

Multiple Camera Considerations in a View-Dependent Continuous Level of Detail

Algorithm

Abstract

We introduce the Camera Aware View-dEpendent
Continuous Level Of Detail (CAVECLOD) polygon
mesh representation. Several techniques recently have
been developed that use a hierarchy of vertex split and
merge operations to achieve continuous LOD. These
techniques exploit temporal coherence. However, when
multiple cameras are simultaneously viewing a polygon
mesh at continuous LOD, the exploitation of temporal
coherence is difficult. The CAVECLOD mesh
representation enables multiple cameras to
simultaneously exploit temporal coherence. Texture
coordinates and normal vectors are preserved and the
algorithm uses Microsoft DirectX Vertex Buffers and
Index Buffers for efficient rendering. Interactive frame
rates are achieved on large models on commercially
available hardware.

Key Words: continuous level of detail, multiple camera,
terrain rendering.

1 Introduction

Continuous level of detail (LOD) techniques have been
recently developed as a means of reducing the number
of polygons that are rendered during each frame in an
interactive system. These techniques reduce visual
popping effects that are often visible in static LOD
techniques since the mesh is slowly refined. Large
models, such as terrains, are often suitable for
continuous LOD since the system may draw one part of
the mesh in high resolution, and other parts of the mesh
at low resolution.

Current continuous LOD algorithms exploit temporal
coherence. Rather than performing all necessary
calculations to refine the polygon mesh each frame,
only a subset of the calculations is performed, and
small, incremental changes are made to the polygon
mesh. However, exploiting temporal coherence in this
manner is difficult when the user is viewing a mesh at
continuous LOD from multiple vantage points
simultaneously. In this case, a particular region of the
mesh may need to be displayed in high resolution for
one camera, but in low resolution for another camera.
While drawing the scene for the first camera, the
system will refine a particular portion of the polygon
mesh to be high resolution for one camera, and then
refine the same portion of the mesh to be low resolution

for another camera. During the next frame, this costly
process must be repeated.

There are two primary research contributions of this
paper. First, we introduce a technique that enables
multiple cameras to simultaneously view a mesh in a
continuous LOD system without sacrificing the
exploitation of temporal coherence. This is achieved by
identifying and separating the camera - specific
attributes of the data structures used to implement a
continuous LOD system. The empirical results
presented in Section 4 show the effects of this
separation, and thus provide insight into the value of
temporal coherence in the single camera case.

Second, we introduce a technique for the use of
indexed primitives as a means of passing the polygons to
the graphics API in a continuous LOD system. Our
algorithm preserves discrete attributes such as texture
coordinates and surface vertex normals during the
continuous LOD refinement.

Section 2 provides an overview of several current
continuous LOD techniques. Section 3 presents the
details of our enhanced continuous LOD technique.
Section 4 discusses the results of several experiments
that were performed during the development of this
technique. Section 5 discusses conclusions that can be
drawn from this work and areas for further investigation.

2 Previous work

Several techniques have been developed for continuous
LOD. Lindstrom [8] introduces a technique for
continuous LOD for triangulations of height fields. A
quadtree data structure is used to recursively partition a
height field. Each level in the quadtree is dynamically
tessellated to achieve continuous LOD. Duchaineau [1]
introduces a related technique that uses a triangle bintree
structure for continuous LOD.

Luebke [10] introduces a technique that maintains a
hierarchy of vertex clusters. The hierarchy is used to
dynamically tessellate the polygons in an environment.
Each node in the vertex hierarchy contains one or more
vertices as well as a single representative vertex. To
simplify part of a triangle mesh, the vertices in a node
are folded into the representative vertex for the node, and
any degenerate polygons are removed.

 Hoppe [4] introduces the progressive mesh
representation for continuous LOD. This representation

Bradley P. Kram
University of Regina
kram@cs.uregina.ca

Christopher D. Shaw
Georgia Institute of Technology

cdshaw@cc.gatech.edu

is based on a vertex split operation and its
corresponding edge collapse operations. Each split
operation encodes the changes that are made to the
geometry of the mesh along with discrete and scalar
attributes such as texture coordinates and normal
vectors. An intermediate wedge structure is used to
keep track of vertices that have more than one set of
discrete and scalar attributes at the vertex location.
Borders of discrete attribute discontinuity are
considered during the construction of the
representation. Collapse operations that move these
important visual cues are penalized when selecting the
next edge to collapse.

Hoppe [6] extends the progressive mesh
representation to take into account the camera position
in the scene. This involves the re-organization of the
split operations in [4] into a hierarchy of split
operations. This hierarchy of split operations allows
different parts of the mesh to be displayed at low
resolution and other parts to be displayed at high
resolution. A split operation consists of a parent vertex,
vs, and two child vertices vt and vu. Polygons fl and fr
are located to the left and right of the edge introduced
in a split operation. Performing a split operation
removes vs from the active list of vertices, adds vt and vu
to the active list of vertices, and adds fl and fr to the
active list of polygons. Performing a collapse operation
adds vs to the active list of vertices, removes vt and vu
from the active list of vertices, and removes fl and fr
from the active list of polygons.

Selective refinement of the mesh is achieved by
traversing the active list of vertices and determining if
the vertex should be split into its child vertices,
collapsed into its parent vertex (along with its sibling),
or left unchanged. A triangle strip representation of the
active polygon mesh is generated for optimal rendering.
Hoppe reports that the algorithm is able to generate
strips long enough to realize performance gains.

Hoppe [5] specializes the view-dependent progressive
mesh framework of [6] for the case of real time
rendering of terrain. This technique involves a re-
organization of the view-dependent progressive mesh
data structures in an effort to minimize memory
requirements.

Xia and Varshney [14] present a scheme similar to
that of Hoppe. Similar to [6], a hierarchy of split
operations is constructed off line and traversed at run
time. While Hoppe uses an energy function for
selecting an edge to collapse during compilation, Xia
and Varshney use a shortest edge heuristic while
constructing the vertex hierarchy.

To maintain the integrity of the mesh throughout the
refinement process, all adjacent polygons to the vertex
involved in a split operation must be present in the

current mesh before the split may take place. As a
result, only gradual changes from high resolution to low
resolution are possible in the mesh. In contrast, [6]
requires that only the two neighbour polygons of the two
new polygons introduced in the split operation are
present.

3 CAVECLOD mesh representation

In this section, we introduce the Camera Aware View-
dEpendent Continuous LOD (CAVECLOD) mesh
representation. A CAVECLOD mesh is a new
representation for continuous LOD that allows multiple
cameras to simultaneously exploit temporal coherence
while viewing the mesh and utilizes Microsoft Direct3D
Vertex Buffers and Index Buffers. Similar to [5, 6, 14]
the CAVECLOD mesh representation uses a hierarchy
of split and collapse operations to achieve continuous
LOD.
3.1. CAVECLOD basics
Indexed primitives are an effective mechanism for
passing polygons to a 3D graphics API. An application
first passes the graphics API an array of vertices that
consist of each vertex’s location, normal vector, texture
coordinates, and so on. The indices in this array are used
when defining the list of polygons for the graphics API
to draw. This method is more efficient than passing the
information about each vertex since vertices are often
reused, less data is transmitted, and the graphics API
only needs to transform the vertex and perform lighting
calculations at the vertex once [11]. Indexed primitives
are supported by both Microsoft DirectX and OpenGL.

While several polygons may share a single vertex’s
location, each polygon may have a different normal
vector or different texture coordinates associated with
the vertex location. Currently, indexed primitives
require vertex locations such as these to be duplicated in
the vertex array. This duplication introduces problems in
a continuous LOD representation since steps must be
taken to ensure that refinement of the mesh does not
separate these duplicated vertices [3].

The CAVECLOD mesh representation uses Microsoft
DirectX 8 Vertex Buffers and Index Buffers. Each
D3Dvertex consists of x, y, and z coordinates, a normal
vector, and texture coordinates. Since a particular vertex
location may be present more than once in the vertex
array, the CAVECLOD mesh representation utilizes an
intermediate data structure called a node to maintain
connectivity throughout the mesh. Nodes are stored in
an array, and a node identifier is used to find a particular
node in the array. A polygon consists of three node
identifiers. A node maintains a node position identifier,
which uniquely identifies a location in 3D space where
one or more D3Dvertices is found.

A polygon consists of surface properties such as
colour and a texture identifier that specifies which
texture is to be applied to a surface. In the
CAVECLOD mesh representation, polygons contain a
surface identifier that uniquely identifies the set of
surface properties applied to the polygon. Polygons are
stored in an array, and a polygon identifier is used to
find a particular polygon in the array.

Figure 1: Normal vector discontinuity forms a surface
group boundary

Figure 2: Surface identifier discontinuity forms surface
group boundary

Adjacent polygons that share the same surface
identifier and that share the same normal vector and
texture coordinates at both shared node positions
belong to the same surface group. A polygon mesh
may be partitioned into surface groups by examining
the normal vector and texture coordinates at each node
position. A surface group is enclosed by a surface
group boundary1, which is the set of nodes that are part
of more than one surface group. Figure 1 and Figure 2
depict two examples of surface group boundaries in a
polygon mesh.

Each polygon is assigned a surface group identifier.
Since polygons in the same surface group will use the
same D3Dvertex at a particular node position, a
polygon’s surface group identifier and the polygon’s
three node identifiers can be used to identify the
polygon’s D3Dvertices. The CAVECLOD mesh
representation maintains a two-dimensional array of
D3Dvertex indices called the D3Dindex array. When
drawing a polygon, the polygon’s surface group
identifier and the node position identifier are used to
lookup the appropriate D3Dvertex index in the
D3Dindex array.

1 For meshes with boundaries, nodes along the boundaries of
the mesh are also considered surface group boundaries.

3.2. Continuous LOD
Similar to [5, 6, 14], continuous LOD is achieved
through a hierarchy of split and collapse operations.
Since nodes maintain connectivity information about the
vertices in the mesh, split and collapse operations are
expressed as a hierarchy of nodes. Each node maintains
the node identifier of its parent node and two child
nodes. Similar to [6], a node also stores the identifiers of
the two polygons that are created when the node is split
(to the left and right of the new edge that is created)
along with the required neighbour polygons that must be
present in order for the split to take place. Similar to [5],
node positions do not move during collapse or split
operations. A parent node’s location must be the same
as one of its child nodes. The formation of the node
hierarchy is shown in Figure 3.

Figure 3: A node hierarchy
An edge collapse operation replaces two child nodes
with one parent node. The child node with the same
node position identifier as its parent is known as the
stationary child node (NID1 in Figure 3). The
appearance of polygons that contain the stationary child
node remains unchanged before and after a split or
collapse operation. The child node that does not have
the same node position identifier as its parent node is
known as the floating child node (NID2 in Figure 3).
The corners of polygons that contain the floating child
node appear to move during split and collapse
operations.

To maintain the integrity of the mesh during the entire
refinement process, potential split or collapse operations
must meet certain conditions before the operations take
place. The split and collapse preconditions of [6] are
used. In Figure 3, the split of active node NID3 is legal
if the polygons PID1, PID3, PID6 and PID7 are active.
The collapse of active nodes NID1 and NID2 is legal if
the polygons PID1, PID3, PID6 and PID7 are active and
in the configuration of Figure 3.
3.3. Surface group preservation
Surface group boundaries such as edges and texture
boundaries are often important visual cues for object
recognition [2]. Therefore, preserving these boundaries

PID: Polygon ID NID: Node ID

collapse

split

PID
1

PID 2

PID
3

PID
4

PID
5

PID
6

PID
8

PID
7

NID 1

NID 2

PID
1

PID 2

PID
3

PID
6

PID
8

PID
7

NID 3

Texture 1

Texture 2
Denotes node along surface
group boundary

Surface Group A

Surface Group B

Denotes node
along surface
group boundary

during the refinement process is desirable. In the
CAVECLOD mesh representation, a polygon belonging
to a particular surface group cannot contain a node at a
node position where surface group information does not
exist for the surface group.

Figure 4: An i

Figure 4 de
defined by a
operation, the
to a node with
polygons in S
vertex at nod
there is no D
Group B. A
texture coord
onto the polyg
1.

During CAV
surface group
in the high-re
similar to [4],
that move surf

Node positi
boundary are
are part of one
SHARP, and n
one surface g
Figure 5 depic

Figure 5: Cla

In order t
restrictions are
types can app
node at a posi
child node si

group boundary. A node at a SHARP position may be
either a stationary child node or a floating child node.
However, a node at a SHARP position may only be
involved in a collapse if the stationary child node in the
collapse is located along the same surface group
boundary. A node at a node position labelled FREE may
be either a floating child node or a stationary child node.

These rules ensure that a collapse operation does not
move a polygon to a node position where surface group
information does not exist for the surface group.

If a polygon mesh consists of q node positions and r
surface groups, the D3Dindex array must contain q x r
D3Dvertex indices. However, a particular surface group
may only span a small portion of the mesh and therefore

Surface G
Surface G

FREE

NPID 1

NPID 2

NPID 1

NPID: Node Position Identifier

Surface Group A (Texture 1)

relatively few node positions may be found in a
Surface Group B (Texture 2)
llegal edge collapse

picts a surface group boundary that is
 texture border. After the collapse

 polygons in Surface Group B are moved
 a node position identifier of 1. Since no
urface Group B have polygons with a

e position 1 in the high-resolution mesh,
3Dvertex at node position 1 for Surface
s a result, there is no D3Dvertex with
inates that will correctly map Texture 2
ons in Surface Group B at node position

ECLOD mesh construction, we preserve
 boundaries by classifying node positions
solution mesh [4, 13]. Our approach is

 however, rather than penalizing collapses
ace group boundaries, we disallow them.
ons that are not part of a surface group
classified as FREE. Node positions that
 surface group boundary are classified as
ode positions that are part of more than
roup boundary are classified as RIGID.
ts these classifications.

ssification of node positions

o maintain surface group boundaries,
 placed on how the various node position
ear in collapse and split operations. A
tion labelled RIGID must be a stationary
nce it exists on more than one surface

particular surface group. As a result, the two-
dimensional array may be sparsely populated.

We may reduce the size of the D3Dindex array by re-
using surface group identifiers. Let s1 and s2 be surface
group identifiers. Let N1 be the set of node position
identifiers that contain a D3Dvertex for s1 in the high-
resolution mesh and let N2 be the set of node position
identifiers that contain a D3Dvertex for s2 in the high-
resolution mesh. Let p be a polygon with surface group
identifier s1. No legal edge collapse may modify p to
contain a node with a node position identifier n, ∉n N1.
Therefore, if N1 and N2 are mutually exclusive, no series
of legal edge collapses will cause them to intersect.

In other words, if two surface groups do not share a
common node position in the high-resolution mesh, no
series of legal edge collapses will cause the two surface
groups to share a common node position at any level of
detail. This means that if two surface groups do not
share a common node position, they may be assigned the
same surface group identifier. Figure 6 depicts an
example of two surface groups that are assigned the
same surface group identifier.

Figure 6: Assignment of surface group identifiers

3.4. Multiple camera considerations
The CAVECLOD mesh representation enables multiple
cameras to simultaneously exploit temporal coherence.
This is achieved by separating the camera – specific
attributes of the data structures.

roup A
roup B

Surface Group C

SHARP RIGID Surface Group A (Surface Group Identifier 1)
Surface Group B (Surface Group Identifier 2)
Surface Group C (Surface Group Identifier 1)

Several aspects of the data structures need not be
duplicated when an additional camera views the mesh.
The D3Dindex array, the node hierarchy, polygon
surface identifiers and surface group identifiers, and the
DirectX Vertex Buffer are examples of these data
structures.

In order for each camera to exploit temporal
coherence, each camera must maintain its own active
polygon list and active node list. In order to properly
display and update the mesh, an active polygon in a
camera’s active polygon list must maintain the node
identifiers that define its current geometry as well as the
polygon’s current neighbours in order to determine
whether a potential collapse or split is legal. A camera
refinement data structure is maintained for each camera
that is viewing the mesh. This data structure maintains
the active node list and the active polygon list for a
particular camera.

The active node lists and active polygon lists are
implemented as doubly linked lists. However, during
split and collapse operations, we must also quickly be
able to determine if a particular node or polygon is
active for a given camera. For this reason, each camera
refinement data structure maintains an array of pointers
to active nodes and an array of pointers to active
polygons. To determine if a particular polygon is
active, we may use the polygon identifier to lookup the
pointer in the camera refinement data structure’s array
of pointers to active polygons. If the pointer is NULL,
the polygon is inactive. If the pointer is not NULL, it
points to an ActivePolygon data structure that maintains
the current information about the polygon.

The data structures are designed to minimize the
amount of additional memory required as the number of
cameras viewing the mesh increases. The memory
requirements are summarized in Equation 1.

3.5. Rendering
When a CAVECLOD mesh is loaded into memory, a
DirectX Vertex Buffer is constructed with the list of
D3Dverticies for the mesh. Drawing the scene for a
particular camera is performed by traversing the active
polygon list. The polygon’s node position identifiers,

along with the polygon’s surface group identifier are
used to lookup three D3Dvertex indices in the D3Dindex
array. These indices are added to a DirectX Index
Buffer that is passed to the DirectX API when traversal
of the active polygons is complete. A separate DirectX
Index Buffer is maintained for each surface identifier.
This approach minimizes the number of texture state
changes that are required when rendering.

Two runtime refinement criteria are used. The view
frustum criterion of [6] is used to coarsen areas of the
mesh that are not visible, and the screen space error
metric of [9] is used to estimate the visual importance of
polygons in the mesh.
3.6. Algorithm summary
For a particular camera, the incremental selective
refinement algorithm of [6] is used to achieve continuous
LOD. At each active node, we examine the node to
determine if it should be split, collapsed into its parent,
or remain unchanged. An evaluate_node function
examines the node parameters with respect to the criteria
described in the previous section.

The polygons surrounding an active node that should
be split may be configured in a manner such that the split
is illegal. In this case, we first split the nodes that form
the polygons. A collapse operation may not be legal
even though evaluation of the node states that it should
be collapsed. In this scenario, the node is not collapsed.
In summary, a portion of the mesh moves from low
resolution to high resolution when necessary and moves
from high resolution to low resolution when possible [6].

4 Results

We present the results of several tests and experiments
that were performed to demonstrate use of the
CAVECLOD mesh representation. Testing was
performed on a 1.1 GHz AMD Athlon personal
computer running Windows 2000 Professional with 384
MB of PC133 RAM and an ATI RADEON™ (64MB)
graphics card.
4.1. Testing overview
In order to measure the effectiveness of the
CAVECLOD mesh representation, two applications
were tested. The first application uses the CAVECLOD
mesh representation to achieve continuous LOD for
multiple cameras. A second application calculates a
continuous LOD representation for each camera without
using the CAVECLOD representation. When displaying
the scene for several cameras, the mesh is refined to
display the scene for Camera A, then refined to display
the scene for Camera B, and so on. Temporal coherence
is not exploited for each camera since the refinement
process that calculates the scene for camera B begins
with the mesh that was displayed for Camera A. As a

b = 44n +12p +32d + 2se + 12na (1)
+ 36pa + c(4n +4p +16)

where
b = the total number of bytes required for the mesh
n = the total number of nodes in the hierarchy
p = the total number of polygons in the high-resolution mesh
d = the total number of D3Dvertices
s = the number of unique surface group identifiers
e = the number of unique node positions in the hierarchy.
na = the number of active nodes (total for all cameras)
pa = the number of active polygons (total for all cameras)
c = the number of cameras

result, this application must perform a significant
number of refinement operations each frame to display
the scene for each camera.

The system was tested on three terrain models. The
Three Lakes terrain model (Figure 7) consists of 80,000
polygons and represents a fictional patch of terrain 70
km by 70 km. The model consists of nine different
textures that form surface group boundaries. Five
unique surface group identifiers are assigned to the
surface groups. The D3Dindex array is a 5 x 40,401
array that is 21% populated since only 21% of the
surface group identifier – node position identifier
combinations are in use.

The Cliff terrain model (Figure 8) consists of 107,184
polygons and represents a fictional patch of terrain 70
km x 70 km. The model consists of four surface group
identifiers and uses five different textures. The edge
separating the top of the cliff from the side of the cliff is
an example of a surface group boundary that is defined
by normal vector discontinuity. The D3Dindex array is
a 4 x 54,056 array that is 26% populated.

The Grand Canyon model (Figure 9) is based on data
from the United States Geological Survey. The model
represents an area surrounding the Grand Canyon that is
approximately 122 km by 245 km. The model contains
126,480 polygons and a single texture is applied to the
entire model. As a result, the model contains only one
surface group, and the D3Dindex array is reduced to a
one-dimensional array that contains all of the D3D
vertex indices.

Testing was performed through a series of two-minute
flyovers over the terrain models. A one-camera flyover
was performed with Camera A. A two-camera flyover
was performed with Camera A and Camera B. Three
and four camera flyovers were performed with Cameras
A, B, C and Cameras A, B, C, D respectively. When
displaying the scene for one camera, the display covers
the entire screen. When displaying the scene for two
cameras, the second camera’s display occupies the top
left quarter of the screen. Three cameras are displayed
by placing the second and third cameras across the top
half of the screen. The view from each camera is drawn
in a separate quadrant for the four-camera flyover.

All testing was performed at a full screen resolution
of 800 x 600. The view frustum run time criterion of
[6] is used along with the screen space error criterion of
[9]. For the screen space error criterion, a 7% error
tolerance is used.
4.2. Exploiting temporal coherence
The CAVECLOD mesh representation is designed to
enable multiple cameras to simultaneously exploit
temporal coherence.

Figure 10 shows the number of refinement (split and
collapse) operations that take place per second for a

four-camera flyover of the Grand Canyon in the
application that does not use the CAVECLOD mesh
representation. The terrain model is refined for Camera
A, rendered, refined for camera B, rendered, and so on.
In this application, a significant number of refinement
operations must be made each frame to display the scene
for each camera.

With the CAVECLOD mesh representation, each
camera maintains its own active polygon and active node
lists and incrementally refines these lists. This
dramatically reduces the number of refinement
operations required each frame. Figure 11 depicts the
number of refinement operations that take place per
second during the same four-camera flyover of the
Grand Canyon model. The number of split operations
required per second for each camera stays below 2000
for most of the flyover compared to an average of 14,868
refinements per camera per second without the
CAVECLOD representation. As shown in Figure 12 the
use of the CAVECLOD representation impacts the frame
rate of the system.

Similar flyover experiments were performed on each
model with one, two, three and four cameras
respectively. Complete details of all flyovers for all
models can be found in [7].
4.3. Memory requirements
As outlined in Section 3.4, the introduction of additional
cameras does not significantly increase the amount of
memory required by the CAVECLOD mesh
representation. As shown in Equation 1, three factors
affect the memory required to store a CAVECLOD
mesh:

• the size of the static structures of the mesh (n, p,
d, s, and e in Equation 1)

• the number of cameras (c in Equation 1)
• the number of active polygons and active nodes

(na and pa in Equation 1)
Table 1 displays the actual memory requirements for

the three models. On average, the amount of additional
memory required per camera is 10.5% of the memory
requirements for the static portions of the mesh.

Table 1: Memory requirements for each model

 Grand
Canyon

Three
Lakes

Cliff

Static structures
44n +12p +32d +

2se

9,297,526
bytes

6,284,962
bytes

8,261,168
bytes

Memory required
per camera
4n +4p +16

1,016,184
bytes

643,064
bytes

861,088
bytes

The number of active polygons and active nodes is
determined at run time and varies as the user moves
throughout the environment. As more cameras are

added, the number of active polygons and active nodes
will increase. Figure 13 depicts the number of active
polygons for each camera during the flyovers of the
three lakes terrain model. Figure 14 depicts the
memory required for the various flyovers of the model.
Clearly, the introduction of additional cameras does not
dramatically increase the amount of memory required
by the system.
4.4. Vertex buffer coverage
As outlined in Section 3.5, rendering a CAVECLOD
mesh is achieved through the use of DirectX Vertex
Buffers and Index Buffers. During the rendering
process, the vertex buffer is transferred to the graphics
card, and index buffers are constructed that refer to the
vertices in the vertex buffer. All of the D3Dvertices in
the high-resolution mesh are transferred to the graphics
card each frame even though not all of the D3Dvertices
may be used. As expected, as the number of cameras
increases, the number of D3Dvertices that are used will
increase. Even though the entire vertex buffer is
transferred to the video card, performance gains are still
realized. The graphics processor only transforms and
performs lighting calculations on vertices that are used.
Also, since the number of polygons drawn each frame
has been dramatically reduced from the high-resolution
model, less processing takes place during the
rasterization stage of the rendering process.

5 Conclusions and future work

We have introduced the CAVECLOD mesh
representation that enables multiple cameras to
simultaneously exploit temporal coherence in a
continuous LOD algorithm. The system uses Microsoft
DirectX Vertex Buffers and Index Buffers for efficient
rendering. We have shown in Section 4 that the system
is capable of rendering large models at interactive rates
on commercially available hardware. The results in
Section 4 also demonstrate the importance of the
exploitation of temporal coherence in a continuous
LOD algorithm.

While this new representation has been developed,
several areas are left as future work. Since each camera
maintains its own active node and active polygon lists,
a parallelized version of the algorithm may be
advantageous. The refinement process for each camera
only reads from the shared static portions of the data
structures and modifies the active node and polygon
lists for a single camera. For this reason, the refinement
process for each camera may take place in a separate
thread without introducing significant synchronization
issues. Future work would explore the performance
gains that could be realized by parallelizing the
algorithm in this fashion and running it on a
multiprocessor platform.

Acknowledgements
We wish to thank James Hall and Dee Jay Randall for
coding contributions to the underlying framework used
by our current implementation. This work was supported
by financial assistance from the Natural Sciences and
Engineering Research Council of Canada (NSERC) and
from the University of Regina Faculty of Graduate
Studies. Data for the Grand Canyon model was obtained
from The United States Geological Survey (USGS), with
processing by Chad McCabe of the Microsoft
Geography Product Unit.

References
[1] Duchaineau. M., Wolinsky, M., Sigeti, D., Miller,

M., Aldrich, C., Mineev-Weinstein, M.,
"ROAMing Terrain: Real-time Optimally Adapting
Meshes," IEEE Visualization '97: pp. 81-88.

[2] Garland, M., Heckbert, P., "Simplifying Surfaces
with Color and Texture using Quadric Error
Metrics," IEEE Visualization '98: pp. 263 - 269.

[3] Hoppe, H., "Efficient Implementation of
Progressive Meshes," Computers and Graphics
Vol. 22 No.1 (1998): pp. 27-36.

[4] Hoppe, H., "Progressive Meshes," SIGGRAPH'97
Proceedings (1997): pp. 99-108.

[5] Hoppe, H., "Smooth View-Dependent Level-of-
Detail Control and its Application to Terrain
Rendering," IEEE Visualization '98 : pp, 35-42.

[6] Hoppe, H., "View-Dependent Refinement of
Progressive Meshes," SIGGRAPH'97: pp. 189-198.

[7] Kram, B.P., Multiple Camera Considerations in a
View-Dependent Continuous Level Detail
Algorithm M.Sc. Thesis, Univ. of Regina, 2002.

[8] Lindstrom, P., Koller, D., Ribarsky W., Hodges, L.,
Faust, N. and Turner, G., "Real-time continuous
level of detail rendering of height fields,"
SIGGRAPH'96: pp 109 - 118.

[9] Luebke, D., View-Dependent Simplification of
Arbitrary Polygonal Environments Ph.D. Thesis,
University of North Carolina - Chapel Hill, 1998.

[10] Luebke, D. and Erikson, C., "View-Dependent
Simplification of Arbitrary Polygonal Environ-
ments," SIGGRAPH'97: pp. 199-208.

[11] Microsoft DirectX 8 Developer FAQ,
http://msdn.microsoft.com/library/default.asp?URL
=/library/techart/DirectX8faq.htm.

[12] Sander, P., Snyder, J., Gortler, S., Hoppe. H.,
"Texture mapping progressive meshes,"
SIGGRAPH 2001 pp 409-416.

[13] Schroeder, W., "A Topology Modifying
Progressive Decimation Algorithm," IEEE
Visualization '97: pp. 205-212.

[14] Xia, J. and Varshney, A., "Dynamic View-
Dependent Simplification for Polygonal Models,"
IEEE Visualization '96: pp. 335-344.

Figure 7: Two-camera flyover of the three lakes model

Figure 8: Four-camera flyover of the Cliff model

Figure 9: Three camera flyover of the Grand Canyon

0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120
Time (s)

Camera A Camera B Camera C Camera D

R
ef

in
em

en
t o

pe
ra

tio
ns

 p
er

 s
ec

on
d

Figure 10:Refinement operations on the Grand Canyon
model without the CAVECLOD representation

0

4000

8000

12000

16000

0 20 40 60 80 100 120
Time (s)

C am era A C am era B C am era C C am era D

R
ef

in
em

en
t o

pe
ra

tio
ns

 p
er

 se
co

nd

Figure11: Refinement operations/sec on the Grand
Canyon model with the CAVECLOD representation

0

2

4

6

8

0 20 40 60 80 100 120
Time (s)

Fr
am

es
 P

er
 S

ec
on

d
(fp

s)

CAVECLOD Without CAVECLOD

Figure 12: Frame rates with and without CAVECLOD
model in the 4-camera flyover of the Grand Canyon
model

0

20000

40000

60000

80000

1 60 119Time (s)

Ac
tiv

e
Po

ly
go

ns

Camera A Camera B Camera C Camera D

Figure 13 Active polygon counts for the four-camera
flyover of the Three Lakes model

Figure 14 Memory requirements for the flyovers of the
Three Lakes model

0
2
4
6
8

10
12

0 60 120Time (s)

M
em

or
y

(M
B)

1 Camera Flyover 2 Camera Flyover
3 Camera Flyover 4 Camera Flyover

	Introduction
	Previous work
	CAVECLOD mesh representation
	CAVECLOD basics
	Continuous LOD
	Surface group preservation
	Multiple camera considerations
	Rendering
	Algorithm summary

	Results
	Testing overview
	Exploiting temporal coherence
	Memory requirements
	Vertex buffer coverage

	Conclusions and future work

