
Pen-and-ink textures for real-time rendering

Jennifer Fung
New Media Innovation Centre

Oleg Veryovka
Electronic Arts

Abstract

Simulation of a pen-and-ink illustration style in a real-
time rendering system is a challenging computer graph-
ics problem. Tonal art maps (TAMs) were recently sug-
gested as a solution to this problem. Unfortunately, only
the hatching aspect of pen-and-ink media was addressed
thus far. We extend the TAM approach and enable repre-
sentation of arbitrary textures. We generate TAM images
by distributing stroke primitives according to a probabil-
ity density function. This function is derived from the in-
put image and varies depending on the TAM’s scale and
tone levels. The resulting depiction of textures approxi-
mates various styles of pen-and-ink illustrations such as
outlining, stippling, and hatching.

Key words: Non-photorealistic rendering, real-time
shading, texture mapping, filtering, animation

1 Introduction

Pen-and-ink drawing is an important and effective form
of pictorial representation [5]. It is often used for tech-
nical, architectural, and medical illustrations, most of
which are still produced manually. The problem of au-
tomatically generating pen-and-ink style images from 3D
models was first addressed by Winkenbach and Salesin
[17] in 1994 and was further investigated by numerous
non-photorealistic rendering research [4].

The focus of our work is approximation of the pen-
and-ink rendering style in a real-time interactive system.
Previous real-time NPR techniques can be grouped into
two categories: image-space methods and object-space
methods.

Image-space methods render a 3D model and attempt
to approximate the resulting image by strategically plac-
ing drawing primitives on the screen. Secord et al.
[12] developed a real-time algorithm that places drawing
primitives according to a probability density function de-
rived from the rendered image. While image-space tech-
niques are able to approximate pen-and-ink styles well,
the resulting animations suffer from the lack of frame-
to-frame coherence, i.e. dots and lines do not “stick” to
object surfaces and may “swim around” as the object’s
shading and scale changes.

Object-space methods achieve better frame coherence

and often higher frame rates and are the more common
choice for interactive applications. In object-space meth-
ods, the drawing primitives are attached directly to the
surface of the 3D geometry. Many object-space algo-
rithms model drawing primitives with specialized ge-
ometry such as particle systems [10, 6, 2] or graftals
[7, 9]. Instead of using additional geometry, texture-
based methods control local shading using textures [11,
15, 8, 16]. Texture approaches are often more efficient
than geometry-based methods and result in rendering at
higher frame rates.

Our work is based on a texture-based method that uses
tonal art maps (TAMs) introduced by Praun et al. [11].
This previous research addressed the problem of real-
time hatching by pre-rendering lines onto mipmapped
textures of various grayscale tones. We extend the tech-
nique introduced by Praun et al. [11] and introduce an
algorithm that creates TAMs from a texture image.

In the following section, we review the relevant pre-
vious research and discuss its limitations. Further, we
present an overview of our algorithm for distributing
stroke primitives according to a probability function. We
control the display of texture features at multiple reso-
lutions by changing the probability functions computed
from the input image. We describe how our technique
differentiates between hatching and outlining strokes and
chooses their direction and scale. In the conclusion, we
present our results and discuss advantages and limitations
of our approach.

2 Previous related work

Praun et al. [11] developed TAMs for real-time hatching.
Hatching lines are pre-rendered onto textures of various
resolutions and tones. The density of the hatching lines
controls the overall grayscale tone of the texture. Shad-
ing is produced by blending textures of various tones in
a real-time rendering system. The algorithm maintains
frame-to-frame coherence using a “stroke nesting prop-
erty”, where strokes on a TAM image appear in all the
darker images of the same resolution and in the higher
resolution images of the same tone. This algorithm only
addresses the issue of hatching and is not suitable for the
depiction of subtle surface properties such as shape and
texture.



The stylistic depiction of textures is a challenging artis-
tic problem [5]. In computer graphics, this problem was
first addressed by Winkenbach and Salesin [17], who
suggested the use of pre-rendered textures for pen-and-
ink renderings. A similar technique was developed by
Freudenberg et al. [3] for a real-time system. Their work
relies on textures created by an artist and does not present
a solution for automatic texture generation.

The automatic stylistic depiction of still images is well
investigated [4, 14]. Most previous research deals with
placing drawing primitives at a single resolution and tone.
Thus, these previous algorithms are not able to produce
multiple textures that satisfy the nesting properties of the
TAMs.

The importance-driven halftoning of Streit and
Buchanan [13] is a multi-resolution technique that dis-
tributes illustration primitives according to an abstract
importance function. Like previous image-based algo-
rithms, it is targeted for the production of a single image
and does not control the placement of primitives at mul-
tiple resolutions. In addition, the algorithm is suitable for
distributing dots and short lines only, and the resulting
images often suffer from grid-like artifacts.

Veryovka’s threshold texturing technique [15] ad-
dresses the problem of texture rendering at multiple res-
olutions and tones, but is suitable mainly for a cartoon
style rendering. It can approximate hatching effects, but
it is based on pixel level operations and is not able to con-
trol multi-pixel primitives such as strokes.

In this work, we present an automatic algorithm that
extends previous image-based NPR algorithms by ac-
counting for the distribution of strokes at multible res-
olutions and tones simultaneously.

3 Our technique

3.1 Overview

Our algorithm for the automatic generation of TAMs
from an input image is based on the distribution of strokes
according to a probability function. We follow the ap-
proach introduced by Secord et al. [12] and extend their
technique to handle multiple resolutions and tone levels.
We compute distribution functions at multiple resolutions
according to some importance functions. The importance
functions may differ from the input image, as suggested
by Streit and Buchanan [13]. We discuss the creation of
the importance functions in the following section.

The target tone of each TAM level is computed in a
pre-processing step. We fill the TAM images with a se-
ries of randomly distributed pen strokes using the Hal-
ton sequence as in Secord et al. [12]. The direction and
length of each stroke is computed dynamically using lo-
cal image features. Thus, the number of necessary draw-

ing primitives depends on the image features and cannot
be pre-computed. We match the target tone by period-
ically checking if the average intensity of the image is
achieved by the already rendered strokes.

We generate images in a coarse-to-fine, light-to-dark
order, similar to Praun et al. [11]. This ensures that the
nesting property of the TAM is satisfied.

3.2 Multi-resolution importance functions
When given enough visual information, people can in-
fer what the rest of an image looks like. It is sometimes
preferable to leave certain details to the imagination, be-
cause it personalizes the experience and the human imag-
ination is capable of inventing sights that we can’t render
on a computer. Thus, the challenge is to provide a suffi-
cient amount of visual information at each rendering level
and to emphasize the important features.

The features we want to outline differ depending on
the tone and resolution of the TAM image. We may have
enough area in the finer images to highlight minor fea-
tures effectively, but minor features will just obscure the
main features in the coarse images. In the lighter images,
we only have a few strokes. We need all these strokes
to outline the main shapes and make the texture recog-
nizable. We have plenty of strokes in the darker tones,
so we can use the strokes to highlight additional features,
creating a more complete image.

Figure 1: The strokes in the lighter images are used to
outline the elephant. Additional strokes in the darker
TAMs are used to add eye and ear detail, and shade in the
background. Image target intensities from left to right are
0.125, 0.375, 0.625, and 0.875.

We control the features depicted at the current resolu-
tion and tone with an importance function. This func-
tion identifies the presence and strength of features over
an image region. Importance functions were introduced
by Streit and Buchanan [13] and are derived from the
input image. We generate a tone importance function
T`(x, y) and a variance importance functionV`(x, y) for
each mipmap level̀ and combine them according to a
user defined weightω. Stronger importance functions
may overwhelm the others. We apply a histogram equal-
ization to each function beforehand, so all the functions
have a roughly equal distribution.

Our fine level tone functionT0 is the relative inten-



sity of the base image. We recursively calculateT` at the
smaller mipmap levels by averaging the points inT`−1,
as in Streit and Buchanan [13].

The variance function used by Streit and Buchanan
[13] measures the local variance of the image at each
pixel. This function is too sensitive to noise. Smoothing
the noise using a Gaussian filter may result in the loss of
some poorly-defined features. The Canny edge detector
[1] is not as sensitive to noise and does not blur the edges
together, unlike other edge detectors, but does not detect
Y-junctions well. We compute our variance function us-
ing a method similar to the Canny edge detector, but com-
pensate for the loss of Y-junctions by avoiding threshold-
ing points with a gradient magnitude that are close, both
distance-wise and value-wise, to a local maximum.

A high ω is best for images with poorly defined fea-
tures or images with a low range of intensity values. A
low ω is best for images with little noise and well defined
features. TAMs generated with a highω tend to be more
“cartoon-like”, and TAMs with a lowω are more realistic.

Figure 2: The top stippled images were generated with
ω = 0 and the bottom images were generated with ω = 1.
Image target intensities from left to right are 0.1, 0.3, 0.5,
0.7, and 0.9.

Our coarse distribution functions favour areas with
sharp edges, so we define a new level-based variance
weight

ω′(`) = 1− (1− ω) · levels− `
levels

, (1)

where` = 0 is the finest mipmap level.
Our lighter and coarser TAM images favour areas with

stronger features. We calculate the final importance func-
tion

D`,t(x, y) = (1− ω′) · T`(x, y) + ω′ · V`, (2)

wheret is the target tone (t = 0 is white.)
Our darker TAM images favour hatches over outlines,

so we scale downD`,t(x, y) by

s(t) = 1− t. (3)

Figure 3: The importance function with ω = 0.5 at dif-
ferent tones and resolutions. The lighter and coarser im-
portance functions favour strong features. The coarser
importance functions favour strong edges. Image tones
from left to right are 0.1, 0.5, 0.9.

Figure 4: The probability of a stroke becoming a hatching
stroke increases as the tone darkens. Image target inten-
sities from left to right are 0.3, 0.5, and 0.7.

3.3 Drawing outlines and hatches

Pen-and-ink artists use outlines to define shapes and sug-
gest texture features [5]. Outlines can occur almost any-
where, but generally trace paths between points with a
similar value.

We draw outlines perpendicular to the direction of the
gradient of the input image. We stop drawing the out-
line if the difference in intensity between two adjacent
pixels is greater than a threshold, similar to Streit’s and
Buchanan’s importance-driven halftoning algorithm [13].

Hatches are individual lines laid “side by side, or
crossed in series” [5]. Hatching does not convey shape,
texture, or any other illustrative information except for
tone. Hatches occur in dark areas or areas with almost
constant tone.

We draw hatches in two directions,θ0 and θ1. The
two angles should be almost, but not quite, perpendicu-
lar to one another, or else they will look forced. We start
with the hatches all in the same direction, change direc-
tion when the tone becomes darker than a threshold tone



τ0, and choose a hatching direction randomly when the
tone becomes darker than another threshold toneτ1.

Figure 5: Hatching strokes look more natural when θ0

and θ1 are not perpendicular. Top: θ0 = 0 and θ1 = 90.
Bottom: θ0 = 50 and θ1 = 120. These images were
generated with τ0 = 0.45 and τ1 = 0.65. Image target
tones from left to right are 0.3, 0.5, and 0.7

If the gradient direction at the start of the line is uncer-
tain, i.e. the gradient magnitude is less than some thresh-
old, the stroke is drawn as a hatch. Otherwise, the stroke
is drawn as an outline.

We must be able to seamlessly tile the TAM images.
We assume the base image can be tiled in a seamless man-
ner, so when a stroke being drawn falls off one side of the
image, it is continued at the corresponding position on
the opposite side.

Using the light-to-dark, coarse-to-fine order of draw-
ing TAM images has additional benefits when using out-
lines and hatches. Copying the image in light-to-dark or-
der ensures the darker TAM images retain some of the
detail present in the lighter images. Carefully placing
strokes on coarse images and copying them onto the finer
images ensures there are always a few well-placed strokes
on the finer resolution images.

3.4 Scaling pen strokes
Praun et al. [11] redraw straight strokes on the higher
resolution images by magnifying only the length of the
stroke, because people expect strokes to have the same
width in pixel space, and the same length in object space.

We cannot apply this same technique to strokes such
as outlines that are not straight, because the magnified
stroke will look more like a series of line segments in-
stead of a smooth and natural pen stroke. If we want to
draw a stroke on levels0 to `, we first draw the outline on
the finest level, basing the direction of the outline on the

importance function at level̀, then we shrink the stroke
to fit on coarser levels by scaling it down lengthwise.

Figure 6: Top: the stroke is drawn on the coarsest image
and scaled to fit the finer images. Bottom: the stroke is
drawn on the finest image and scaled to fit the coarser
images.

4 Conclusion.

In this paper, we introduced a method for representing
surface textures in a pen-and-ink style suitable for a real-
time rendering. We used the previously developed tonal
art maps approach and pre-rendered simulated pen-and-
ink representations of the input image into textures of var-
ious resolutions and tonal intensities. Drawing primitives
are distributed using a probabilistic algorithm according
to the importance function derived from the input tex-
ture. We guarantee frame-to-frame coherence by copying
drawing primitives from the light tonal textures into dark
ones. We simulate such pen-and-ink techniques as outlin-
ing, texture detailing, hatching, and stippling by varying
importance function, the length of strokes and their direc-
tions.

The main advantage of our technique over the previous
methods is the use of multi-scale importance functions
that control the depiction of features at various tones and
resolutions.

The resulting real-time rendering effectively depicts
surface textures and shading at various resolutions and
illumination levels. However, the TAM-based approach
to simulation of pen-and-ink style has a number of limi-
tations. Due to texture blending, drawing primitives may
appear blurred at intermediate mip-map levels. Also, the
primitives appear “stuck”’ to object surfaces, thus ap-
proximation of loose pen drawing styles is difficult.



Figure 7: A sphere with a stippled rock TAM at different
resolutions.

Figure 8: A sphere with hatched shingles TAM at differ-
ent light settings.



Figure 9: Top: A rock TAM generated with ω = 0.5.
Bottom: A shingle TAM generated with ω = 0.25. Image
target intensities from left to right are 0.1, 0.5, and 0.9.

References

[1] John F. Canny. A computational approach to edge
detection. InIEEE Transactions on Pattern Analysis
and Machine Intelligence, pages 679–698, 1986.

[2] Derek Cornish, Andrea Rowan, and David Lue-
bke. View-dependent particles for interactive non-
photorealistic rendering. InGraphics Interface
2001, pages 151–158, 2001.

[3] Bert Freudenberg, Maic Masuch, and Thomas
Strothotte. Real-time halftoning: A primitive for
non-photorealistic shading. InThirteenth Euro-
graphics Workshop on Rendering. Springer-Verlag
Wien New York, 2002.

[4] Bruce Gooch and Amy Ashurst Gooch.Non-
Photorealistic Rendering. A K Peters Ltd, 2001.

[5] Arthur L. Guptill. Rendering in Pen and Ink.
Watson-Guptill Publications, New York, 1977.

[6] Matthew Kaplan, Bruce Gooch, and Elaine Cohen.
Interactive artistic rendering. InProceedings of
NPAR 2000, pages 67–74. ACM Press, 2000.

[7] Michael A. Kowalski, Lee Markosian, J. D.
Northrup, Lubomir Bourdev, Ronen Barzel, Lor-
ing S. Holden, and John Hughes. Art-based ren-
dering of fur, grass, and trees. InProceedings of
SIGGRAPH 1999, pages 433–438. Addison Wesley
Longman, 1999.

[8] Aditi Majumder and M. Gopi. Hardware-
accelerated real time charcoal rendering. InPro-
ceedings of NPAR 2002, pages 59–66. ACM Press,
2002.

[9] Lee Markosian, Barbara J. Meier, Michael A.
Kowalski, Loring S. Holden, J.D. Northrup, and
John F. Hughes. Art-based rendering with contin-
uous levels of detail. InProceedings of NPAR 2000,
pages 59–66. ACM Press, 2000.

[10] Barbara J. Meier. Painterly rendering for anima-
tion. In Proceedings of SIGGRAPH 1996, pages
477–484. ACM Press, 1996.

[11] Emil Praun, Hugues Hoppe, Matthew Webb, and
Adam Finkelstein. Real-time hatching. InProceed-
ings of SIGGRAPH 2001, pages 579–584. ACM
Press, 2001.

[12] Adrian Secord, Wolfgang Heidrich, and Lisa Streit.
Fast primitive distribution for illustration. InThir-
teenth Eurographics Workshop on Rendering, pages
215–226. Springer-Verlag Wien New York, 2002.

[13] L. M. Streit and J. Buchanan. Importance driven
halftoning. InProceedings of Eurographics 1998,
pages 207–217, 1998.

[14] Thomas Strothotte and Stefan Schlechtweg.Non-
Photorealistic Computer Graphics: Modeling, Ren-
dering, and Animation. Morgan Kaufmann Publish-
ers, 2002.

[15] Oleg Veryovka. Animation with threshold textures.
In Graphics Interface 2002, pages 9–16, 2002.

[16] Matthew Webb, Emil Praun, Adam Finkelstein, and
Hugues Hoppe. Fine tone control in hardware
hatching. InProceedings of NPAR 2002, pages 53–
58. ACM Press, 2002.

[17] Georges Winkenbach and David H. Salesin.
Computer-generated pen-and-ink illustration. In
Proceedings of SIGGRAPH 1994, pages 91–100.
ACM Press, 1994.


	Introduction
	Previous related work
	Our technique
	Overview
	Multi-resolution importance functions
	Drawing outlines and hatches


