
A Stream Algorithm for the Decimation of Massive Meshes

Jianhua Wu Leif Kobbelt

Computer Graphics Group, RWTH–Aachen, Germany

Abstract
We present an out-of-core mesh decimation algorithm

that is able to handle input and output meshes of arbi-
trary size. The algorithm reads the input from a data
stream in a single pass and writes the output to another
stream while using only a fixed-sized in-core buffer. By
applying randomized multiple choice optimization, we
are able to use incremental mesh decimation based on
edge collapses and the quadric error metric. The qual-
ity of our results is comparable to state-of-the-art high-
quality mesh decimation schemes (which are slower than
our algorithm) and the decimation performance matches
the performance of the most efficient out-of-core tech-
niques (which generate meshes of inferior quality).

Key words: mesh decimation, massive data, stream pro-
cessing, multiple-choice optimization

1 Introduction

Due to the advances in 3D scanning technology and nu-
merical simulation, the complexity of geometric models
is increasing much faster than the graphics and comput-
ing performance of current PC hardware. This is why
mesh decimation has been an active research area over
the past ten years.

While the first generation of mesh decimation algo-
rithms are based on the assumption that the complete ge-
ometry data fits into a global in-core data structure, the
second generation algorithms relax this restriction by re-
ducing the size of the active working set and storing the
major part of the data externally on disk. For such al-
gorithms, the actual in-core memory requirements are in-
dependent from the size of the input or output mesh but
the data in external memory usually has to be accessed
several times which slows down the process significantly.

In this paper we present astreamalgorithm for mesh
decimation which does not require to permanently store
the data at all (not even on disk). The concept of stream
processing is that input data is taken in sequentially with-
out backtracking. The output data is written sequentially
as well and no feed-back to the input stream is possi-
ble. The amount of in-core memory that is allocated by a
stream algorithm does not depend on the amount of data
to be processed. Since stream algorithms process the data

in one single pass, we can implement a software system
where the geometry generating pre-process feeds its out-
put directly into the decimation post-process without stor-
ing it to disk.

When decimating a stream of geometry data, the mesh
is logically split into three parts: the unread postfix of the
input stream representing the unprocessed part of the in-
put mesh, the in-core portion of the mesh that is currently
processed by the decimation algorithm, and the written
prefix of the output stream representing the part of the
output mesh that has already been decimated to the target
resolution (cf. Fig. 1).

Figure 1: This snapshot of the stream decimation to a
cylinder mesh shows the yet unprocessed part of the input
data (left), the current in-core portion (middle) and the
already decimated output (right). The data in the original
file happened to be pre-sorted from right to left.

Since the stream algorithm uses an in-core buffer of
limited size, we have to assume that the geometry stream
is approximately pre-sorted (e.g. by one coordinate).
This is a very natural assumption since most massive
mesh models are generated by some marching cubes type
algorithm which builds up the geometry layer by layer
[16, 5]. Obviously the pre-sorting does not have to be
perfect. We only have to guarantee that the portion of the
input stream that lies between the actual occurrence of
a particular triangle and its position in a perfectly sorted
stream, fits into the in-core buffer of the stream algorithm.
In the rare cases where this mild sorting requirement is
not satisfied, we have to apply an out-of-core pre-sorting
step like in [15].

Besides the independence from the sizes of the in-
put and output meshes respectively, our stream algorithm



has several important additional features: Since the dec-
imation technique itself is based on incremental edge-
collapsing with quadric error metrics (QEM) [8], we ob-
tain a mesh quality which is indistinguishable from state-
of-the-art in-core decimation techniques. On the other
hand, we obtain decimation rates of30K to 40K trian-
gles/sec on commodity PC hardware including I/O times
which is competitive to the fastest out-of-core algorithms
with similar properties (which, however, produce meshes
of far inferior quality).

2 Related work

In general, mesh decimation is a very complex optimiza-
tion problem. Given some input meshM = [{pi}, {Tj}],
the task is to find another meshM′ = [{p′

i}, {T ′
j}] which

has a prescribed number of triangles and minimizes the
approximation error‖M −M′‖ (cf. [7, 10]). For most
applications, the computation of the exact global opti-
mum is far too complex [1]. Hence, one usually tries
to find solutionsM′ with approximate optimalitywhere
the computation costs can be traded for geometric sub-
optimality. Over the last years thegreedy optimization
paradigm has established the de facto standard for mesh
decimation algorithms. In the greedy approach, the dec-
imation is performed by a sequence of atomic decima-
tion steps which typically remove a single vertex from the
mesh. The greedy paradigm then states that in each step
the best decision is made without any look-ahead or back-
tracking. In order to efficiently identify the best choice in
each step, all candidates have to be organized in a global
priority queue [12, 8].

Recently, another approximate optimization technique
has been applied to the mesh decimation problem [22].
It has been shown thatrandomized multiple choice opti-
mization[17] produces results that have almost the same
quality as the results of greedy optimization but with sig-
nificantly reduced computation costs. Since no global
data structure such as a priority queue needs to be main-
tained, the algorithmic structure of multiple choice deci-
mation is extremely simple. In each step, a random set of
candidates is picked and the best among these candidates
is chosen. Usually a small number of10 to 15 random
candidates is sufficient to produce meshes which are in-
distinguishable from the meshes produced by greedy al-
gorithms.

To address the problem of ever increasing input model
sizes, out-of-core decimation techniques have been in-
troduced. These techniques are designed to perform the
decimation while reading the data such that only the out-
put model has to be stored. In [6] this is achieved by
pre-sorting all edges according to their length and using
this ordering for the decimation sequence. A more effi-

cient algorithm appeared in [14] where a vertex cluster-
ing technique [19] is applied. Incoming geometry data is
accumulated on the fly in a voxel grid which guarantees
complete independence from the input mesh complexity.
Since the (random access) voxel grid has to be stored in-
core, the memory requirements of this algorithm are on
the order of the output mesh complexity.

To enable application scenarios where neither the input
mesh nor the output mesh of a decimation algorithm fit
into main memory, the out-of-core vertex clustering has
been extended in [15] such that no internal data struc-
ture is required anymore. Instead, the decimation is per-
formed in several passes. Although the algorithm re-
quires several out-of-core sorting steps it still achieves a
high decimation performance of some 30K triangles/sec
on a commodity PC.

The major drawback of vertex clustering techniques
for mesh decimation is the relatively poor geometric and
topologic quality of the resulting meshes. The output is
usually no longer manifold and the vertex density does
not adapt to the local curvature. A non-uniform cluster-
ing technique has been proposed in [20] but the required
space partition data structure requires memory space pro-
portional to the output mesh complexity. The RSIMP ap-
proach [2] in its out-of-core implementation [21] is an-
other adaptive vertex clustering technique which can be
tuned to exploit caching effects by sorting the data ac-
cording to the corresponding voxel-bins. However, it
still loses performance compared to [15]. The multi-
phase algorithm in [9] can produce high quality meshes,
since after an initial uniform clustering phase, the sec-
ond phase applies a standard greedy decimation proce-
dure [8]. However, again, the maximum size of the output
mesh is limited by the memory resources.

Another way to decimate massive meshes is to split
the data into smaller blocks and then stitch the decimated
pieces together. This approach can easily be combined
with incremental edge collapsing [8] and thus usually
leads to meshes with far superior quality compared to ver-
tex clustering. However, the splitting and stitching can
be computationally expensive and special care has to be
taken at the seams between the blocks to avoid mesh ar-
tifacts.

In [11] this approach is applied to terrain models and in
[18, 4] to arbitrary meshes. In both cases the advantage of
improved mesh quality is compromised by a significantly
reduced decimation rate. In [4] a rate of only 6K-10K
triangles/sec is achieved for large datasets on a PC com-
parable to the one used in [15]. This rate is even halved
if the spatial splitting pre-process is counted in as well.

In this paper we present a new out-of-core decima-
tion algorithm that overcomes many drawbacks of ear-



lier techniques. First, the decimation is based on edge
collapsing and quadric error metrics which guarantees a
high quality of the output meshes. However in contrast
to [4] our scheme uses the multiple choice optimization
strategy and no spatial splitting of the input mesh. On
the other hand, our algorithm is as fast as the out-of-core
vertex clustering technique in [15]. This is achieved be-
cause our stream algorithm processes the data in one sin-
gle pass. The memory requirements of our algorithm are
independent from the size of the input and the output.

3 Ideal stream algorithm for decimation

As we already defined in the introduction: a stream algo-
rithm has to transform a sequential input stream of arbi-
trary size into an output stream of also arbitrary size by
using an in-core buffer of only fixed size. In our mesh
decimation setup, these streams consist of geometry data
in STL format. In this format (dubbed “triangle soup”
in [14]) every triangle is given by its three vertices with
three coordinates each. Although this format redundantly
stores every mesh vertex several times (six times in aver-
age) it is still preferred in many applications such as rapid
prototyping since no global indexing is required.

Let Nmax be the maximum number of triangles that fit
into the in-core triangle buffer. The stream algorithm is
performing three different operations that affect the fill-
ing levelNcurrent ≤ Nmax of that buffer.

• READ(k) takes the nextk triangles from the input
stream and inserts them into the current in-core por-
tion (which maintains both geometry and topology)
of the mesh.Ncurrent ← Ncurrent + k

• DECIMATE (k) performsk edge collapse opera-
tion on the in-core portion of the mesh according
to the multiple choice optimization strategy. Each
edge collapse removes two triangles from the mesh.
Ncurrent ← Ncurrent − 2k

• WRITE (k) removesk triangles from the in-core
portion and writes them into the output stream.
Ncurrent ← Ncurrent − k

While the algorithm is running, these three operations
are applied in arbitrary order. The only hard restriction
is that the buffer must not overflow which implies that
if Ncurrent = Nmax, we have to applyDECIMATE or
WRITE before reading the next input triangle. Some ad-
ditional weak restrictions are that the filling level should
be kept as high as possible to provide a sufficiently large
set of candidates for the multiple choice optimization and
that the number ofDECIMATE andWRITE operations
should be balanced such that the output mesh has the pre-
scribed target resolution.

Let p be the percentage to which the input mesh should
be decimated andx be the unknown number of input tri-
angles. Obviously, the decimation algorithm has to per-
form p x WRITE operations and hence(1−p)x/2 DEC-
IMATE operations to process the complete input data.
Even though the stream algorithm does not know the
number of input triangles, we can still derive that thera-
tio betweenDECIMATE andWRITE operations is

DECIMATE

WRITE
=

1− p

2 p

which implies that the ideal randomized multiple choice
algorithm is given by the following pseudo-code:

READ (Nmax)

while input not empty
random choice with probabilities1− p : 2 p

A: DECIMATE (1) & READ (2)
B: WRITE (1) & READ (1)

while buffer not empty
random choice with probabilities1− p : 2 p

A: DECIMATE (1)
B: WRITE (1)

This algorithm consists of three stages: the initial fill-
ing of the buffer (line1), the actual stream processing
(lines 2 to 5), and the concluding clearing of the buffer
(lines6 to 9).

4 Real stream algorithm for decimation

For a real implementation of this ideal algorithm, we have
to make a few modifications in order to make the algo-
rithm run effectively. In the introduction we explained
that while a stream algorithm is running, the data is split
into three disjoint parts (A: postfix of the input stream,
B: in-core portion, andC: prefix of the output stream).
In the case of mesh decimation these three parts are sub-
meshes of the original data at different resolution levels
(cf. Fig.1).

In order to maintain the global mesh consistency, the
two boundary polygonsPab andPbc which represent the
interfaces between the partsA/B andB/C respectively,
must not be modified by theDECIMATE operations. For
Pab this is necessary since no vertex should be removed
before all its neighbors are read from the input stream.
For Pbc this restriction guarantees that the output mesh
has a consistent triangle neighborhood relation, i.e. the
neighborhood of a triangle is not further decimated after
it has been written to the output stream (cf. Fig. 2). In our
implementation the operatorsDECIMATE and WRITE
take care of this consistency checking (cf. Section 4.3



and 4.4). Notice that, depending on the geometric shape
of the input mesh, the boundary polygonsPab andPbc

usually consist of many connected components.

AA

BB

CC

PPabab

PPbcbc

Figure 2: During stream processing the mesh data is split
into three parts. PartA (top) is the unread part of the input
stream and part C (bottom) has already been written to the
output stream. Part B (middle) is currently in-core. The
two boundary polygons Pab and Pbc must not be modi-
fied. This restriction disqualifies the shaded in-core mesh
parts from the set of candidates for the decimation.

Another issue is that with a pure random decision
whether aDECIMATE or a WRITE operation is per-
formed next, it can happen that a very small (high resolu-
tion) triangle is accidentally written to the output stream.
This typically leads to strong variations in the vertex den-
sities of the output mesh. In a real implementation we
therefore have to make sure that theWRITE operation is
only executed when a sufficient number of coarse trian-
gles is present in the in-core buffer, i.e. when a sufficient
number of decimation steps has been performed before.

Finally in a real operating system the file and stream
access is usually much faster if we read and write the
data in larger blocks. Hence we do not want to apply
the READ andWRITE operation one by one but rather
in larger chunks.

4.1 Overall procedure
The major difference between the ideal and the real
stream decimation algorithm is that the decision whether
to DECIMATE or to WRITE is no longer random.
Only the decisionwhich candidate toDECIMATE or to
WRITE still remains a random process. The blockwise
READ and WRITE is achieved by introducing a “hys-
teresis” which means that we are not reading any data be-
fore the filling levelNcurrent is down to50%. However,
whenever we actually perform aREAD operation we read
in the maximum number of trianglesNmax − Ncurrent

to raise the filling level to100%.
In order to rate theresolution levelR of the current in-

core portion of the mesh, we count the total number of
trianglesNin that have been read from the input stream
until now, the numberNcurrent of triangles currently in
the triangle buffer, and the numberNout of triangles that
have been written to the output stream until now. Since
the target resolution is given by the percentagep, we
know that each triangle in the output stream statistically
(not geometrically) represents1/p triangles from the in-
put stream. Consequently, theNcurrent triangles in the
buffer representNin −Nout/p many input triangles and
hence we find the current in-core resolution level to be

R =
Ncurrent

Nin −Nout/p
.

The stream algorithm has to make sure thatWRITE oper-
ations are only executed when the resolution level of the
in-core portion equalsp. Notice that the above resolu-
tion estimate is based on a statistical argument. Since the
resolution level of the in-core triangles usually varies be-
tween the two boundariesPab andPbc, we cannot make
any statement about individual triangles. Nevertheless,
since our candidate selection is based on a random (mul-
tiple) choice, we have to rely on theexpected(average)
resolution level.

In the initialization phase of the algorithm, we have to
fill the triangle buffer and then applyDECIMATE oper-
ations. Before the first triangle is written to the output
stream, the boundary polygonPbc is empty but as long
as only a small portion of the mesh has been read, the
boundary polygonPab covers a relatively large part of
the in-core mesh. Hence we have to be careful about the
right filling level to avoid extreme over-decimation of the
non-boundary parts of the in-core mesh. To achieve this,
we use a special initialization loop that alternates reading
and decimation until the in-core resolution levelR has
reached the target valuep.

setn such that1n ≥ p > 1
n+1

READ (Nmax/2)
repeat (n− 1) times

READ (Nmax/2)
DECIMATE (Nmax/4)

At the end of the loop we invariantly have a filling level
of Ncurrent = Nmax/2. After the loop has been repeated
(n− 1) times we have readn2 Nmax triangles in total and
no triangle yet written to the output stream. Hence the
current in-core resolution level isR = 1

n ≈ p.

After the initialization, the main loop is processing the
stream according to the following pseudo-code:



while input not empty
READ (Nmax/2)
DECIMATE ((1− p) Nmax/4)
WRITE (p

2 Nmax)

Again, at the end of the loop we haveNcurrent =
Nmax/2 and the in-core resolution level is always kept
close toR ≈ p. Notice that in line3 of the above pseudo-
code, we are performing(1− p) Nmax/4 edge collapses
to remove(1− p) Nmax/2 triangles from the mesh such
that theREAD andDECIMATE operations together in-
crease the filling level byp2 Nmax which is exactly the
number of triangles that are then written to the output
stream in line4.

After all triangles have been read from the input
stream, we have to clean the in-core buffer. If the in-
core resolution level would be exactlyR = 1

n = p after
the main loop, we could simply write out all remaining
triangles. However, in order to account for the slight in-
accuracy1

n −p = ε ≥ 0 that has been made in the initial-
ization loop, we have to decimate a few more triangles to
get the exact number of output trianglesNout = p Nin.

DECIMATE ((1− n p) Nmax/4)
WRITE (n p Nmax/2)

The number ofn p Nmax/2 output triangles corre-
sponds to the number ofn Nmax/2 input triangles that
have been read in the initialization loop.

Notice that if the input mesh is not large enough or if
the decimation percentagep is too small then the com-
plete output mesh might fit into the in-core buffer. In this
case the stream decimation reaches the end of the input
stream while still in the initialization loop. Hence, the
main loop is skipped and the buffer contents is written to
the output stream. Also, the length of the input stream is
most likely not an exact multiple ofNmax/2 such that the
stopping criteria for the initialization and the main loop
have to check the actual number of read triangles.

4.2 Reading input triangles
TheREAD(k) operation reads a sequence ofk triangles
from the input stream and inserts them into a half-edge
mesh data structure [3] representing the in-core part of
the mesh. The computationally most expensive part of
this procedure is to find the edge(s) in the boundary poly-
gonPab where this new triangle has to be connected. If
such an edge does not exist then the new triangle is in-
serted as an isolated triangle with all its three edges form-
ing a new connected component ofPab. Otherwise the
new triangle is connected to its neighbors and the bound-
ary Pab is updated. To speed up the neighbor search, the

algorithm maintains a lookup table for all mesh vertices
currently belonging toPab. The error quadrics associated
with each vertex of the new triangle are initialized or up-
dated by adding the squared plane equation.

4.3 Multiple choice decimation

As explained in Section 2, the concept of multiple choice
optimization consists of sampling a random set of can-
didates in every step and choosing the best among them.
No global sorting of candidates is needed. In the case of
mesh decimation the overall set of candidates is the set of
half-edges in the mesh. The quality of a candidate col-
lapse operation is rated by using the quadric error metric
introduced in [8]. Hence, in every decimation step we test
for a small number (usually5 to 15) of half-edges the po-
tential quadric error and then execute that collapse with
the smallesterror. If Qp andQq are the error quadrics
of two verticesp andq connected by a half-edge point-
ing from p to q then after the collapse only the vertexq
survives and its associated error quadric is set toQp+Qq.

As mentioned earlier, the decimation procedure must
not modify the two boundary polygonsPab and Pbc.
Hence all half-edges emanating from a boundary vertex
have to be excluded from the candidate set. Also the half-
edges pointing to vertices on the polygonPab cannot be
collapsed because the error quadric of its boundary end-
vertex is not completely known yet. Half-edges pointing
to boundary vertices onPbc however, can be collapsed
because their error quadrics are known and they do not
modify Pbc.

4.4 Writing output triangles

The selection of the triangles to be written to the out-
put stream is also implemented as a randomized multiple
choice selection. For a random set of candidate triangles
we evaluate their error quadrics and then choose the one
with thelargesterror. In analogy to the last section we de-
fine the error quadric of a candidate triangleT = [p,q, r]
by simply adding the three quadricsQp, Qq, andQr as-
sociated with its three vertices. The actual quadric error
value is then obtained by evaluating this quadric at the
center of the triangle.

In principle, all triangles not touching the boundary
polygonPab could be candidates for output. However, in
practice it turns out that with this large set of candidates,
the randomized multiple choice selection will generate
many small holes scattered all over the in-core mesh. As
a consequence the components of the boundaryPbc will
cover large portions of the mesh and thus reduce the can-
didate set for decimation significantly (cf. Fig. 3). We
therefore restrict the candidate set to those triangles adja-
cent toPbc (and not adjacent toPab) since this guarantees
that the number of connected components ofPbc does not



increase. Only in exceptional cases where no suitable tri-
angle adjacent toPbc can be found, we allow all interior
triangles to be candidates for output.

Figure 3: Multiple choice selection with candidates taken
randomly from the whole in-core mesh (left) or just from
the triangles adjacent to Pbc (right).

When we select a triangle and write it to the output
stream, we change the positions of its three vertices to the
optimal position indicated by the associated error quadric
(minimum of the quadric). This improves the feature
alignment of the vertices in the output mesh. Notice that
by this final re-positioning we obtain precisely the out-
put quality of those decimation schemes that apply full
edge collapses in every step (while we are only using half
edge collapses). The reason for this is that the intermedi-
ate vertex positions computed for the full edge collapses
have no influence on the error quadric accumulation.

Since we have to preserve the mesh consistency along
the boundary polygonPbc, we can re-position each out-
put vertex only once and then freeze its position for the
neighboring triangles.

5 Results

To make our results comparable to others we use a setup
for our experiments in which the stream algorithm reads
its input data from a file and writes it back to another file
by using the UNIX pipe mechanism. All CPU-timings
we give include these I/O times. Notice that in an in-
tegrated software system, the decimation could directly
process the output of the mesh generation process and
hence would run much faster since no disk access would
be necessary at all.

We use a PC with 866 MHz P3 processor since a sim-
ilar type of computer has been used by OOCSx [15]
and OEMM [4] as well. For the timings in Table 1
we set the in-core buffer capacity to400K triangles for
the Buddha and David models (1200K triangles for the
St. Matthew model) and the multiple choice decisions are
always based on8 random candidates. The resulting in-

models Tinput Toutput p time rate
(%) (hh:mm:ss) (t/sec)

Buddha 1,087,470 21,748 2 0:32 33.3K
217,038 20 0:29 30.0K

David head 4,000,885 80,016 2 2:04 31.7K
409,048 10 2:09 27.8K

David 2mm 8,254,150 82,541 1 4:19 31.6K
829,048 10 4:30 27.5K

David 1mm 56,230,343 562,219 1 32:40 28.4K
2,815,413 5 33:21 26.7K

St. Matthew 372,767,445 559,087 0.15 3:54:06 26.5K
1,863,837 0.5 4:01:27 25.6K

Table 1: Run-time performance of the stream algorithm
including I/O times on a PC with 866 MHz P3 processor.

core memory consumption of the corresponding UNIX-
process is100MB (315MB for St. Matthew), which in-
cludes memory space for a half-edge based mesh repre-
sentation of the in-core portion and various hash tables
to accelerate random access and searching. This memory
consumption is also comparable to OEMM.

The observed decimation rate is about28K trian-
gles/sec which matches theaveragerates obtained by
OOCSx on PCs for massive datasets. The rate is slightly
sensitive to the input model size since a larger boundary
polygonPab increases the searching time when inserting
new triangles into the in-core mesh. However, the sensi-
tivity to the output model size is not as strong as it is for
OOCSx where large intermediate file sizes slow down the
algorithm significantly. Compared to OEMM, our tim-
ings are about a factor3 to 5 times faster and this factor
even increases if we count the OEMM construction as
part of the decimation.

On the 866 MHz PC the time for I/O access is respon-
sible for approximately50% of the total running time. If
we run the same algorithm on a faster PC with2.8 GHz
P4 processor, the average decimation rates go up to40K
– 59K triangles/sec in the above experiments.

As we show in Fig. 4, 5 and 6, the quality of our out-
put meshes is the same as obtained by OEMM and su-
perior to the quality obtained by OOCSx with respects
to visual appearances, error measurements and topology
consistencies. Fig. 4 also reveals that our out-of-core
stream decimation can generate comparable results with
in-core QEM [8] simplification. To produce these fig-
ures we used the example data provided by P. Cignoni for
the OEMM and QEM results and re-implemented OOCS
[14] which produces the same results as OOCSx.

6 Conclusion and limitations

In this paper we presented a new out-of-core mesh deci-
mation algorithm that works on arbitrarily large streams
of triangle data. It combines high quality decimation re-
sults with high decimation performance by using incre-
mental decimation based on the quadric error metric and



Figure 4: Decimation results for the Happy Buddha model (from left to right): stream decimation (18,486 tri.), OEMM
(18,338 tri.), QEM (18,338 tri.) and OOCS (20,950 tri.). Their corresponding relative Hausdorff maximum errors (over
the bounding box diagonal) are 0.89%, 0.89%, 0.87% and 1.12% respectively.

by processing the input data in one single pass. The small
memory requirements make it possible to run the algo-
rithm even on low-end PCs. On the other hand, since
the requirements can be adapted to the available system
resources, we can tune the algorithm to increase the per-
formance on high-end PCs by using more RAM.

We used the quadric error metric in our implemen-
tation for efficiency reasons. However, the algorithmic
structure is flexible enough to include any other more so-
phisticated distance metric as well [13]. Another con-
venient feature is that our algorithm can prescribe ex-
actly the number of output triangles while vertex cluster-
ing techniques can only prescribe approximate values. In
our experiments, all massive datasets could be processed
properly without any pre-sorting.

One difficulty is that triangles adjacent to the bound-
ary polygonPab have to be excluded from the decimation
since the neighborhoods of the respective vertices are not
yet complete. This however implies that boundaries in the
original mesh cannot be decimated at all since the stream
algorithm cannot distinguish true mesh boundaries and
temporary boundaries inPab before the input stream is
read completely. Nevertheless since triangles adjacent to
Pab are also no candidates for being written to the out-
put, they stay in the in-core buffer until the input stream
is empty and can then be decimated before the buffer is
cleared.

The more serious limitation is that the in-core buffer
has to store all the boundary triangles of the input mesh.
In the case of the St. Matthew model this was the reason
why we had to increase the buffer size: Due to imperfect
3D reconstruction this model has a large number of small
holes and hence many boundary triangles. One possible
way to address this issue is to introduce a preprocessing
step to tag such boundaries and this step might even be
embedded in the model generation procedure.

Acknowledgements

We would like to thank the Stanford Graphics Group and the Digital Michelangelo

Project for providing the datasets. Many thanks to Mario Botsch for insightful dis-

cussions, to Löıc Barthe for proofreading the paper and to anonymous reviewers

for their constructive critiques. The first author was funded by the DFG Graduate

College “Software for Communication Systems” at RWTH-Aachen, Germany.

References
[1] Pankaj K. Agarwal and Subhash Suri. Surface approximation and geomet-

ric partitions. InProceedings of 5th ACM-SIAM Symposium on Discrete
Algorithms, pages 24–33, 1994.

[2] Dmitry Brodsky and Benjamin Watson. Model simplification through re-
finement. InGraphics Interface 2000 Proceedings, pages 221–228, May
2000.

[3] Swen Campagna, Leif Kobbelt, and Hans-Peter Seidel. Directed edges -
a scalable representation for triangle meshes.ACM Journal of Graphics
Tools, 3(4):1–12, 1998.

[4] Paolo Cignoni, Claudio Rocchini, Claudio Montani, and Roberto Scopigno.
External memory management and simplification of huge meshes.IEEE
Transactions on Visualization and Computer Graphics, to appear, 2002.



Figure 5: Detail view of the decimation results for the
David 1mm model with 56M triangles in the original
data: stream decimation (562,219 faces, top), OEMM
(500,000 faces, middle), and OOCS (578,503 faces, bot-
tom). Left and right column show the same models with
different shading.

[5] Brian Curless and Marc Levoy. A volumetric method for building com-
plex models from range images. InProceedings of ACM SIGGRAPH 1996,
Computer Graphics Proceedings, Annual Conference Series, pages 303–
312. ACM, ACM Press / ACM SIGGRAPH, 1996.

[6] Jihad El-Sana and Yi-Jen Chiang. External memory view-dependent sim-
plification. Computer Graphics Forum, 19(3):139–150, 2000.

[7] Michael Garland. Multiresolution modeling: Survey & future opportunities.
In EUROGRAPHICS 99, State of the Art Report(STAR), pages 111–131.
Eurographics Association, Aire-la-Ville (CH), 1999.

[8] Michael Garland and Paul S. Heckbert. Surface simplification using quadric
error metrics. InProceedings of ACM SIGGRAPH 1997, Computer Graph-
ics Proceedings, Annual Conference Series, pages 209–216. ACM, ACM
Press / ACM SIGGRAPH, 1997.

[9] Michael Garland and Eric Shaffer. A multiphase approach to efficient sur-
face simplification. InIEEE Visualization 2002 Conference Proceedings,
pages 117–124. IEEE, 2002.

[10] Craig Gotsman, Stefan Gumhold, and Leif Kobbelt. Simplification and
compression of 3d-meshes. In Armin Iske, Ewald Quak, and Michal Floater,
editors, Tutorials on Multiresolution in Geometric Modeling. Springer,
2002.

[11] Huges Hoppe. Smooth view-dependant level-of-detail control and its appli-
cation to terrain rendering. InIEEE Visualization 98 Conference Proceed-
ings, pages 35–52. IEEE, October 1998.

[12] Hugues Hoppe. Progressive meshes. InProceedings of ACM SIGGRAPH
1996, Computer Graphics Proceedings, Annual Conference Series, pages
99–108. ACM, ACM Press / ACM SIGGRAPH, 1996.

[13] Leif Kobbelt, Swen Campagna, and Hans-Peter Seidel. A general frame-
work for mesh decimation. InGraphics Interface ’98 Proceedings, pages
43–50. Canadian Human-Computer Communications Society, A K Peters.,
June 1998.

Figure 6: Results shown with topology errors (red/dark
dots) for St. Matthew model by stream decimation (left,
1,863,837 tri.) and OOCS (right, 1,910,970 tri.). Note
OOCS will generate much moretopology inconsistencies
than our method.

[14] Peter Lindstrom. Out-of-core simplification of large polygonal models.
In Kurt Akeley, editor,Proceedings of ACM SIGGRAPH 2000, Computer
Graphics Proceedings, Annual Conference Series, pages 259–262, New
York, 2000. ACM, ACM Press / ACM SIGGRAPH.

[15] Peter Lindstrom and Claudio T. Silva. A memory insensitive technique for
large model simplification. InIEEE Visualization 2001 Conference Pro-
ceedings, pages 121–126. IEEE, October 2001.

[16] William E. Lorensen and Harvey E. Cline. Marching cubes: A high reso-
lution 3d surface construction algorithm.Computer Graphics (Proceedings
of ACM SIGGRAPH 87), 21(4):163–169, July 1987.

[17] Michael Mitzenmacher, Andrea W. Richa, and Remesh Sitaraman. The
power of two random choices: A survey of the techniques and results. In
Handbook of Randomized Computing. Kluwer Press, 2002.

[18] Chris Prince. Progressive meshes for large models of arbitrary topology.
Master’s thesis, University of Washington, 2000.

[19] Jarek Rossignac and Paul Borrel. Multi-resolution 3d approximations for
rendering complex scenes. In B. Falcidieno and T. L. Kunii, editors,Mod-
eling in Computer Graphics: Methods and Applications, pages 455–465,
New York, 1993. Springer-Verlag.

[20] Eric Shaffer and Michael Garland. Efficient adaptive simplification of mas-
sive meshes. InIEEE Visualization 2001 Conference Proceedings, pages
127–134. IEEE, October 2001.

[21] Benjamin Watson. Out of core simplification. InAdvanced Issues in Level
of Detail, ACM SIGGRAPH 2002 course notes # 14, 2002.

[22] Jianhua Wu and Leif Kobbelt. Fast mesh decimation by multiple-choice
techniques. In Guenther Greiner, Heinrich Niemann, Thomas Ertl, Bernd
Girod, and Hans-Peter Seidel, editors,Vision, Modeling, Visualization 2002
Proceedings, pages 241–248, November 2002.


	Introduction
	Related work
	Ideal stream algorithm for decimation
	Real stream algorithm for decimation
	Overall procedure
	Reading input triangles
	Multiple choice decimation
	Writing output triangles

	Results
	Conclusion and limitations

