolis keyboard: An exploration of
quantitative techniques for virtual keyboard design.
Proceedings of the ACM Conference on User
Interface Software and Technology - UIST 2000,
119-128. New York: ACM.

7. Zhai, S., Hunter, M., and Smith, B. A. (2002).
Performance Optimization of Virtual Keyboards.
Journal of Human Computer Interaction, 17(2 & 3),
229-270.

8. MacKenzie, I. S. and Soukoreff, R. W. (2002). Text
entry for mobile computing: Models and methods,
theory and practice. Human-Computer Interaction,
17(2 & 3), 147-198.

9. Masui, T. (1998). An efficient text input method for
pen-based computers. Proceedings of the ACM
Conference on Human Factors in Computing
Systems - CHI '98, 328-335. New York: ACM.

10. Masui, T. (1999). POBox: An efficient text input
method for handheld and ubiquitous computers.
Proceedings of the International Symposium on

Handheld and Ubiquitous Computing - HUC '99,
289-300.

11. Darragh, J. J., Witten, I. H., and James, M. L.
(1990). The reactive keyboard: A predictive typing
aid. Computer, 23(11), 41-49.

12. Darragh, J. J. and Witten, I. H. (1991). Adaptive
predictive text generation and the reactive keyboard.
Interacting with Computers, 3(1), 27-50.

13. Silfverberg, M., MacKenzie, I. S., and Korhonen, P.
(2000). Predicting text entry speed on mobile
phones. Proceedings of the ACM Conference on
Human Factors in Computing Systems - CHI 2000,
9-16. New York: ACM.

14. Bohan, M., Phipps, C. A., Chaparro, A., and Hal-
comb, C. G. (1999). A psychophysical comparison
of two stylus-driven soft keyboards. Proceedings of
Graphics Interface '99, 92-97. Toronto, Ontario:
Canadian Information Processing Society.

15. James, C. L. and Reischel, K. M. (2001). Text input
for mobile devices: Comparing model prediction to
actual performance. Proceedings of the ACM
Conference on Human Factors in Computing
Systems - CHI 2001, 365-371. New York: ACM.

16. Ward, D. J., Blackwell, A. F., and MacKay, D. J. C.
(2000). Dasher - A data entry interface using
continuous gestures and language models.
Proceedings of the ACM Conference on User
Interface and Software Technology - UIST 2000,
129-137. New York: ACM.

17. Ward, D. J., Blackwell, A. F., and MacKay, D. J. C.
(2002). Dasher: A Gesture-Driven Data Entry
Interface for Mobile Computing. Journal of Human
Computer Interaction, 17(2 & 3), 199-228.

18. Bellman, T. and MacKenzie, I. S. (1998). A
probabilistic character layout strategy for mobile
text entry. Proceedings of Graphics Interface '98,
168-176. Toronto, Ontario: Canadian Information
Processing Society.

19. Isokoski, P. (1999). A minimal device-independent
text input method (M.Sc. Thesis). University of
Tampere, Tampere Finland.

20. Shannon, C. E. (1951). Prediction and entropy of
printed English. Bell System Technical Journal, 30,
51-64.

21. Verdu, S. (1998). Fifty years of Shannon theory.
IEEE Transactions on Information Theory, 44(6),
2057-2078.

22. Underwood, B. J. and Schulz, R. W. (1960).
Meaningfulness and verbal learning: Philadelphia:
Lippincott.

23. Mayzner, M. S. and Tresselt, M. E. (1965). Table of
single-letter and digram frequency counts for vari-
ous word-length and letter-position combinations.
Psychonomic Monograph Supplements, 1(2), 13-32.

