
Mixed Initiative Interactive Edge Detection

Eric Neufeld, Haruna Popoola, David Callele and David Mould

Department of Computer Science
University of Saskatchewan

Abstract
Interactive edge detection is used in both graphics art
tools and in tools for building anatomical models from
serially sectioned images. To build models, contours
are traced and later triangulated. Contour tracing is
time-consuming because of the fidelity and quantity of
points needed, and expensive because of the back-
ground training required of individuals who do the trac-
ing. Here we report extensions to interactive edge de-
tection that reduce errors and effort. Our key contribu-
tion is a simple feedback interface called the leash, cur-
rently implemented as an extension to Intelligent Scis-
sors, that lets the human user ‘lead’ the edge detection
algorithm along a contour, but also helps the user to
anticipate errors and provide immediate corrective feed-
back.

Key words: Edge detection, 3d modeling, contour data,
mixed-initiative computing, intelligent graphics, Intelli-
gent Scissors

1 Introduction
Databases of serially sectioned images such as the Visi-
ble Male and Visible Female have recently generated
activity in anatomical model construction. Using tools
such as Surfdriver [13], a user, usually an anatomist,
traces contours on a series of cross-sectional images
containing a target object. The contours are then as-
sembled into 3D models used for classroom instruction
and for distance learning. The Virtual Human Embryo
Project at LSU [14] uses this process.
 The contour tracing process can be time-consuming
because a large number of points are required for an
accurate and aesthetically pleasing model. It can also be
expensive because tracing must be done by a user who
is sufficiently trained to recognize the true boundaries
in different types of image data. Moreover, the image
data may have imperfections or flaws that require the
user to interpolate. Figure 1 shows an actual set of fin-
ished contour traces.
 Edge detection techniques are an obvious part of the
solution, but there are four problems integrating exist-
ing techniques into our target domain. First, our typical
user does not want to see all of the edges in an image
(as when filters are applied to an image), but rather,
edges around a specific object. Second, the user may

want to trace a visually nonhomogeneous region. This
limits the applicability of region-finding algorithms
[6,7] that cluster similar pixels in the neighbourhood of
a point selected by the user, and then outline the region.
Third, the algorithm may be fooled by lighting varia-
tions or by image flaws. The user subsequently spends a
lot of time identifying, and then correcting the algo-
rithm’s errors, which may be more time-consuming
than simply manually tracing the boundary. Smart in-
teractive tools that work well on ideal images also fail
on images with similar variations and flaws.
 Our solution to these concerns is a mixed-initiative
[5] interactive contour-tracing tool called the leash.
Like related tools [10,15], the user first selects a seed
point on an object boundary, then drags the mouse in
the general direction of a desired contour. The tool cre-
ates the illusion of a ‘leash’ leading a new contour
around a boundary (Figure 7). When image flaws divert
the new contour from the desired direction, information
in the leash helps the user quickly correct the algorithm.
 The rest of the paper is organized as follows. The
next section reviews salient features of previous work
on interactive edge detection [10]. Section 3 also in-
cludes descriptions of some typical feature cost func-
tions and is provided to give readers unfamiliar with
edge detection a feel for how such algorithms find fea-
tures and how and why they go wrong. Later sections
describe our extensions, with attention to the operation
of the leash and its basic performance results.

2 Background
In an interactive edge detection approach like Intelli-
gent Scissors (IS) [10] or snakes [15], the user first se-
lects a seed point on the object boundary, then drags the
mouse in the general direction of some desired contour,
which generates a live-wire, a least-cost path from the
seed point to the cursor, that makes the line appear to
“snap” to the desired contour. The cost function is just
the sum of several pixel-based feature costs, reviewed
in the next section.
 Because the live-wire runs from the seed point to the
cursor, there is usually a point where the live-wire
leaves the desired contour, at which point it is necessary
to recalibrate the algorithm.

Figure 1. Contour traces, virtual human embryo

−−−
−−−
−−−

003222300
023555320
335303533
253122312352
250234023052
253122312352
335303533
023555320
003222300

Figure 2. 9x9 LoG

 (c) 9x9 Laplacian (d) 9x9 LoG

Figure 3. Effect of zero crossing detectors

(a) Bottom of hibiscus image

(b) Detail of difficult areas, using Laplacian

(c) Detail of difficult areas, using LoG

Figure 4. Detail of flower outline

Figure 5. Detail of leash showing seed points.

(a) original image (b) 3x3 Laplacian

 Recalibration entails determining a new seed point
(re-seeding), which implies recalculating all dynamic
feature costs. This recalculation is linear in the number
of image pixels, and may incur the expense of generat-
ing feature images. One simple recalibration rule is to
generate a new seed point every n pixels along the live
wire. IS also uses persistence-based heuristics to ‘cool’
pixels onto the desired contour. (For each pixel, IS re-
cords the total time that pixel has been on the live-wire
and the number of times it has been on the live-wire.
Once these values exceed some empirically determined
threshold, the pixels become part of the boundary.)
 On images of reasonable quality, IS performs
smoothly, and without user intervention. The present
paper addresses a concern that arises in domains like
anatomical model construction where image quality is
not always ideal. For example, Figure 1 shows an ex-
treme actual case. The two upper contours are arteries,
but there are few clues as to the structure in the image.
Less extreme cases arise if the image or cross-section is
damaged, incomplete, or the desired contour is partially
occluded. In short, though images with such features
could most benefit from smart tools, these tools are
fairly easily fooled by noise. Another concern is that the
recalibration trigger (pixel persistence) may be overly
sensitive to vagaries of the user’s hand movements.
 These concerns led us to reformulate interactive
edge detection as mixed-initiative computing [5],
closely related to human-centred computing [3], and to
cognitive prostheses in the AI community [4]. These
approaches see the human and the computer as a single
system comprised of two synergistic entities. In ad-
dressing the current problem domain, we spent consid-
erable time tailoring the edge-detection technologies to
our domain. In the end, we found ourselves thinking
about how best to enable the human to exploit the algo-
rithm’s strengths, while avoiding its weaknesses.
 Ultimately, this led us to the idea of the leash. The
leash is constructed by breaking the live-wire into two
differently coloured parts. The first part consists of pix-
els the algorithm believes are probably on the desired
contour. The second part, the leash, is just the remain-
ing pixels, pixels that fall below some probabilistic
threshold of being on the desired boundary. The user
has the impression of holding the leash with the mouse,
with the leash leading the new boundary along. The
leash also provides immediate feedback about where
the algorithm might go wrong, so that the user can take
appropriate action. Although the idea is simple,
segmenting the live-wire optimally is also a challenging
problem.

3 Basic Cost Functions
We review only the feature costs relevant here. The IS
[10] least cost path sums individual link costs between
adjacent pixels on the live-wire. To work well, the link
cost aggregates three features—Laplacian zero cross-
ing, gradient direction, and gradient magnitude.

3.1 Laplacian Zero Crossing
IL, the image resulting from convolving an image I with
a Laplacian kernel [1], approximates the second deriva-
tive of an image. Thus, if fZ(q) denotes the Laplacian
zero-crossing feature cost at point q, i.e.,

 fZ(q)

≠
=

=
0)(,1
0)(,0

qIif
qIif

L

L ,

then this feature penalizes sudden intensity changes.
Convolving an image with a Laplacian kernel yields
few actual zeros; in practice a zero crossing is indicated
by neighboring pixels (left/right, or up/down) of oppo-
site signs.

3.2 Gradient Direction
This feature, written fD(p,q), penalizes sharp changes in
boundary direction [2]. Adjacent boundary pixels with
similar gradient direction but with a gradient direction
(nearly) perpendicular to the link between the pixels
have a high gradient cost. For brevity, we do not de-
scribe the calculation here, but refer the reader to [10].

3.3 Gradient magnitude
The gradient magnitude G is the vector sum of Ix and Iy,
the partial derivatives of I in the x and y directions re-
spectively. A high gradient magnitude identifies a
strong edge feature [10]. In this application, it is scaled
and inverted to favour high gradients. If fG denotes the
gradient magnitude feature cost, then

22
xy IIG += ,

and

,
)max(

1 '

'

G
GfG −=

where G ' = G – min (G). Gradient magnitude costs for
horizontal and vertical neighbors of a pixel are scaled
by 1/√2 to correct for different distances between axis-
aligned and diagonal pixel neighbors.

3.4 Cost Function
Many other useful features are known, but are not rele-
vant here. The above features are scaled to the unit in-
terval. Then, the link cost C between pixels p and q is

X
X

X fwqpC ∑=),(,

where the fX range over the preceding three features and
the wX are associated empirically determined weights.

4 Interactive Edge Detection Extensions

4.1 Laplacian of Gaussian
Our first contributions were extensions to IS that be-
come important for optimizing the performance of the
leash, discussed in Section 5.

Mortensen and Barrett [10] use Laplacian filters to
find zero-crossing points that indicate edge pixels in an
image. It is known that an edge detector that reduces
noise in an image before detecting edges in the image
gives better results [12]; Marr and Hildreth’s Laplacian-
of-Gaussian (LoG) [8] is such a filter.
 Figure 2 shows a 9x9 discrete approximation of the
combination of the Laplacian operator and the Gaussian
function.
 Figure 3 shows the effect of applying (b), a 3 x 3
Laplacian, (c), a 9 x 9 Laplacian, and (d), a 9 x 9 LoG
edge detector to an image. The lower right image in
Figure 3 shows that noise is greatly reduced using a 9 x
9 LoG.
 Figure 4(a) shows the bottom of the hibiscus image
that we used to test the LoG. The regular Laplacian had
difficulty following the outline of the flower at the
points marked A and B, better seen in Figure 4(b).
 The diagrams suggest that the feature calculations in
the first image respond to noise by treating the lighter
background area as part of the petal in areas A and B.
The LoG reduces noise enough to let the feature calcu-
lation permit a noticeable detour near A. In both cases,
the mouse was at approximately the same distance from
the object boundary during tracing. (If the mouse is
close to the boundary, the two perform similarly.)

4.2 Minimizing Recalibrations
The algorithm must be recalibrated reasonably often to
accommodate gradual changes in pixel intensity and
gradient direction, but recalibrating too often is costly
because it requires recalculating a least cost path from
the new seed point to every pixel in the image. Al-
though straightforward dynamic programming solves
this reasonably quickly [10], it is expensive to do for
each new pixel. Regardless, a new seed point must be
selected at least whenever the live-wire deviates from
the desired boundary.
 Because the feature cost function is biased against
sharp turns even when the desired boundary actually
makes such a turn, we considered ways to distinguish
between genuine and spurious turns by using mouse
movements to approximately infer which turns were
legitimate. Because of the vagaries of hand motions,

basing decisions on immediate pairs of successive posi-
tions is unwise. However, increasing the distance be-
tween pairs loses information. After some experimenta-
tion, we found that using points three cursor move-
ments apart (i.e., every three MouseMove events)
worked well.
 This approach sometimes failed to detect turns and
sometimes detected false turns. We attributed this to the
method used for recording mouse motion. When a user
moves too quickly while tracing an object boundary,
some motions are not recorded, which subsequently
affects the mouse tracker, just as the persistence ap-
proach to seed generation can be fooled by the user
taking a break, or slowing down to concentrate. To
avoid limiting the user to a particular tracing speed, we
also initiated seed point generation whenever the length
of the live-wire reached some empirically determined
value. This is called fixed rate initiation.
 However, tradeoffs remain. It may be necessary to
initiate seed point generation before this specified
length is reached. For example, when a user makes a
turn, it may become necessary to drop a seed point be-
fore the specified length is reached if the algorithm de-
viates from the desired boundary (e.g., along the cat’s
ears, see Figure 8). This can be addressed by forcing the
algorithm to re-seed, for example, with a mouse click.
 Combining mouse motion and the fixed rate initia-
tion approaches results in more re-seeding events. The
fixed rate initiation approach is more reliable and also
gives the user the flexibility to choose the re-seeding
rate.

4.3 Optimal Seed Point Selection
Regardless of the mechanism that triggers re-seeding,
the next problem is selecting a new seed point on the
live-wire that maximizes the number of correct new
pixels added to the contour.
 We experimented with a range of techniques for
optimal seed point selection. It is necessary to keep in
mind that the path from the last seed point to the cursor
is a least-cost path; that is, in an important sense, it is
the feature cost function leading the live-wire astray.
Looking at the partial path onscreen, there is a usually a
visually obvious point at which it departs the partial
contour and deviates towards the cursor. Because this
point is an obvious discontinuity onscreen, it stands to
reason that it corresponds to a feature in the path cost
function. The problem then is how to find the feature
without reporting false positives.
 Because features are locations where the incre-
mental cost is very high, we avoided false positives by
modulating the incremental cost with a function such as
e-r/λ, where r is the distance from the cursor, preferring
points later in the sequence.

 We first considered gradient magnitude as a crite-
rion. Since adjacent boundary pixels should have simi-
lar gradient magnitude values, there should be a notice-
able jump in the gradient magnitude as we move to an
area that is not on the true boundary. Figure 6 shows a
sampled graph of gradient magnitudes of live-wire pix-
els. The X axis is just an ordinal numbering of the pix-
els on the live-wire.

Figure 6. Sampled graph of gradient magnitudes of
live-wire pixels

All pixels below point B belong to the object boundary.
The big jump at A indicates the point where the live-
wire breaks away from the object boundary. Therefore,
all pixels after the point C are not part of the object
boundary.
 To handle noise, we used a Gaussian filter to
smooth the gradient magnitude values before seed point
selection. A one-dimensional Gaussian distribution,
whose length depended on the number of pixels in the
current live-wire, was convolved with the gradient mag-
nitude values. This worked well on a range of noisy
images.
 As the example illustrates, a clear feature is spread
over, for example, four or five pixels, so we also used
longer-scale differences. A difference table generated
from the gradient magnitudes of the live-wire pixels
was overlaid on a Gaussian distribution with the same
length as the live-wire, and the result was stored in a
list, in effect a 1D convolution over the incremental
differences. The maximum value in the list was chosen
as the new seed point.

5 The Leash
During the course of this work, a software tool called
MixEd was built to let the experimenter conveniently
select combinations of algorithms, feature costs, and
other parameters, and then obtain real-time feedback
while actually tracing an arbitrary image. Figure 7
shows a screen capture of MixEd.

 The most effective tool developed using MixEd we
calld the leash. The leash is constructed by displaying
the live-wire in two different colours, as shown in Fig-
ure 5. The white portion of the leash starts at the most
recently selected seed point and indicates a contiguous
sequence of pixels that MixEd believes is probably on
the desired contour. The yellow portion of the leash
simply indicates the rest of the pixels on the live-wire.
The user gets the impression of a yellow leash pulling
the (white) new contour. White boxes in Figure 5 indi-
cate seed points. (Of course, the user may redefine the
colour scheme as needed.) Because the user must from
time to time decide when to drop a seed point, it is very
effective to let the point on the live-wire where the col-
our changes be the new seed point. By using any of the
methods in Section 4 for optimal seed point selection to
select the point where leash attaches to the new contour,
the user receives the additional benefit of not having to
manually place the new seed point.
 Figure 5 illustrates details of the leash operation.
After the mouse moves some distance, the new contour
is likely to ‘stray away’ from the desired boundary. At
this point, the user can move the mouse until all of the
new contour (and hence the next seed point) lies en-
tirely on the desired boundary, and then manually gen-
erate a recalibration event. Because this event does not
require the user to precisely select a new seed point (as
some commercial products do, see Section 6), the re-
calibration can be triggered by any simple mouse mo-
tion or keystroke. Manually regenerating a recalibration
event adds the white portion to the existing boundary
and drop a new seed point at the junction of the white
and yellow (leash) lines. At that time the algorithm re-
calculates feature costs and least-cost paths.
 The result is an effective and simple contour tracing
tool. The user begins by using the mouse to select a
seed point on the object boundary. When the user (acci-
dentally or otherwise) moves the mouse, the coloured
components of the live-wire shift in a manner consistent
with the cost function implementation.
 Besides providing the metaphor of leading the con-
tour, the leash also indicates to the user the direction the
live-wire might take. If the user infers from the direc-
tion of the leash that the new contour is about to head in
the wrong direction, the user can initiate recalibration
by generating an event to make the new contour (white)
part of the live-wire part of the permanent boundary. To
indicate ‘cooling’, the permanent boundary is coloured
blue, as in [10,11]. Moreover, our implementation al-
lows the user to use both automatic and manual seed
point generation, using the latter when the former fails
to correctly drop a seed point. There is a case to be
made that the leash even mitigates the concern of opti-
mal seed point calculation. Obviously, a better choice

of new seed point improves performance, but the leash
seems to greatly reduce the marginal utility of fine-
tuning that calculation, making reliance on good heuris-
tics acceptable. For instance, approximating the optimal
new seed point with the live-wire “midpoint”, that is,
the pixel midway along the length of the live-wire, still
gives the user all the necessary qualitative feedback
indicators—it is clear when and where the tool is about
to go astray, almost independently of how accurately
the seed pixel location has been calculated. (The tool
must be conservative, but the midpoint is a conservative
estimate.) When this happens, the user can move the
mouse so that the white part of the live-wire is where
the user wants it to be, and initiate a recalibration,
whether or not its length is optimal. For instance, note
that in both cases in Figure 5, part of the leash lies on
the desired boundary.
 Assuming the user can afford the cost, there is no
harm in manually dropping a seed point, nor is there
any harm in dragging the boundary until the white seg-
ment leaves the boundary. Having said this, it is clearly
the case that the better the seed point selection tech-
nique, the less frequently recalibrations will have to be
done. (MixEd also lets the user dynamically adjust the
length of the leash relative to the calculated seed point.)
 Occasions arise, particularly around smaller fea-
tures, when it is difficult, or impossible, to force the
white segment of the live-wire to lie entirely on the

Figure 8. Comparison images. Clockwise from upper
right: separating two cats, teddy, skull, cat’s head, cat’s
tail. (Cooled edges enhanced for visibility.)

Figure 7. Screen capture of MixEd

boundary. For these cases, the tool has a manual over-
ride mode where it behaves like the familiar snap tool
of drawing packages. This is also useful where the im-
age is unclear or damaged, or when the target object in
the image is occluded.
 In the worst case, the leash degrades to a familiar
fully manual tool. However, although the leash is not
fully automatic, experience thus far suggests that be-
cause the leash is interactive, the cost of postprocessing
contours to find and correct errors (as occurs with a
fully automatic tool such as the region-finding method
described earlier) can be completely eliminated. If the
total cost of producing a contour includes such post-
processing costs, it may be that the leash outperforms
automatic tools.
 Not only does the leash mitigate the marginal value
of optimal choice of a new seed point, it also makes us
revisit the marginal value of extensions to the link cost
function. It may be that a more cost-effective design, at
least in this problem domain, would be one in which the
user would quickly become adept at predicting the per-
formance of the contour detection algorithm. This
would facilitate the ability of the human to anticipate
when it will be most productive to let the algorithm do
the work and when it will be most productive to trace a
section manually. This does not change the motivation
for looking for better edge detection tools, but it
changes the way we think about how smart algorithms
should interact with users.

6 Comparison with Existing Tools
It is difficult to compare different pieces of software
when they are deployed in different environments and
with different controls. However, we found a Photo-
shop plug-in with similar functionality, called Extensis
MaskPro, and attempted a fair comparison on a range of
images. For details, on this product, see
http://www.extensis.com/maskpro/.
 MaskPro was chosen because its interface has a
look and feel similar to our own for tracing an object’s
boundary. Because its live wire is a single colour, seed
points in MaskPro must be exactly selected by the user.
In MaskPro, all points are dropped manually while
MixEd uses both automatic and manual dropping. In
MixEd, seed points are dropped manually only when
the algorithm fails to drop a seed point when necessary.
 One performance metric used to compare MixEd to
MaskPro was the number of seed points generated
while tracing the object boundary. This metric is mean-
ingful because dropping seed points takes time, and
interrupts the flow of the tracing task, and indicates
how often the tool diverged from the desired contour.
To compare MaskPro and MixEd, we used the images
shown in Figure 8. These images were chosen because

they have low contrast regions that are difficult to trace
automatically, but they contain objects that are easily
recognized. We compared MaskPro and Mixed accord-
ing to the number of seed points generated. Table 1
details the results. In the images we considered to be
the most difficult, the images involving the cats and the
skull, our tool generated fewer seed points. The various
images generated between 5-11 seed points with Mask-
Pro and between 3-8 with MixEd. On the teddy image,
our program required 4 seed points to MaskPro’s 3.
 Note that this metric understates the benefits of the
leash. In MaskPro, the user drags a live-wire of uniform
colour. If the live-wire does not fall where the user
wants, the user must think about exactly where the new
seed point should go, and then laboriously place the
new seed point on the desired contour. With the leash,
the user drags the mouse and seeds are either dropped
automatically, or dropped at the location indicated by
the leash, which is usually acceptable. The user rarely
has to exactly place the new seed point.
 Although this comparison is somewhat simplistic, it
establishes that the performance of MixEd is compara-
ble to that of a widely available commercial tool. It is
capable of dealing very well with areas of low contrast
(cat’s tail and skull), and areas where the intensity
changes significantly (cat’s face, and separating the two
cats).

Table 1. Comparison of Seed Points Generated

7 Design Methodology
There are several contributions to interface design for
mixed-initiative edge detection. First, the results of Sec-
tion 5 suggest that we might be able to modularly di-
vide interactive edge detection into three orthogonal,
but interacting components: the feature cost function,
the optimal seed point calculation and the interface.
Some component interactions may seem counterintui-
tive. For example, one might think that the best end
product would simply combine the best individual
components. However, there is a possibility that “less is
more”. (This theme also arises in the study of software
‘bloat’ by McGrenere et al.[9] That work takes the posi-
tion that much modern software contains so many fea-

Features MaskPro MixEd
Cat’s Tail 5 3
Cat’s Head 5 4
Brain 9 5
Skull 10 4
Two cats 11 8
Teddy 3 4

tures that productivity may be reduced. In the case of
feature cost functions, it may well be that overall pro-
ductivity, at least in the target domain of model con-
struction, may be enhanced by simpler, but more pre-
dictable edge detection algorithms.) A user who can
better anticipate the errors of a simpler algorithm may
ultimately be more productive than one who has to
struggle with a sophisticated but unpredictable algo-
rithm.

8 Conclusions and Future Work
 In conclusion, we believe this is an interesting ex-
ample of the notion of cognitive prosthetic as put for-
ward by Ford and Hayes [4]. They use the metaphor
that the computer amplifies the human’s abilities, the
way eyeglasses improve vision. In our system, the
computer contributes high level edge detection, and
provides feedback via the leash. The human also pro-
vides the best sensor in the world—the human eye—to
evaluate contour quality. In this domain, the software
works as a cognitive prosthetic by amplifying the
anatomist’s drawing ability.
 To date, the leash has been implemented within
MixEd, as shown in Figure 7. This implementation is
now robust and has been tested on a variety of scenes,
well beyond those shown in the comparisons with a
commercial product. The next step will be integrating it
into a production environment and getting feedback
from domain users. In part, this includes making deci-
sions about how to integrate the flexibility of a control
panel similar to that shown in Figure 7 with the conven-
ience of the leash for ordinary users. Many model
builders work alone or with a small team and may not
want to cope with controls that require even rudimen-
tary knowledge of image processing.

Acknowledgements
The research of the first author was supported by a
University of Saskatchewan Graduate Scholarship. The
research of the second author is supported by an
NSERC Discovery Grant, and the last two authors by
the University of Saskatchewan. Thanks to John Cork
for contour data from the Virtual Human Embryo and
to Scott Lozanoff for discussions about Surfdriver.
Thanks also to the referees for careful and constructive
comments.

References
[1] V. Berzins. Accuracy of Laplacian edge detector.

Computer Vision, Graphics and Image Processing,
(1984) 27:195-210.

[2] K. R. Castleman. Digital Image Processing. Pren-
tice-Hall, 1996

[3] William Clancey and Maarten Sierhuis, Human
Centered Computing, NASA Ames Research Cen-
ter, http://www.arctic-
mars.org/1999/SCIENCE/hcc.html

[4] Kenneth M. Ford and Patrick J. Hayes. Cognitive
Prostheses. Invited talk, FLAIRS-99,Orlando
(1999)

[5] E. Horvitz. Principles of Mixed-Initiative User
Interfaces. Proceedings of CHI '99, ACM SIGCHI
Conference on Human Factors in Computing Sys-
tems, Pittsburgh, PA, (May 1999) 159-166

[6] D.E. Lloyd. Automated target classification using
moment invariants of image shapes. Farnborough,
UK, Rep. RAE IDN AW126, Dec 1985.

[7] K.V. Mardia and T.J. Hainsworth. A Spatial
Thresholding Method for Image Segmentation.
IEEE Trans., on Pattern Analysis and Machine In-
telligence, 10:6, (November 1988) 919-927

[8] D.Marr, E. Hildreth. Theory of edge detection.
Proceedings of Royal Society of London, 207
(1980) 187-217

[9] J. McGrenere, R. Baecker, and K. Booth. (2002).
An evaluation of a multiple interface design solu-
tion for bloated software. ACM CHI (2002) 164-
170.

[10] E. Mortenson,. and W.A. Barrett. Interactive Seg-
mentation with Intelligent Scissors. Graphical
Models and Image Processing 60 (1998) 349-384

[11] Eric Mortensen and William Barrett: "Intelligent
Scissors for Image Composition," SIGGRAPH '95,
Los Angeles, CA (August 1995) 191-198

[12] A.Rosenfeld and A. C. Kak. Digital Picture Proc-
essing. Academic Press, INC, 1982

[13] Robert B. Trealease. Anatomical Informatics: Mil-
lennial Perspectives on a Newer Frontier. The Ana-
tomical Record 269 (2002) 224-235

[14] Virtual Human Embryo Project, Louisiana State
University, http://virtualhumanembryo.lsuhsc.edu

[15] Williams, D.J. and M. Shah. A Fast Algorithm for
Active Contours and Curvature Estimation.
CVGIP: Image Understanding 55:1 (January 1992)
14-26

