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Abstract samples are then added to the newly created subregions.
Ray tracing techniques need supersampling to redut¥e can also trade aliasing for noise ussigchastiaay

aliasing and/or noise in the final image. Since not all thracing, as the human visual system is more sensitive to
pixels in the image require the same number of rays, sstructured aliasing artifacts than to noise [[17, 9].
persampling can be implemented by adaptive subdivision In this paper we introduce a new refinement scheme for
of the sampling region, resulting in a refinement tree. ladaptive sampling, complementary to the one defined in
this paper we present a theoretically sound adaptive safi#€l], with the important feature that it is based on the re-
pling method based on entropy, the classical measure diirsive expression of the Shannon entropy, i.e. its group-
information. Our algorithm is orthogonal to the methodng property [5]. The Shannon entropy is the classical
used for sampling the pixel or for obtaining the radianceneasure oinformation[?2], where information is simply
of the hitpoint in the scene. Results will be shown fothe outcome of a selection from among a finite number of
our implementation within the context of stochastic raypossibilities. In our context, entropy is interpreted as a
tracing and path tracing. We demonstrate that our apaeasure of the degree of homogeneity of a pixel or sub-
proach compares well to the ones obtained by using clagixel. The idea behind the new scheme is to obtain suf-
sic strategies based on contrast and variance. ficient information (homogeneity) in the refinement tree
which results from the recursive decomposition of a pixel
into subpixels.

One of the main features of this approach is that it uses
a sound theoretical framework, naméhjormation the-

N . . ) ory, to obtain the refinement process. We will show that
Ray tracing [28] is a point-sampling-based technique fof, recursive decomposition of entropy provides us with

image synthesis. Rays are traced from the eye througha¢ral method to deal with a refinement tree. Our re-
a pixel to _sampl_e radiance at the hitpoint in the scengnament scheme, valid for any pixel sampling and ray
where radiance is usually computed by a random walt,cing method, will be applied to stochastic ray tracing

method [75]. Since a finite set of samples is used, some gfq compared with a contrast-based technique 21115, 9]
the information in the scene is lost. Thus, aliasing errorgnq g variance-based criterigil[13, 19, 26].

are unavoidable8]. i .. The organization of this paper is as follows: in section
These errors can be reduced using extra sampling e present some previous work, in section 3 we intro-

regions where the sample values vary most. In order {§,ce an adaptive sampling algorithm based on entropy, in
obtain reliable data, the edge of an object, the contoWs tion 4 we discuss our results, comparing them with the

of a shadow, or a high illumination gradient area, woulg)nes ghtained by classic measures, and, finally, in section
need a more intensive treatment than a region with almogt, ¢ present our conclusions

uniform illumination. This method of sampling is called
adaptive sampling8, M7]: A pixel is first sampled at a 2 Previous Work

relatively low density. From the initial sample values, 4 this section we present previous work on the areas

r?.flne_ment c.rlt((ajnon IS tuslf_d tlcl) deﬁ'?ﬁ Wheth(fr more saraf supersampling refinement criteria, information theory
pling is required or not. Finally, all the samples are used | entropy-based contrast measures.

to obtain the final pixel colour valuesj15].
Adaptive sampling can be implemented by adaptivé.1 Supersampling Refinement Criteria

subdivision of the sampling region. This subdivisionThree principal subproblems make up the process of ob-

generally corresponds to a binary tree or a quadtraaining a good quality image: efficient sample generation,

[28, 10, [1¥]. Subdivision is triggered by the result ofadaptive control of the sampling rate, and filtering for im-

a refinement test based on a given error measure. Nage reconstruction[l7]. Many approaches are to be found

Key words: Adaptive sampling, antialiasing, contrast
entropy, pixel colour, ray tracing, stochastic sampling.

1 Introduction



to deal with them: showed that these methods are biased and proposed a
. . . . simple correction schem&a]12].
L g'féir:n;rgzﬁl Stﬁ?mp!'r?%g:séhs:; rﬁ:’(e I_aezn 'Sgg Refinement criteria have also recently been applied in
u d',k gl' E‘. JLIr 141 hi Pl hJ' g I’ ] I'I the image-based rendering field to weight pixel colour
son ISK sampling I. M ], hierarc cal SAMPING, - v construction purposes 18] and adaptive sampling
[I0], complete stratification at each refinement leve

[21]. importance sampling 23], and quasi-Monte trategies6l17]. Also Bolin and Meyer [1] have devel-
C ‘I, P ina Lt 6p g-i=2l, q oped a perceptually-based approach using statistical and
arlo sampling [11;16]. vision models.

2. Diverse refinement criteria for adaptive samplingp 2 |nformation Theory

based on colour intensities and/or scene geometihe shannon entropyf (X) of a discrete random vari-
can be found to control the sampling rate: DBPP 446 X with values in the sef — {21,...,2,} is de-
and Wold [8] present an error estimator based 0fqq [22] as

the RMS signal to noise ratio and also consider its

variance as a function of the number of samples; "

Mitchell [T5] proposes a contrastl [2] based on the H(X) = - Zpi log pi, @)
characteristics of the human eye; Lee et &l [13], i=1

Purgathofer([19], and Tamstorf and Jensen [26] dg§ynereyn, — |X|, pi = Pr[X = ;] fori € {1...n}, the
velop different methods based on the variance of thgyarithm is taken in base 2 (in this case, entropy is ex-
samples with their respective confidence intervals. yressed in bits), and also the convention thiaiz 0 = 0

3. Samples are filtered to produce the final pixel valiS Used by continuity. As-log p; represents thiaforma-

ues. Different filter shapes have been used in imadiPn associated with the resuit;, the entropy gives the
reconstruction: box filter, triangular filter, GaussiarfV€'age information aincertaintyof a random variable.
filter, multi-stage filter, etc. (se@[9]). Some relevant properties|22, 5] of the entropy are:

For the purpose of this paper we review three com- o 0 < H(X) < logn.
monly used refinement criteria: contrast, depth differ-
ence, and variance of the samples.

Mitchell, in [T5], uses a contrast measure [2] for each o Grouping:
RGB channel defined by

o If we equalize the probabilities, entropy increases.

H(pla"'apn) :H(pl +p2,p3, ... apn)

I — I
¢ = hax  Tmin (1) p1 P2
I, Tnin + (1 +p2)H ; -
max T {min ( ! 2) (pl +p2 p1+p2
wherel,,i, andl,,.. are, respectively, the minimum and (4)

maximum light intensities of the channel. Supersampling
is done if any contrast is higher than a given thresholdt is worth mentioning the case = 2, with p; = p and
Mitchell proposes RGB threshold values (0.4, 0.3 anges = 1 — p. The entropy of this probability distribution
0.6, respectively) based on the relative sensitivity of this calledbinary entropy(Figure[1) and is given by
visual system.
Simmons and &quin [24], within an interactive ren- H(X) = —plogp—(1—p)log(1—p).  (5)
dering context, use eolour priority value based on con-
trast and perceptiorifl5s] 9] combined with a geometric
measure for refinement, ttdepth differencegiven by 2.3 Entropy-based Contrast Measures
1-— k whered,.x andd,;, represent maximum and In this section we summarize the previous work on
minimum distance. entropy-based contrast measures done by Rigau et al.
The basic idea of variance-based methads [T3[-19, 2E10].
is to continue sampling until the confidence level or prob- Thepixel channel entropwas defined by
ability that the true valud is within a given tolerancée
of the estimate valug is 1 — o ak
L H® == p;logpi, (6)
PrilLe (L—-d,L+d)]=1-a. 2) i=1

Ci

Mitchell considers that variance is a poor measure of vivherep; = IO represents the channel colour frac-
sual perception of local variationJ15]. Kirk and Arvo tion of ray: with respect to the sum of the colours of the




pixel geometric homogeneity. Analogous b (7), tieel

0.8 geometric contras? was defined by
0.6 HY
CV=1— —— (20)
T )
0.4 log Ny
- which represents the geometric inhomogeneity of a pixel.
' It is also possible to obtain alternative colour and geo-
0 metric contrast measures by substituting the pixel entropy
0.2 0.4 0.6 0.8 1 . . . .
p for the binary pixel entropy, which is computed by only

considering the maximum and minimum values captured
Figure 1: Binary entropy corresponding to the probability by the pixel (in formula[(5), the probability distribution
distribution {p,1 — p} of random variable X . The maxi- ~Would be{ TR A’ Wi max 1.
mum value, H(X) = 1, is obtained when p = % and the A combination of colour and geometric contrasts was
minimum value, H(X) =0, whenp =0 orp = 1. considered. This combination enables the influence of
both measures to be graduated with a coefficiebe-
tween 0 and 1:

same channel of all the rays passing through the pixel, C=40C+ (1-9)CY. (112)

and N, is the number of rays traversing the pixel. Pixel ) ] )

channel entropy was interpreted as the channel colour he- Adaptive Sampling Algorithm-based on Entropy

mogeneity of the rays passing through the pixel. It cain this paper, our attention focuses on obtaining an adap-

also be considered as a measure of the pixel colour quéite algorithm centred mainly on the refinement phase.

ity. The approach to be used in refinement will be to evaluate
In order to give a pixel contrast measure between 0 aribie similarity or homogeneity of thiaformationprovided

1, the pixel channel entropy is normalized witlg V,. by the set of samples in a given region. If the information

Thus, thepixel channel contrasivas defined by obtained from this region is heterogeneous we will refine
it until each subregion is uniform. This process is a natu-
0c—1_ He¢ ) rally recursive process, giving rise to a refinement tree.
log N 3.1 Recursive Entropy Tree

and represents the channel colanhomogeneityof a  Generalizing the grouping property] (4), the entropy
pixel. When considering all the colour channels,f, ¢an be recursively decomposed in the following way:

the globalpixel colour contrasf?0] was given by Let X be a discrete random variable over the set
X = {z1,...,z,} with probability distributionp =
Z%\} w0 C°C: {p1,...,pn} Wherep; = Pr[X = z;]. Let us con-
Ce = ==, (8) sider a partition of the set in m-disjoint setsG =
Y1 wi {G1,...,Gn} where|G;| = n;. Let us associate the

where the channel contrasts are weighted by percepttfio{ crete random variabl¥ to G with probability dis-

coefficients; andz; = -+ 2% ¢;, the colour average tribution f = {a,. ~-an} whe(;_e 4G = Zé]:lpjk .
of channel of all the pixel rays (channémnportance. (Jt];l }6/ t{ ""r’]"})’ an_tha mta)wb.l_ltsc(rje_t(te.tr)a? om Xa“'
Similar to (), thepixel geometric entropy/ 9 was de- able; to each seg; with probability distributionr; =

fined by {rji.--.,7j,, } wherer;, = %= Then
N m m
9 — __ . .
Y = Zpllogp“ ©) H(X)=) ¢H(Y;) =) glogg. (12)
i=1 j=1 j=1
cos 6; /d? . . .
where nowp; = ﬁxw represents the geometric This formula can be written a& (X) = H;, + Hou

fraction of ray: with respect to the sum of the geometricwhere H;,, = >>7", ¢;H(Y;) and Hyy = H(Y) =
factors of all the rays traversing a pixel. The geometrie- Z;"’:l g; log q; represent, respectively, the hidden in-
information of each ray is given by the andlewhich  formation (pending to be discovered) and the information
the normal forms at the hitpoint with the ray, and also bylready acquired in the descent of the tree (see Figure 2).
the distancel; between this point and the eye. Similarto In our case, formula[{12) can also be interpreted (for

the case of colour, the geometric entropy represents tloae colour channef](6)) in the following way:



give us sufficient colour homogeneity on that pixel, re-
finement is not made, and the colour reconstruction of
this pixel is done. When it is not high enough, this pixel
is subdivided into regions and we proceed in the same
way for each region (subpixel).

This recursive process defines a tree with two well-
separated phases for a pixel: refinement (tree descent)
and colour computation (tree ascent). The descent in the
refinement tree can be interpreted as a progressive infor-
mation gain. The information acquired at each level is
added together so that, at the end of the refinement pro-
cess, the total information from the tree is the sum of the
information obtained over all the branches (see formula

Figure 2: Grouping property of entropy. The entropy of (C1)).
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V12 112 1/6 15 3/10

probability distributions of (@ is H(g, 15, é, 113, Before introducing the algorithm we will give the def-
of ® is H (%, 1%, )+ %H(é, Ly 4 LH(Z,2), and of  initions of the data used in it. Concerning the tree data
@isH(, L D +3(HGL H+3H(L,2))+1H(2,2). structure, the root (level = 0) is the image, leveh = 1
Accordingly to ([2), all have the same value: H(a) = corresponds to theV, pixels of the image, and levels
H(b) = H(c) = 2.445. n > 1 to the subpixels. Each new-node (i.e., node

of n > 0 level), is sampledV; times and it can poten-
tially be subdivided inV,. regions or subpixels of equal
) size (N, € N,NT). Other data referred to in the refine-
e H(X) represents the entropy of the whole image. ment phase are described in Tale 1. To compute the final
colour of a pixel, we follow a path through the tree (see
Figure[8). In the analysis below, we focus our attention

e Probabilityg; is the colour of pixelj divided by the ©N the tree-patlk of length V (see Tablg]1) going from

sum of the colours of all pixels. It can be consideredixel ko to subpixelk 1. In this pathp,, represents the
as the “importance” of pixeJ. probability of the tree-branch at level and g,, the im-

portanceof the n-node. In our algorithm, this quantity
The decomposition of entropi{12) can be recursively exappears in a natural way due to recursive decomposition
tended to the subpixels. This interpretation can also b#f the entropy (seq{ll2) and Figuiigs 2 @hd 3). The value

e H(Y;) represents the entropy of each root pixel.

applied to geometric entropfj (9). of importance is given by

In our approach, probabilities are obtained by stochas-
tic sampling. From the definition of entropy, we can 1, n =20,
see that when the nu_mt_)e_r of samples tends to inf_inity, = po-ppor = % H?:_ll pe, n>0.
entropy also goes to infinity. In fact, we can consider il Tt

o X P (13)

that the original continuous scene contains infinite infor: .

: . . . . For our purposesy, needs not to be normalized, thus
mation. The following sampling algorithm wittapture . S _

. . . . we omit normalization constant’, ., ¢ ; and we take
or extractmore information from the regions with more B 1 1€fo 7
sample variation. dn = Cok, | [,—; pe- The computation of,, can then be
. simplified to (see proof in Appendix):
3.2 Algorithm
In this section we show how a practical adaptive sampling _ Cn
algorithm can be obtained from the entropy tree. For the n = NV
sake of simplicity, in the following analysis we only con-
sider the colour information of a channel, although the Now we proceed to explain the algorithm. In the
final algorithm will take the combination of colour and descent phase we sample amode and compute the
geometric contrast§ {[L1) into account, asiin [24]. contrast using expressiofi {11). If (8) we must substi-
A general description of our algorithm is as follows:tute the channel importangeby ¢, and we take RGB

On the image plane we sample each pixel to capture tierceptual coefficients [27}), = 0.213, w, = 0.715
colour of hitpoints and thus evaluate the information conandw;, = 0.072 which capture the sensitivity of human
tent (entropy) from the colour probability distribution. If colour perception.
the information of a pixel is high enough, i.e. the rays Thus, for eacm-node, the colour contradi (8) converts

(14)



| name| description | relations |
R, | Setofregions of an-node |Ro| = Np, Vn>o|Rn| = Ny
k Path:k,, is the region taken at level k= (ko,k1,...,kn—2,kn—1), N > 0,Vyenkn € Rp,
S, | Setof samples of a-node [So| = NsNp, Vi>0|Sn| = N
Sn,i | Setof samples of a-node region € R, [Sn.il = %, n = UieRn Shni
¢(s) | Colour obtained with sample RGBvalue
¢, | Average colour in the-node Cp = ﬁ > ses, (8)
Cn: | Average colour in the-node region € R, Cni = ISn;l Dses,. (8),Cn = ‘R—ln‘ > icr, Cnii
pn | Probability of regionk,, of n-node Pn = ngeskc(z()” - ZZR:E”
¢n | Probability of then-node 4n = [1)=0 Pt

Table 1: Description of the data in the refinement phase. The constants are: N, the number of pixels in the image,
N,., the number of equal area regions of an n-node, and Ny, the number of samples cast in an n-node (N, € N, N¥).

into N following methods:
cen Zzwicf"qni (15) a) Classic contrast A recursive adaptive sampling
i=1 scheme based on contrast by chanrel (1) (with
and the colour and geometric combinatipn (11) will be thresholds proportional to the visual system)

weighted by their respective channel colour average
[9, 24]. The maximum recursive level has been lim-
ited to 4 (Figurd]=).

Cp = 6C + (1 — §)C9. (16)

Note that this expression could be calculated from the
respective binary versions of colour and geometric co
trasts (see sectign 2.3).

In the algorithm, we subdivide when the contrast for
inhomogeneity ofi-node is greater than a given thresh-
old (C,, > €). Thus, the ascent phase begins when the test
fails (C,, < €). This happens because either the contragy variance-based contrasStatistical approach(2)-]26]
(which represents the colour inhomogeneity) or the im- (Figure[bc).
portance ¢, — 0 for growingn) are low. In the colour
reconstruction process, eaginode in the path provides d) Entropy-based contrastOur approach[{17) taking

rB) Importance-weighted contrasThe same as ia but
each channel contrast is weighted with the respec-
tive importanceq (I4), as in our approach (Fig-
ure[®b).

its colour estimatiort,, computed fromS,, where each only colour contrasty = 1 in (L8) (Figure[pd).
colourc(s) is filtered. .
The final colour of am-node is given by All methods haye been |mplen_1e_nted on fRender-
Park [3] software jwww.renderpark.be ). Observe
Cns if C,, <e, that our approach can be easily implemented on any stan-
Cn = Sich Cni Otherwise, (17) " dard hierarchical algorithm using importangg (14) and the

new refinement criterior {IL6), with negligible additional
wherec, ; is the final colour ofi-region of then-node. cost.
Finally, we getc; for the colour of the pixels (or equiv- In a, b, andd, the number of subdivision,., is4 and
alently ¢, in the path considered). An example of the8 rays, N, were cast in a stratified way at eaginode
process is shown in Figufe 3. (pixel or subpixel) to compute the contrast measures for

Observe that importance sampling is naturally intethe refinement decision. These rays were re-used at the
grated in the algorithm. Following importance samplingnext levels in the tree. In, gropus of 8 rays were added
criterion a function should be sampled proportionally tdn a stratified way until meeting the condition of the crite-
its value which is what we get with our adaptive descention (3) witha = 0.1 andd = 0.025. An implementation

of classic path-tracing with next event estimator [3] was

4 Empirical Results used to compute all images. The parameters were tuned
In Figure[® we present comparative results with differengo that all four test images were obtained with a similar
techniques for the test scene (Figre 4). We compare theerage number of rays per pixel (60) and computation


www.renderpark.be

Figure 4: Reference image used in the test in Figure §
Figure 3: A tree-path k = (ko, k1, k2) of length N = 3. with 1024 rays per pixel.
The number of regions of an n-node is N, = 4. We show
the computation of the kq-pixel colour: ¢y, = c; from
the refinement (red) and reconstruction (blue) phases. In Figure[®a we show another scene obtained with
The probabilities p, and importances g, (Table [) are  our approach using an average of 200 rays per pixel and
computed in the refinement phase to evaluate the entropy  § = (0.95 (I8). Observe, in Figurg B, how well the sam-
contrast ([§). pling map works out both the geometric and colour de-
tails, as in the shadow contours on the walls.

5 Conclusions

cost. A constant box filter was used in the reconstruction ) ) )
phase for all the methods. We have presented a new adaptive sampling algorithm for

L ) . . ray tracing based on the recursive decomposition of the
The resulting images are shown in coluimaf Figure[b y J P

. 4 . . . entropy of a pixel, computed from the sampled radiances
with close-ups in columiii. Sampling maps are givenin w0, 1y the pixel. Entropy is shown to be a natural mea-
cqlumnn (warm colours correspond to the highest SaMzyre for the criterion used in the refinement tree. Thus,
pling rate and the cold colours to the lowest). we use a sound theoretical framework (information the-

The overall aspect of the images in Figyre $hows ory) in order to establish the refinement criterion.
thaF our supersampling sch(_amg performs best. Observe,rhe results obtained show that the new refinement al-
for_mstance_, t.h e reduced noise n the shadows gast by tggrithm offer a substantial improvement over the classi-
objects. This is further checked in the close-up images i

. . al techniques, both contrast and variance-based. From
Figure[Biii . Observe a'?O the detail of the sphere ShadoY}Llis, it could be deduced that entropy captures better the
reflected on the pyramid. It must be noted that we ma

: . . r?ﬁhomogeneity of a region. Future work will address the
aged to improve the classic contrast approachgreatly

by including the i . di h ITﬁroblem of finding automatic criteria for the threshold
y Including the Importance used in our scheme (co ised in the refinement test and the analysis of the bias
pare results in Figurg & with Figure[$b). Comparison

fth moling tem ture m in Fialiié §h incurred by our algorithm, in the sense of Kirk and Arvo
ot the sampling temperature maps in ig[ine Shows a 'r[1[2] and Tamstorf and Jensén[26].
better discrimination of complex regions of the scene i
the entropy case against the classic contrast case. This
plains the better results obtained by our approach. Mor
over, the variance-based approadfigure[bc) also per- This project has been funded in part with grant num-
forms better than the classic contrast-based metlaodsbers TIC-2001-2416-C03-01 of the Ministry of Science
(Figure[ba) andb (Figure[®b). Its sampling map also and Technology (Spanish Government) and 2001-SGR-
explains why it performs better. However, it is unable t@0296 and ACI2002-29 of the Ministry of Universities,
render the reflected shadows under the mirrored pyramResearch and the Information Society (Catalan Govern-
and sphere with precision (see close-up in Fiquedi.  ment).
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(ai) Clasélc contrast aii) Samplig map ofd.i)

(a.ii) Close-up of &.i)

(b.iii) Close-up of b.i)

(c.iii) Close-up of €.i)

(d.i) Entropy-based contrast d.ii) Sampling map ofd.i) (d.iii) Close-up of €.i)

Figure 5: Results of comparisons: (a) adaptive sampling scheme based on classic contrast, (b) importance-weighted
contrast, same as in (a) but weighting with importance q ([[4), (c) variance-based method, and (d) entropy-based
method with only colour contrast (§ = 1). Column (i) shows the resulting images, (ii) the colour temperature sampling
map of (i), and (iii) a close-up region of (i). Average number of rays per pixel is 60 in all methods, with a similar
computation cost.



(b) Sampling map ofd)

Figure 6: (a) An image obtained by our approach with
200 rays per pixel on the average and 6 = 0.95. (b)
Colour temperature map of the sampling to obtain (a).

Appendix

Observe first that for a given path and> 0, the colour

Hypothesis¥o<¢<nqe = 5= Then, forn > 1

n—1
Gn = Coko sz = Qn—-1Pn—1
=1
_ Cp—1 Cn—1,kn_1
Nrn_2 ZieRn71 En—l,i
E"__lz_ Cn En—r 0
Nrn Cn—lN’r Nrn
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