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Abstract in one single pass, we can implement a software system
We present an out-of-core mesh decimation algorithrwhere the geometry generating pre-process feeds its out-
that is able to handle input and output meshes of arbput directly into the decimation post-process without stor-
trary size. The algorithm reads the input from a dating it to disk.
stream in a single pass and writes the output to anotherWhen decimating a stream of geometry data, the mesh
stream while using only a fixed-sized in-core buffer. Byis logically split into three parts: the unread postfix of the
applying randomized multiple choice optimization, weinput stream representing the unprocessed part of the in-
are able to use incremental mesh decimation based puot mesh, the in-core portion of the mesh that is currently
edge collapses and the quadric error metric. The quadocessed by the decimation algorithm, and the written
ity of our results is comparable to state-of-the-art highprefix of the output stream representing the part of the
quality mesh decimation schemes (which are slower thaputput mesh that has already been decimated to the target
our algorithm) and the decimation performance matchessolution (cf. Fig[ L).
the performance of the most efficient out-of-core tech-
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nigues (which generate meshes of inferior quality). ‘;igés«
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1 Introduction

Due to the advances in 3D scanning technology and nu-
merical simulation, the complexity of geometric models
is increasing much faster than the graphics and comput-
ing performance of current PC hardware. This is Whsjoure 1: This snapshot of the stream decimation to a
mesh decimation has been an active research area o¥gfinder mesh shows the yet unprocessed part of the input
the past ten years. data (left), the current in-core portion (middle) and the
While the first generation of mesh decimation algoaiready decimated output (right). The data in the original
rithms are based on the assumption that the complete g@le happened to be pre-sorted from right to left.
ometry data fits into a global in-core data structure, the
second generation algorithms relax this restriction by re- Since the stream algorithm uses an in-core buffer of
ducing the size of the active working set and storing thémited size, we have to assume that the geometry stream
major part of the data externally on disk. For such alis approximately pre-sorted (e.g. by one coordinate).
gorithms, the actual in-core memory requirements are irfhis is a very natural assumption since most massive
dependent from the size of the input or output mesh buhesh models are generated by some marching cubes type
the data in external memory usually has to be accessaffjorithm which builds up the geometry layer by layer
several times which slows down the process significantl§16, [5]. Obviously the pre-sorting does not have to be
In this paper we presentsreamalgorithm for mesh perfect. We only have to guarantee that the portion of the
decimation which does not require to permanently stor@put stream that lies between the actual occurrence of
the data at all (not even on disk). The concept of stream particular triangle and its position in a perfectly sorted
processing is that input data is taken in sequentially withstream, fits into the in-core buffer of the stream algorithm.
out backtracking. The output data is written sequentialln the rare cases where this mild sorting requirement is
as well and no feed-back to the input stream is possiot satisfied, we have to apply an out-of-core pre-sorting
ble. The amount of in-core memory that is allocated by atep like in [15].
stream algorithm does not depend on the amount of dataBesides the independence from the sizes of the in-
to be processed. Since stream algorithms process the date and output meshes respectively, our stream algorithm




has several important additional features: Since the decient algorithm appeared ih_[14] where a vertex cluster-

imation technique itself is based on incremental edgeng techniquel[19] is applied. Incoming geometry data is

collapsing with quadric error metrics (QEM) [8], we ob-accumulated on the fly in a voxel grid which guarantees

tain a mesh quality which is indistinguishable from stateeomplete independence from the input mesh complexity.
of-the-art in-core decimation techniques. On the otheBince the (random access) voxel grid has to be stored in-
hand, we obtain decimation rates3#fK to 40K trian- core, the memory requirements of this algorithm are on

gles/sec on commodity PC hardware including 1/O timethe order of the output mesh complexity.

which is competitive to the fastest out-of-core algorithms To enable application scenarios where neither the input
with similar properties (which, however, produce meshegesh nor the output mesh of a decimation algorithm fit

of far inferior quality). into main memory, the out-of-core vertex clustering has
been extended in_[15] such that no internal data struc-
2 Related work ture is required anymore. Instead, the decimation is per-

In general, mesh decimation is a very complex optimizaformed in several passes. Although the algorithm re-
tion problem. Given some input mest = [{p;}, {7;}], quires sgvera}l out-of-core sorting steps it stlll_achleves a
the task is to find another mesit’ = [{p;}, {T*}] which high demmaﬂpn performance of some 30K triangles/sec
has a prescribed number of triangles and minimizes i & commodity PC.

approximation errof M — M’|| (cf. [7,[10]). For most ~ The major drawback of vertex clustering techniques
applications, the computation of the exact global optifor mesh decimation is the relatively poor geometric and
mum is far too complex'J1]. Hence, one usually triegopologic quality of the resulting meshes. The output is
to find solutionsM’ with approximate optimalityvhere usually no longer manifold and the vertex density does
the computation costs can be traded for geometric subet adapt to the local curvature. A non-uniform cluster-
optimality. Over the last years thgreedy optimization ing technique has been proposed.in/[20] but the required
paradigm has established the de facto standard for mesace partition data structure requires memory space pro-
decimation algorithms. In the greedy approach, the degortional to the output mesh complexity. The RSIMP ap-
imation is performed by a sequence of atomic decimgproach [2] in its out-of-core implementation [21] is an-
tion steps which typically remove a single vertex from theother adaptive vertex clustering technique which can be
mesh. The greedy paradigm then states that in each stejped to exploit caching effects by sorting the data ac-
the best decision is made without any look-ahead or backerding to the corresponding voxel-bins. However, it
tracking. In order to efficiently identify the best choice instill loses performance compared fo [15]. The multi-
each step, all candidates have to be organized in a gloigiase algorithm ir_[9] can produce high quality meshes,
priority queuel[[12], B]. since after an initial uniform clustering phase, the sec-

Recently, another approximate optimization techniqueNd phase applies a standard greedy decimation proce-
has been applied to the mesh decimation problem [22§ure [8]. However, again, the maximum size of the output
It has been shown thaandomized multiple choice opti- Mesh is limited by the memory resources.
mization[17] produces results that have almost the same Another way to decimate massive meshes is to split
quality as the results of greedy optimization but with sigthe data into smaller blocks and then stitch the decimated
nificantly reduced computation costs. Since no globdlieces together. This approach can easily be combined
data structure such as a priority queue needs to be maitith incremental edge collapsing![8] and thus usually
tained, the algorithmic structure of multiple choice decileads to meshes with far superior quality compared to ver-
mation is extremely simple. In each step, a random set &#x clustering. However, the splitting and stitching can
candidates is picked and the best among these candidadgscomputationally expensive and special care has to be
is chosen. Usually a small number t to 15 random taken at the seams between the blocks to avoid mesh ar-
candidates is sufficient to produce meshes which are itifacts.
distinguishable from the meshes produced by greedy al- In [11]] this approach is applied to terrain models and in
gorithms. [18,[4] to arbitrary meshes. In both cases the advantage of

To address the problem of ever increasing input mod&nproved mesh quality is compromised by a significantly
sizes, out-of-core decimation techniques have been ifeduced decimation rate. 1n/[4] a rate of only 6K-10K
troduced. These techniques are designed to perform thi@&ngles/sec is achieved for large datasets on a PC com-
decimation while reading the data such that only the ouparable to the one used in [15]. This rate is even halved
put model has to be stored. Inl[6] this is achieved byf the spatial splitting pre-process is counted in as well.
pre-sorting all edges according to their length and using In this paper we present a new out-of-core decima-
this ordering for the decimation sequence. A more effiion algorithm that overcomes many drawbacks of ear-



lier techniques. First, the decimation is based on edge Let p be the percentage to which the input mesh should
collapsing and quadric error metrics which guaranteestse decimated and be the unknown number of input tri-
high quality of the output meshes. However in contrasangles. Obviously, the decimation algorithm has to per-
to [4] our scheme uses the multiple choice optimizatiofiorm p x WRITE operations and hencé — p) /2 DEC-
strategy and no spatial splitting of the input mesh. OBMATE operations to process the complete input data.
the other hand, our algorithm is as fast as the out-of-cofeven though the stream algorithm does not know the
vertex clustering technique ih [15]. This is achieved beaumber of input triangles, we can still derive that the
cause our stream algorithm processes the data in one diio-betweenDECIMATE and WRITE operations is

gle pass. The memory requirements of our algorithm are DECIMATE 1

independent from the size of the input and the output. =
WRITE 2p

3 Ideal stream algorithm for decimation S . . . .

i . ] i which implies that the ideal randomized multiple choice
As we already defined in the introduction: a stream algoélgorithm is given by the following pseudo-code:
rithm has to transform a sequential input stream of arbi-

trary size into an output stream of also arbitrary size by AD (N
using an in-core buffer of only fixed size. In our mesh READ (Noaz)
decimation setup, these streams consist of geometry data while input not empty

in STL format. In this format (dubbed “triangle soup” random choice with probabilities—p : 2p
in [14]]) every triangle is given by its three vertices with A: DECIMATE (1) & READ (2)
three coordinates each. Although this format redundantly B: WRITE (1) & READ (1)

stores every mesh vertex several times (six times in aver-
age) itis still preferred in many applications such as rapid
prototyping since no global indexing is required.

Let N,,q.. be the maximum number of triangles that fit
into the in-core triangle buffer. The stream algorithm is

performing three different operations that affect the fill-
ing level N, yrrent < Nimaz Of that buffer. This algorithm consists of three stages: the initial fill-

ing of the buffer (linel), the actual stream processing
e READ(k) takes the next triangles from the input (lines 2 to 5), and the concluding clearing of the buffer
stream and inserts them into the current in-core po(tines6 to 9).
tion (which maintains both geometry and topology)
of the mESthurrent — Neyrrent + k 4 Real stream algorithm for decimation
For a real implementation of this ideal algorithm, we have
* DECIMATE .(k) performsk edge collapse OPETa" 4 make a fepw modifications in order t(? make the algo-
tion on the. m-core_pomon qf the mesh accordlngrithm run effectively. In the introduction we explained
to the multiple choice opt|m|z_at|on strategy. EaCr}hat while a stream algorithm is running, the data is split
edge collapse removes two triangles from the mesﬁhto three disjoint parts4: postfix of the input stream,
Neurrent = Neurrent — 2k B: in-core portion, and’: prefix of the output stream).
WRITE (k) removesk triangles from the in-core In the case of me_sh decimation t_hese three par_ts are sub-
portion and writes them into the output stream. meshes of the original data at different resolution levels
Ncurrent — Ncurrent - k (Cf Flgg) . . .
In order to maintain the global mesh consistency, the
While the algorithm is running, these three operationsvo boundary polygon#,;, and P,. which represent the
are applied in arbitrary order. The only hard restrictiorinterfaces between the pat¥/5 and B/C respectively,
is that the buffer must not overflow which implies thatmust not be modified by thBECIMATE operations. For
if Newrrent = Nmaz, We have to apphDECIMATE or P, this is necessary since no vertex should be removed
WRITE before reading the next input triangle. Some adbefore all its neighbors are read from the input stream.
ditional weak restrictions are that the filling level should~or P,. this restriction guarantees that the output mesh
be kept as high as possible to provide a sufficiently largeas a consistent triangle neighborhood relation, i.e. the
set of candidates for the multiple choice optimization andeighborhood of a triangle is not further decimated after
that the number oDECIMATE and WRITE operations it has been written to the output stream (cf. Fig. 2). In our
should be balanced such that the output mesh has the pireplementation the operatol3ECIMATE and WRITE
scribed target resolution. take care of this consistency checking (cf. Secfior} 4.3

while buffer not empty
random choice with probabilities —p : 2p
A: DECIMATE (1)
B: WRITE (1)




and4.%4). Notice that, depending on the geometric shagere portion of the mesh, we count the total number of
of the input mesh, the boundary polygoRs, and P,.  trianglesN,, that have been read from the input stream
usually consist of many connected components. until now, the numbeV,.,,,--.: Of triangles currently in
the triangle buffer, and the numbaf,,,; of triangles that
have been written to the output stream until now. Since
the target resolution is given by the percentagewe
know that each triangle in the output stream statistically
(not geometrically) representdp triangles from the in-
put stream. Consequently, tRé.,,.....; triangles in the

( ‘ buffer represeniV;,, — N,.:/p many input triangles and
AAVA hence we find the current in-core resolution level to be

R = Ncurrent

AU AN
ASNAAANA
V;YVAV%V

B Nin - Nout/p.

The stream algorithm has to make sure tWaRITE oper-
ations are only executed when the resolution level of the
in-core portion equalg. Notice that the above resolu-
tion estimate is based on a statistical argument. Since the
resolution level of the in-core triangles usually varies be-
tween the two boundarieB,;, and P,., we cannot make
any statement about individual triangles. Nevertheless,
since our candidate selection is based on a random (mul-

] ) ] __ tiple) choice, we have to rely on thexpectedaverage)
Another issue is that with a pure random decisionggo|ution level.

whether aDECIMATE or a WRITE operation is per-

. . In the initialization phase of the algorithm, we have to
formed next, it can happen that a very small (high resoly- . '
tion) triangle is accidentally written to the output streamt%III the triangle buffer and then appIPECIMATE oper-

. . - : ations. Before the first triangle is written to the output
This typically leads to strong variations in the vertex den- .
ypically g tream, the boundary polygadh,. is empty but as long

sities of the output mesh. In a real implementation wé& | I " th h has b d th
therefore have to make sure that W&RITE operation is as only a smail portion of the mesh has been read, he

only executed when a sufficient number of coarse triarpoundary polygﬁ nﬁ‘b coversr? relrzmvbe ly Iargfelpetl)rt ?[fth
gles is present in the in-core buffer, i.e. when a sufficientpe In-core mesh. Hence we have to be careiul abolt the

number of decimation steps has been performed beforenght filling level to avoid extreme over-decimation of the
non-boundary parts of the in-core mesh. To achieve this,

Finally in a real operating system the file and stream L .
d : . we use a special initialization loop that alternates reading

access is usually much faster if we read and write the L . . .
. and decimation until the in-core resolution levelhas

data in larger blocks. Hence we do not want to app|¥eached the target valye

the READ and WRITE operation one by one but rather

in larger chunks.

Figure 2: During stream processing the mesh data is split
into three parts. Part A (top) is the unread part of the input
stream and part C (bottom) has already been written to the
output stream. Part B (middle) is currently in-core. The
two boundary polygons P,;, and P,. must not be modi-
fied. This restriction disqualifies the shaded in-core mesh
parts from the set of candidates for the decimation.

1 1
4.1 Overall procedure setn suchthat, > p > ;4
READ (Nypaz/2)

The major.dlffgrence bgtwegn the ideal _eujd the real repeat (n — 1) times
stream decimation algorithm is that the decision whether READ (Nypas/2)
to DECIMAT.E. or tp WRITE is no longer random. DECIMATE (N /4)
Only the decisiorwhich candidate taDECIMATE or to
WRITE still remains a random process. The blockwise
READ and WRITE is achieved by introducing a “hys-  Atthe end of the loop we invariantly have afilling level
teresis” which means that we are not reading any data bt Neurrent = Nima /2. After the loop has been repeated
fore the filling levelNeyrene is down t050%. However, (7 — 1) times we have rea§l Ny, triangles in total and
whenever we actua”y perforranEAD operation weread NO trlangle yet ertten. to the outputlstream. Hence the
in the maximum number of triangles, .. — Newrrene  CUITENtIN-core resolution level B = ;- ~ p.
to raise the filling level td 00%. After the initialization, the main loop is processing the
In order to rate theesolution levelr of the current in-  stream according to the following pseudo-code:




algorithm maintains a lookup table for all mesh vertices
currently belonging td,;. The error quadrics associated

with each vertex of the new triangle are initialized or up-
dated by adding the squared plane equation.

while input not empty
READ (Ny44/2)
DECIMATE ((1 — p) Nynaz/4)
WRITE (5 Nynaaz)

4.3 Multiple choice decimation

Again, at the end of the loop we hav€....... = As explained in Sectidn|2, the concept of multiple choice
Nnae/2 and the in-core resolution level is always keptoptimization consists of sampling a random set of can-
close toR ~ p. Notice that in line3 of the above pseudo- didates in every step and choosing the best among them.
code, we are performing — p) N,,..../4 edge collapses No global sorting of candidates is needed. In the case of
to remove(1l — p) Nyq./2 triangles from the mesh such mesh decimation the overall set of candidates is the set of
that theREAD and DECIMATE operations together in- half-edges in the mesh. The quality of a candidate col-
crease the filling level by N,,., which is exactly the lapse operation is rated by using the quadric error metric
number of triangles that are then written to the outpuihtroduced in[[8]. Hence, in every decimation step we test
stream in lined. for a small number (usuallyto 15) of half-edges the po-

After all triangles have been read from the inputential quadric error and then execute that collapse with
stream, we have to clean the in-core buffer. If the inthe smallesterror. If @, and@Q, are the error quadrics

core resolution level would be exactly = L = p after  of two verticesp andq connected by a half-edge point-

n
the main loop, we could simply write out all remaininging from p to q then after the collapse only the vertgx
triangles. However, in order to account for the slight insurvives and its associated error quadric is s€tte-Q,,.
accuracy; —p = ¢ > 0 that has been made in the initial-  As mentioned earlier, the decimation procedure must

ization loop, we have to decimate a few more triangles tAot modify the two boundary polygon®,, and P..

get the exact number of output triangl¥s.: = p Nin. ~ Hence all half-edges emanating from a boundary vertex
have to be excluded from the candidate set. Also the half-
DECIMATE ((1 — np) Nyaz/4) edges pointing to vertices on the polygfy, cannot be
WRITE (np Nyaz/2) collapsed because the error quadric of its boundary end-
vertex is not completely known yet. Half-edges pointing

to boundary vertices o®,. however, can be collapsed
sponds to the number of N,.... /2 input triangles that because their error quadrics are known and they do not

have been read in the initialization loop. modify P..
Notice that if the input mesh is not large enough or i4.4  Writing output triangles

the decimation percentageis too small then the COm- 1,5 sejaction of the triangles to be written to the out-

plete output mesh might f_it into the in-core buffer. In thimstream is also implemented as a randomized multiple
case the stream decimation reaches the end of the iNpYfyice selection. For a random set of candidate triangles
stream while still in the initialization loop. Hence, the o o\ajyate their error quadrics and then choose the one
main loop is skipped and the buffer contents is written tQ i thejargesterror. In analogy to the last section we de-
the oqtput stream. Also, the. length of the input stream 86 the error quadric of a candidate triangle= [p, q, r]

most I_|kely r_lot an exact mu_lpp_le d_VWw/Q such tha_lt the by simply adding the three quadrig,, Q,, andQ, as-
stopping criteria for the initialization and the main 100Pgq iated with its three vertices. The actual quadric error
have to check the actual number of read triangles. |6 is then obtained by evaluating this quadric at the
4.2 Reading input triangles center of the triangle.

The READ(k) operation reads a sequencekdfiangles In principle, all triangles not touching the boundary
from the input stream and inserts them into a half-edgpolygon P,;, could be candidates for output. However, in
mesh data structuré][3] representing the in-core part gfractice it turns out that with this large set of candidates,
the mesh. The computationally most expensive part ahe randomized multiple choice selection will generate
this procedure is to find the edge(s) in the boundary polynany small holes scattered all over the in-core mesh. As
gon P,;, where this new triangle has to be connected. l& consequence the components of the boun&aryvill

such an edge does not exist then the new triangle is isever large portions of the mesh and thus reduce the can-
serted as an isolated triangle with all its three edges forndidate set for decimation significantly (cf. F[g. 3). We
ing a new connected component Bf,. Otherwise the therefore restrict the candidate set to those triangles adja-
new triangle is connected to its neighbors and the boundent toP,. (and not adjacent t&,;) since this guarantees
ary P, is updated. To speed up the neighbor search, thiat the number of connected componentggfdoes not

The number ofnp N,,../2 output triangles corre-



increase. Only in exceptional cases where no suitable trj-  M°%'s Tinput | Toutpur | p | Ume | rate

(%) (hh:mm:ss) (t/sec)

angle adjacent t@,. can be found, we allow all interior Buddha 1,087,470 | 21,748 2 032 | 333K

0 H 217,038 20 0:29 30.0K
triangles to be candidates for output. v st 000550055 > S —aor
409,048 10 2:09 27.8K

David 2mm 8,254,150 82,541 1 4:19 31.6K
829,048 10 4:30 27.5K
David Imm | 56,230,343 | 562,219 1 32:40 28.4K
2,815,413 5 33:21 26.7K
St. Matthew | 372,767,445 559,087 | 0.15 | 3:54:06 | 26.5K
1,863,837 0.5 4:01:27 | 25.6K

Table 1: Run-time performance of the stream algorithm
including I/0O times on a PC with 866 MHz P3 processor.

core memory consumption of the corresponding UNIX-
process id00M B (315M B for St. Matthew), which in-
cludes memory space for a half-edge based mesh repre-
sentation of the in-core portion and various hash tables
to accelerate random access and searching. This memory
consumption is also comparable to OEMM.

The observed decimation rate is ab@®K trian-
When we select a triangle and write it to the outpu les/sec which matches.tmeragerates obtalngd by

> : . OCSx on PCs for massive datasets. The rate is slightly
stream, we change the positions of its three vertices to the

optimal position indicated by the associated error quadrlsc‘:enSIt'Ve fo the input model size since a larger boundary

(minimum of the quadric). This improves the featurepOIygo.nP“b Increases .the searching time when msertmg
. . . . new triangles into the in-core mesh. However, the sensi-
alignment of the vertices in the output mesh. Notice th%

by this final re-positioning we obtain precisely the out- Ivity to the output mpdel size'is nqt as strong as itis for
put quality of those decimation schemes that apply fu OCSx where large intermediate file sizes slow down the

edge collapses in every step (while we are only using ha?flgor'thm significantly. Compared to OEMM, our tim-
ngs are about a fact@to 5 times faster and this factor

edge coIIapse_s)_. The reason for this is that the Intermedelilen increases if we count the OEMM construction as
ate vertex positions computed for the full edge collapses

! ; . art of the decimation.
have no influence on the error quadric accumulation. P

Since we have to preserve the mesh consistency along®" the 866 MHz PC the time for I/O access is respon-
%Ie for approximately0% of the total running time. If

the boundary polygo®,., we can re-position each out- St

put vertex only once and then freeze its position for thd/€ run the same algorithm on a fa_ster PC véits GHz
neighboring triangles. P4 processor, the average decimation rates go upAo

— 59K triangles/sec in the above experiments.
5 Results As we show in Fig[ }{,|5 andl] 6, the quality of our out-
To make our results comparable to others we use a setpt meshes is the same as obtained by OEMM and su-
for our experiments in which the stream algorithm readBerior to the quality obtained by OOCSx with respects
its input data from a file and writes it back to another fil© Visual appearances, error measurements and topology
by using the UNIX pipe mechanism. All CPU-timings consistencies. Fig.]4 also reveals that our out-of-core
we give include these I/O times. Notice that in an inStream decimation can generate comparable results with
tegrated software system, the decimation could directip-core QEM [8] simplification. To produce these fig-
process the output of the mesh generation process awis we used the example data provided by P. Cignoni for
hence would run much faster since no disk access woulieé OEMM and QEM results and re-implemented OOCS
be necessary at all. [14] which produces the same results as OOCSKX.

We use a PC with 866 MHz P3 processor since a sim-
ilar type of computer has been used by OOCSX [15?
and OEMM [4] as well. For the timings in Tab[g 1 In this paper we presented a new out-of-core mesh deci-
we set the in-core buffer capacity 400K triangles for mation algorithm that works on arbitrarily large streams
the Buddha and David model$200K triangles for the of triangle data. It combines high quality decimation re-
St. Matthew model) and the multiple choice decisions arsults with high decimation performance by using incre-
always based of random candidates. The resulting in-mental decimation based on the quadric error metric and

Figure 3: Multiple choice selection with candidates taken
randomly from the whole in-core mesh (left) or just from
the triangles adjacent to P, (right).

Conclusion and limitations



Figure 4: Decimation results for the Happy Buddha model (from left to right): stream decimation (18,486 tri.), OEMM
(18,338 tri.), QEM (18,338 tri.) and OOCS (20,950 tri.). Their corresponding relative Hausdorff maximum errors (over
the bounding box diagonal) are 0.89%, 0.89%, 0.87% and 1.12% respectively.

by processing the input data in one single pass. The smallThe more serious limitation is that the in-core buffer
memory requirements make it possible to run the algdias to store all the boundary triangles of the input mesh.
rithm even on low-end PCs. On the other hand, sinck the case of the St. Matthew model this was the reason
the requirements can be adapted to the available systevhy we had to increase the buffer size: Due to imperfect
resources, we can tune the algorithm to increase the p&b reconstruction this model has a large number of small
formance on high-end PCs by using more RAM. holes and hence many boundary triangles. One possible
We used the quadric error metric in our implemenway to address this issue is to introduce a preprocessing

tation for efficiency reasons. However, the algorithmistep to tag such boundaries and this step might even be
structure is flexible enough to include any other more seembedded in the model generation procedure.

histicated distance metric as well [13]. Another con-
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Figure 5: Detail view of the decimation results for the
David 1mm model with 56 M triangles in the original

data: stream decimation (562,219 faces, top), OEMM

(500,000 faces, middle), and OOCS (578,503 faces, bot-
tom). Left and right column show the same models with
different shading.
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Figure 6: Results shown with topology errors (red/dark
dots) for St. Matthew model by stream decimation (left,
1,863,837 tri.) and OOCS (right, 1,910,970 tri.). Note

OOCS will generate much moregopology inconsistencies
than our method.

Brian Curless and Marc Levoy. A volumetric method for building com-
plex models from range images. Rroceedings of ACM SIGGRAPH 1996
Computer Graphics Proceedings, Annual Conference Series, pages 3q:121]
312. ACM, ACM Press / ACM SIGGRAPH, 1996.

Jihad El-Sana and Yi-Jen Chiang. External memory view-dependent sim-
plification. Computer Graphics Forum 9(3):139-150, 2000.

Michael Garland. Multiresolution modeling: Survey & future opportunities. [15]
In EUROGRAPHICS 99, State of the Art Report(STARRpes 111-131.
Eurographics Association, Aire-la-Ville (CH), 1999.

Michael Garland and Paul S. Heckbert. Surface simplification using quadri[:m]
error metrics. IrlProceedings of ACM SIGGRAPH 19%Fomputer Graph-

ics Proceedings, Annual Conference Series, pages 209-216. ACM, ACM
Press / ACM SIGGRAPH, 1997. [17]

Michael Garland and Eric Shaffer. A multiphase approach to efficient sur-
face simplification. INIEEE Visualization 2002 Conference Proceedings
pages 117-124. |IEEE, 2002. [18]

Craig Gotsman, Stefan Gumhold, and Leif Kobbelt. Simplification and
compression of 3d-meshes. In Armin Iske, Ewald Quak, and Michal Floate[19]
editors, Tutorials on Multiresolution in Geometric Modelingpringer,

2002.

Huges Hoppe. Smooth view-dependant level-of-detail control and its appli-
cation to terrain rendering. IEEEE Visualization 98 Conference Proceed- [20]
ings, pages 35-52. IEEE, October 1998.

Hugues Hoppe. Progressive meshesPloceedings of ACM SIGGRAPH
1996 Computer Graphics Proceedings, Annual Conference Series, paggAl]
99-108. ACM, ACM Press / ACM SIGGRAPH, 1996.

Leif Kobbelt, Swen Campagna, and Hans-Peter Seidel. A general fram§22]
work for mesh decimation. IGraphics Interface '98 Proceedingpages
43-50. Canadian Human-Computer Communications Society, A K Peters.,
June 1998.

Peter Lindstrom. Out-of-core simplification of large polygonal models.

In Kurt Akeley, editor,Proceedings of ACM SIGGRAPH 2Q@Domputer
Graphics Proceedings, Annual Conference Series, pages 259-262, New
York, 2000. ACM, ACM Press / ACM SIGGRAPH.

Peter Lindstrom and Claudio T. Silva. A memory insensitive technique for
large model simplification. IHEEE Visualization 2001 Conference Pro-
ceedingspages 121-126. IEEE, October 2001.

William E. Lorensen and Harvey E. Cline. Marching cubes: A high reso-
lution 3d surface construction algorithi@omputer Graphics (Proceedings
of ACM SIGGRAPH 8721(4):163-169, July 1987.

Michael Mitzenmacher, Andrea W. Richa, and Remesh Sitaraman. The
power of two random choices: A survey of the techniques and results. In
Handbook of Randomized Computikduwer Press, 2002.

Chris Prince. Progressive meshes for large models of arbitrary topology.
Master’s thesis, University of Washington, 2000.

Jarek Rossignac and Paul Borrel. Multi-resolution 3d approximations for
rendering complex scenes. In B. Falcidieno and T. L. Kunii, edifdied-
eling in Computer Graphics: Methods and Applicatippages 455-465,
New York, 1993. Springer-Verlag.

Eric Shaffer and Michael Garland. Efficient adaptive simplification of mas-
sive meshes. IHEEE Visualization 2001 Conference Proceedingages
127-134. IEEE, October 2001.

Benjamin Watson. Out of core simplification. Advanced Issues in Level
of Detail, ACM SIGGRAPH 2002 course notes # 14, 2002.

Jianhua Wu and Leif Kobbelt. Fast mesh decimation by multiple-choice
techniques. In Guenther Greiner, Heinrich Niemann, Thomas Ertl, Bernd
Girod, and Hans-Peter Seidel, editovision, Modeling, Visualization 2002
Proceedingspages 241-248, November 2002.



	Introduction
	Related work
	Ideal stream algorithm for decimation
	Real stream algorithm for decimation
	Overall procedure
	Reading input triangles
	Multiple choice decimation
	Writing output triangles

	Results
	Conclusion and limitations

