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Abstract 
Interactive edge detection is used in both graphics art 
tools and in tools for building anatomical models from 
serially sectioned images. To build models, contours 
are traced and later triangulated. Contour tracing is 
time-consuming because of the fidelity and quantity of 
points needed, and expensive because of the back-
ground training required of individuals who do the trac-
ing. Here we report extensions to interactive edge de-
tection that reduce errors and effort. Our key contribu-
tion is a simple feedback interface called the leash, cur-
rently implemented as an extension to Intelligent Scis-
sors, that lets the human user ‘lead’ the edge detection 
algorithm along a contour, but also helps the user to 
anticipate errors and provide immediate corrective feed-
back.  
 
Key words:  Edge detection, 3d modeling, contour data, 
mixed-initiative computing, intelligent graphics, Intelli-
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1 Introduction 
Databases of serially sectioned images such as the Visi-
ble Male and Visible Female have recently generated 
activity in anatomical model construction. Using tools 
such as Surfdriver [13], a user, usually an anatomist, 
traces contours on a series of cross-sectional images 
containing a target object. The contours are then as-
sembled into 3D models used for classroom instruction 
and for distance learning. The Virtual Human Embryo 
Project at LSU [14] uses this process. 
 The contour tracing process can be time-consuming 
because a large number of points are required for an 
accurate and aesthetically pleasing model. It can also be 
expensive because tracing must be done by a user who 
is sufficiently trained to recognize the true boundaries 
in different types of image data. Moreover, the image 
data may have imperfections or flaws that require the 
user to interpolate. Figure 1 shows an actual set of fin-
ished contour traces. 
 Edge detection techniques are an obvious part of the 
solution, but there are four problems integrating exist-
ing techniques into our target domain. First, our typical 
user does not want to see all of the edges in an image 
(as when filters are applied to an image), but rather, 
edges around a specific object. Second, the user may 

want to trace a visually nonhomogeneous region. This 
limits the applicability of region-finding algorithms 
[6,7] that cluster similar pixels in the neighbourhood of 
a point selected by the user, and then outline the region. 
Third, the algorithm may be fooled by lighting varia-
tions or by image flaws. The user subsequently spends a 
lot of time identifying, and then correcting the algo-
rithm’s errors, which may be more time-consuming 
than simply manually tracing the boundary. Smart in-
teractive tools that work well on ideal images also fail 
on images with similar variations and flaws.  
 Our solution to these concerns is a mixed-initiative 
[5] interactive contour-tracing tool called the leash. 
Like related tools [10,15], the user first selects a seed 
point on an object boundary, then drags the mouse in 
the general direction of a desired contour. The tool cre-
ates the illusion of a ‘leash’ leading a new contour 
around a boundary (Figure 7). When image flaws divert 
the new contour from the desired direction, information 
in the leash helps the user quickly correct the algorithm. 
  The rest of the paper is organized as follows. The 
next section reviews salient features of previous work 
on interactive edge detection [10]. Section 3 also in-
cludes descriptions of some typical feature cost func-
tions and is provided to give readers unfamiliar with 
edge detection a feel for how such algorithms find fea-
tures and how and why they go wrong. Later sections 
describe our extensions, with attention to the operation 
of the leash and its basic performance results.   

2 Background 
In an interactive edge detection approach like Intelli-
gent Scissors (IS) [10] or snakes [15], the user first se-
lects a seed point on the object boundary, then drags the 
mouse in the general direction of some desired contour, 
which generates a live-wire, a least-cost path from the 
seed point to the cursor, that makes the line appear to 
“snap” to the desired contour. The cost function is just 
the sum of several pixel-based feature costs, reviewed 
in the next section. 
     Because the live-wire runs from the seed point to the 
cursor, there is usually a point where the live-wire 
leaves the desired contour, at which point it is necessary 
to recalibrate the algorithm. 



 
 

Figure 1. Contour traces, virtual human embryo 
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Figure 2.  9x9 LoG 

 
 

  
      
 

  
   (c) 9x9 Laplacian            (d) 9x9 LoG 
 

Figure 3.  Effect of zero crossing detectors 
 

 
(a) Bottom of hibiscus image 

 

 
(b) Detail of difficult areas, using Laplacian 
 

 
(c) Detail of difficult areas, using LoG 

 
Figure 4.  Detail of flower outline 

 

  
 

Figure 5. Detail of leash showing seed points. 

(a) original image    (b) 3x3 Laplacian



 Recalibration entails determining a new seed point 
(re-seeding), which implies recalculating all dynamic 
feature costs. This recalculation is linear in the number 
of image pixels, and may incur the expense of generat-
ing feature images. One simple recalibration rule is to 
generate a new seed point every n pixels along the live 
wire. IS also uses persistence-based heuristics to ‘cool’ 
pixels onto the desired contour. (For each pixel, IS re-
cords the total time that pixel has been on the live-wire 
and the number of times it has been on the live-wire. 
Once these values exceed some empirically determined 
threshold, the pixels become part of the boundary.)  
 On images of reasonable quality, IS performs 
smoothly, and without user intervention. The present 
paper addresses a concern that arises in domains like 
anatomical model construction where image quality is 
not always ideal. For example, Figure 1 shows an ex-
treme actual case. The two upper contours are arteries, 
but there are few clues as to the structure in the image. 
Less extreme cases arise if the image or cross-section is 
damaged, incomplete, or the desired contour is partially 
occluded. In short, though images with such features 
could most benefit from smart tools, these tools are 
fairly easily fooled by noise. Another concern is that the 
recalibration trigger (pixel persistence) may be overly 
sensitive to vagaries of the user’s hand movements. 
 These concerns led us to reformulate interactive 
edge detection as mixed-initiative computing [5], 
closely related to human-centred computing [3], and to 
cognitive prostheses in the AI community [4]. These 
approaches see the human and the computer as a single 
system comprised of two synergistic entities. In ad-
dressing the current problem domain, we spent consid-
erable time tailoring the edge-detection technologies to 
our domain. In the end, we found ourselves thinking 
about how best to enable the human to exploit the algo-
rithm’s strengths, while avoiding its weaknesses. 
 Ultimately, this led us to the idea of the leash. The 
leash is constructed by breaking the live-wire into two 
differently coloured parts. The first part consists of pix-
els the algorithm believes are probably on the desired 
contour. The second part, the leash, is just the remain-
ing pixels, pixels that fall below some probabilistic 
threshold of being on the desired boundary. The user 
has the impression of holding the leash with the mouse, 
with the leash leading the new boundary along. The 
leash also provides immediate feedback about where 
the algorithm might go wrong, so that the user can take 
appropriate action. Although the idea is simple, 
segmenting the live-wire optimally is also a challenging 
problem. 

3 Basic Cost Functions 
We review only the feature costs relevant here. The IS 
[10] least cost path sums individual link costs between 
adjacent pixels on the live-wire. To work well, the link 
cost aggregates three features—Laplacian zero cross-
ing, gradient direction, and gradient magnitude.  

3.1 Laplacian Zero Crossing 
IL, the image resulting from convolving an image I with 
a Laplacian kernel [1], approximates the second deriva-
tive of an image. Thus, if fZ(q) denotes the Laplacian 
zero-crossing feature cost at point q, i.e., 
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then this feature penalizes sudden intensity changes. 
Convolving an image with a Laplacian kernel yields 
few actual zeros; in practice a zero crossing is indicated 
by neighboring pixels (left/right, or up/down) of oppo-
site signs.  

3.2 Gradient Direction  
This feature, written fD(p,q), penalizes sharp changes in 
boundary direction [2]. Adjacent boundary pixels with 
similar gradient direction but with a gradient direction 
(nearly) perpendicular to the link between the pixels 
have a high gradient cost. For brevity, we do not de-
scribe the calculation here, but refer the reader to [10]. 

3.3 Gradient magnitude 
The gradient magnitude G is the vector sum of Ix and Iy, 
the partial derivatives of I in the x and y directions re-
spectively. A high gradient magnitude identifies a 
strong edge feature [10]. In this application, it is scaled 
and inverted to favour high gradients. If fG denotes the 
gradient magnitude feature cost, then 
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where G ' = G – min (G). Gradient magnitude costs for 
horizontal and vertical neighbors of a pixel are scaled 
by 1/√2 to correct for different distances between axis-
aligned and diagonal pixel neighbors.  

3.4 Cost Function 
Many other useful features are known, but are not rele-
vant here. The above features are scaled to the unit in-
terval. Then, the link cost C between pixels p and q is 
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where the fX range over the preceding three features and 
the wX are associated empirically determined weights. 

4 Interactive Edge Detection Extensions 

4.1 Laplacian of Gaussian 
Our first contributions were extensions to IS that be-
come important for optimizing the performance of the 
leash, discussed in Section 5. 

Mortensen and Barrett [10] use Laplacian filters to 
find zero-crossing points that indicate edge pixels in an 
image. It is known that an edge detector that reduces 
noise in an image before detecting edges in the image 
gives better results [12]; Marr and Hildreth’s Laplacian-
of-Gaussian (LoG) [8] is such a filter. 
 Figure 2 shows a 9x9 discrete approximation of the 
combination of the Laplacian operator and the Gaussian 
function. 
 Figure 3 shows the effect of applying (b), a 3 x 3 
Laplacian, (c), a 9 x 9 Laplacian, and (d), a 9 x 9 LoG 
edge detector to an image. The lower right image in 
Figure 3 shows that noise is greatly reduced using a 9 x 
9 LoG. 
 Figure 4(a) shows the bottom of the hibiscus image 
that we used to test the LoG. The regular Laplacian had 
difficulty following the outline of the flower at the 
points marked A and B, better seen in Figure 4(b). 
 The diagrams suggest that the feature calculations in 
the first image respond to noise by treating the lighter 
background area as part of the petal in areas A and B. 
The LoG reduces noise enough to let the feature calcu-
lation permit a noticeable detour near A. In both cases, 
the mouse was at approximately the same distance from 
the object boundary during tracing. (If the mouse is 
close to the boundary, the two perform similarly.) 

4.2 Minimizing Recalibrations 
The algorithm must be recalibrated reasonably often to 
accommodate gradual changes in pixel intensity and 
gradient direction, but recalibrating too often is costly 
because it requires recalculating a least cost path from 
the new seed point to every pixel in the image. Al-
though straightforward dynamic programming solves 
this reasonably quickly [10], it is expensive to do for 
each new pixel. Regardless, a new seed point must be 
selected at least whenever the live-wire deviates from 
the desired boundary.  
 Because the feature cost function is biased against 
sharp turns even when the desired boundary actually 
makes such a turn, we considered ways to distinguish 
between genuine and spurious turns by using mouse 
movements to approximately infer which turns were 
legitimate. Because of the vagaries of hand motions, 

basing decisions on immediate pairs of successive posi-
tions is unwise. However, increasing the distance be-
tween pairs loses information. After some experimenta-
tion, we found that using points three cursor move-
ments apart (i.e., every three MouseMove events) 
worked well.  
 This approach sometimes failed to detect turns and 
sometimes detected false turns. We attributed this to the 
method used for recording mouse motion. When a user 
moves too quickly while tracing an object boundary, 
some motions are not recorded, which subsequently 
affects the mouse tracker, just as the persistence ap-
proach to seed generation can be fooled by the user 
taking a break, or slowing down to concentrate. To 
avoid limiting the user to a particular tracing speed, we 
also initiated seed point generation whenever the length 
of the live-wire reached some empirically determined 
value. This is called fixed rate initiation. 
 However, tradeoffs remain. It may be necessary to 
initiate seed point generation before this specified 
length is reached. For example, when a user makes a 
turn, it may become necessary to drop a seed point be-
fore the specified length is reached if the algorithm de-
viates from the desired boundary (e.g., along the cat’s 
ears, see Figure 8). This can be addressed by forcing the 
algorithm to re-seed, for example, with a mouse click. 
     Combining mouse motion and the fixed rate initia-
tion approaches results in more re-seeding events. The 
fixed rate initiation approach is more reliable and also 
gives the user the flexibility to choose the re-seeding 
rate. 

4.3 Optimal Seed Point Selection 
Regardless of the mechanism that triggers re-seeding, 
the next problem is selecting a new seed point on the 
live-wire that maximizes the number of correct new 
pixels added to the contour. 
 We experimented with a range of techniques for 
optimal seed point selection. It is necessary to keep in 
mind that the path from the last seed point to the cursor 
is a least-cost path; that is, in an important sense, it is 
the feature cost function leading the live-wire astray. 
Looking at the partial path onscreen, there is a usually a 
visually obvious point at which it departs the partial 
contour and deviates towards the cursor. Because this 
point is an obvious discontinuity onscreen, it stands to 
reason that it corresponds to a feature in the path cost 
function. The problem then is how to find the feature 
without reporting false positives.  
 Because features are locations where the incre-
mental cost is very high, we avoided false positives by 
modulating the incremental cost with a function such as 
e-r/λ, where r is the distance from the cursor, preferring 
points later in the sequence.  



 We first considered gradient magnitude as a crite-
rion. Since adjacent boundary pixels should have simi-
lar gradient magnitude values, there should be a notice-
able jump in the gradient magnitude as we move to an 
area that is not on the true boundary. Figure 6 shows a 
sampled graph of gradient magnitudes of live-wire pix-
els. The X axis is just an ordinal numbering of the pix-
els on the live-wire. 

Figure 6. Sampled graph of gradient magnitudes of 
live-wire pixels 

 
All pixels below point B belong to the object boundary. 
The big jump at A indicates the point where the live-
wire breaks away from the object boundary. Therefore, 
all pixels after the point C are not part of the object 
boundary. 
 To handle noise, we used a Gaussian filter to 
smooth the gradient magnitude values before seed point 
selection. A one-dimensional Gaussian distribution, 
whose length depended on the number of pixels in the 
current live-wire, was convolved with the gradient mag-
nitude values. This worked well on a range of noisy 
images. 
 As the example illustrates, a clear feature is spread 
over, for example, four or five pixels, so we also used 
longer-scale differences. A difference table generated 
from the gradient magnitudes of the live-wire pixels 
was overlaid on a Gaussian distribution with the same 
length as the live-wire, and the result was stored in a 
list, in effect a 1D convolution over the incremental 
differences. The maximum value in the list was chosen 
as the new seed point. 

5 The Leash 
During the course of this work, a software tool called 
MixEd was built to let the experimenter conveniently 
select combinations of algorithms, feature costs, and 
other parameters, and then obtain real-time feedback 
while actually tracing an arbitrary image. Figure 7 
shows a screen capture of MixEd.  

 The most effective tool developed using MixEd we 
calld the leash. The leash is constructed by displaying 
the live-wire in two different colours, as shown in Fig-
ure 5. The white portion of the leash starts at the most 
recently selected seed point and indicates a contiguous 
sequence of pixels that MixEd believes is probably on 
the desired contour. The yellow portion of the leash 
simply indicates the rest of the pixels on the live-wire. 
The user gets the impression of a yellow leash pulling 
the (white) new contour. White boxes in Figure 5 indi-
cate seed points. (Of course, the user may redefine the 
colour scheme as needed.) Because the user must from 
time to time decide when to drop a seed point, it is very 
effective to let the point on the live-wire where the col-
our changes be the new seed point. By using any of the 
methods in Section 4 for optimal seed point selection to 
select the point where leash attaches to the new contour, 
the user receives the additional benefit of not having to 
manually place the new seed point.   
 Figure 5 illustrates details of the leash operation. 
After the mouse moves some distance, the new contour 
is likely to ‘stray away’ from the desired boundary. At 
this point, the user can move the mouse until all of the 
new contour (and hence the next seed point) lies en-
tirely on the desired boundary, and then manually gen-
erate a recalibration event. Because this event does not 
require the user to precisely select a new seed point (as 
some commercial products do, see Section 6), the re-
calibration can be triggered by any simple mouse mo-
tion or keystroke. Manually regenerating a recalibration 
event adds the white portion to the existing boundary 
and drop a new seed point at the junction of the white 
and yellow (leash) lines. At that time the algorithm re-
calculates feature costs and least-cost paths. 
 The result is an effective and simple contour tracing 
tool. The user begins by using the mouse to select a 
seed point on the object boundary. When the user (acci-
dentally or otherwise) moves the mouse, the coloured 
components of the live-wire shift in a manner consistent 
with the cost function implementation.  
 Besides providing the metaphor of leading the con-
tour, the leash also indicates to the user the direction the 
live-wire might take. If the user infers from the direc-
tion of the leash that the new contour is about to head in 
the wrong direction, the user can initiate recalibration 
by generating an event to make the new contour (white) 
part of the live-wire part of the permanent boundary. To 
indicate ‘cooling’, the permanent boundary is coloured 
blue, as in [10,11]. Moreover, our implementation al-
lows the user to use both automatic and manual seed 
point generation, using the latter when the former fails 
to correctly drop a seed point. There is a case to be 
made that the leash even mitigates the concern of opti-
mal seed point calculation. Obviously, a better choice 



 
 
of new seed point improves performance, but the leash 
seems to greatly reduce the marginal utility of fine-
tuning that calculation, making reliance on good heuris-
tics acceptable. For instance, approximating the optimal 
new seed point with the live-wire “midpoint”, that is, 
the pixel midway along the length of the live-wire, still 
gives the user all the necessary qualitative feedback 
indicators—it is clear when and where the tool is about 
to go astray, almost independently of how accurately 
the seed pixel location has been calculated. (The tool 
must be conservative, but the midpoint is a conservative 
estimate.) When this happens, the user can move the 
mouse so that the white part of the live-wire is where 
the user wants it to be, and initiate a recalibration, 
whether or not its length is optimal. For instance, note 
that in both cases in Figure 5, part of the leash lies on 
the desired boundary. 
 Assuming the user can afford the cost, there is no 
harm in manually dropping a seed point, nor is there 
any harm in dragging the boundary until the white seg-
ment leaves the boundary. Having said this, it is clearly 
the case that the better the seed point selection tech-
nique, the less frequently recalibrations will have to be 
done. (MixEd also lets the user dynamically adjust the 
length of the leash relative to the calculated seed point.) 
 Occasions arise, particularly around smaller fea-
tures, when it is difficult, or impossible, to force the 
white  segment  of  the  live-wire  to  lie  entirely on the 

 
 

 
Figure 8. Comparison images. Clockwise from upper 
right: separating two cats, teddy, skull, cat’s head, cat’s 
tail. (Cooled edges enhanced for visibility.) 

Figure 7. Screen capture of MixEd



boundary. For these cases, the tool has a manual over-
ride mode where it behaves like the familiar snap tool 
of drawing packages. This is also useful where the im-
age is unclear or damaged, or when the target object in 
the image is occluded. 
 In the worst case, the leash degrades to a familiar 
fully manual tool. However, although the leash is not 
fully automatic, experience thus far suggests that be-
cause the leash is interactive, the cost of postprocessing 
contours to find and correct errors (as occurs with a 
fully automatic tool such as the region-finding method 
described earlier) can be completely eliminated. If the 
total cost of producing a contour includes such post-
processing costs, it may be that the leash outperforms 
automatic tools.   
 Not only does the leash mitigate the marginal value 
of optimal choice of a new seed point, it also makes us 
revisit the marginal value of extensions to the link cost 
function. It may be that a more cost-effective design, at 
least in this problem domain, would be one in which the 
user would quickly become adept at predicting the per-
formance of the contour detection algorithm. This 
would facilitate the ability of the human to anticipate 
when it will be most productive to let the algorithm do 
the work and when it will be most productive to trace a 
section manually. This does not change the motivation 
for looking for better edge detection tools, but it 
changes the way we think about how smart algorithms 
should interact with users. 

6 Comparison with Existing Tools 
It is difficult to compare different pieces of software 
when they are deployed in different environments and 
with different controls. However, we found a Photo-
shop plug-in with similar functionality, called Extensis 
MaskPro, and attempted a fair comparison on a range of 
images. For details, on this product, see 
http://www.extensis.com/maskpro/. 
 MaskPro was chosen because its interface has a 
look and feel similar to our own for tracing an object’s 
boundary. Because its live wire is a single colour, seed 
points in MaskPro must be exactly selected by the user. 
In MaskPro, all points are dropped manually while 
MixEd uses both automatic and manual dropping. In 
MixEd, seed points are dropped manually only when 
the algorithm fails to drop a seed point when necessary.  
 One performance metric used to compare MixEd to 
MaskPro was the number of seed points generated 
while tracing the object boundary. This metric is mean-
ingful because dropping seed points takes time, and 
interrupts the flow of the tracing task, and indicates 
how often the tool diverged from the desired contour. 
To compare MaskPro and MixEd, we used the images 
shown in Figure 8. These images were chosen because 

they have low contrast regions that are difficult to trace 
automatically, but they contain objects that are easily 
recognized. We compared MaskPro and Mixed accord-
ing to the number of seed points generated. Table 1 
details the results. In the images we considered to be 
the most difficult, the images involving the cats and the 
skull, our tool generated fewer seed points. The various 
images generated between 5-11 seed points with Mask-
Pro and between 3-8 with MixEd. On the teddy image, 
our program required 4 seed points to MaskPro’s 3.  
 Note that this metric understates the benefits of the 
leash. In MaskPro, the user drags a live-wire of uniform 
colour. If the live-wire does not fall where the user 
wants, the user must think about exactly where the new 
seed point should go, and then laboriously place the 
new seed point on the desired contour. With the leash, 
the user drags the mouse and seeds are either dropped 
automatically, or dropped at the location indicated by 
the leash, which is usually acceptable. The user rarely 
has to exactly place the new seed point. 
 Although this comparison is somewhat simplistic, it 
establishes that the performance of MixEd is compara-
ble to that of a widely available commercial tool. It is 
capable of dealing very well with areas of low contrast 
(cat’s tail and skull), and areas where the intensity 
changes significantly (cat’s face, and separating the two 
cats).  
 

Table 1. Comparison of Seed Points Generated 

7 Design Methodology 
There are several contributions to interface design for 
mixed-initiative edge detection. First, the results of Sec-
tion 5 suggest that we might be able to modularly di-
vide interactive edge detection into three orthogonal, 
but interacting components: the feature cost function, 
the optimal seed point calculation and the interface. 
Some component interactions may seem counterintui-
tive. For example, one might think that the best end 
product would simply combine the best individual 
components. However, there is a possibility that “less is 
more”. (This theme also arises in the study of software 
‘bloat’ by McGrenere et al.[9] That work takes the posi-
tion that much modern software contains so many fea-

Features MaskPro MixEd 
Cat’s Tail                5               3 
Cat’s Head                5               4 
Brain                 9               5 
Skull               10               4 
Two cats              11               8 
Teddy              3               4 



tures that productivity may be reduced. In the case of 
feature cost functions, it may well be that overall pro-
ductivity, at least in the target domain of model con-
struction, may be enhanced by simpler, but more pre-
dictable edge detection algorithms.) A user who can 
better anticipate the errors of a simpler algorithm may 
ultimately be more productive than one who has to 
struggle with a sophisticated but unpredictable algo-
rithm.  

8 Conclusions and Future Work 
 In conclusion, we believe this is an interesting ex-
ample of the notion of cognitive prosthetic as put for-
ward by Ford and Hayes [4]. They use the metaphor 
that the computer amplifies the human’s abilities, the 
way eyeglasses improve vision. In our system, the 
computer contributes high level edge detection, and 
provides feedback via the leash. The human also pro-
vides the best sensor in the world—the human eye—to 
evaluate contour quality. In this domain, the software 
works as a cognitive prosthetic by amplifying the 
anatomist’s drawing ability.  
 To date, the leash has been implemented within 
MixEd, as shown in Figure 7. This implementation is 
now robust and has been tested on a variety of scenes, 
well beyond those shown in the comparisons with a 
commercial product. The next step will be integrating it 
into a production environment and getting feedback 
from domain users. In part, this includes making deci-
sions about how to integrate the flexibility of a control 
panel similar to that shown in Figure 7 with the conven-
ience of the leash for ordinary users. Many model 
builders work alone or with a small team and may not 
want to cope with controls that require even rudimen-
tary knowledge of image processing.  
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