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Abstract 

We introduce the Camera Aware View-dEpendent 
Continuous Level Of Detail (CAVECLOD) polygon 
mesh representation.  Several techniques recently have 
been developed that use a hierarchy of vertex split and 
merge operations to achieve continuous LOD.  These 
techniques exploit temporal coherence.  However, when 
multiple cameras are simultaneously viewing a polygon 
mesh at continuous LOD, the exploitation of temporal 
coherence is difficult.  The CAVECLOD mesh 
representation enables multiple cameras to 
simultaneously exploit temporal coherence.  Texture 
coordinates and normal vectors are preserved and the 
algorithm uses Microsoft DirectX Vertex Buffers and 
Index Buffers for efficient rendering.  Interactive frame 
rates are achieved on large models on commercially 
available hardware. 
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1 Introduction 

Continuous level of detail (LOD) techniques have been 
recently developed as a means of reducing the number 
of polygons that are rendered during each frame in an 
interactive system.  These techniques reduce visual 
popping effects that are often visible in static LOD 
techniques since the mesh is slowly refined.  Large 
models, such as terrains, are often suitable for 
continuous LOD since the system may draw one part of 
the mesh in high resolution, and other parts of the mesh 
at low resolution. 

Current continuous LOD algorithms exploit temporal 
coherence.  Rather than performing all necessary 
calculations to refine the polygon mesh each frame, 
only a subset of the calculations is performed, and 
small, incremental changes are made to the polygon 
mesh.  However, exploiting temporal coherence in this 
manner is difficult when the user is viewing a mesh at 
continuous LOD from multiple vantage points 
simultaneously.  In this case, a particular region of the 
mesh may need to be displayed in high resolution for 
one camera, but in low resolution for another camera.  
While drawing the scene for the first camera, the 
system will refine a particular portion of the polygon 
mesh to be high resolution for one camera, and then 
refine the same portion of the mesh to be low resolution 

for another camera.  During the next frame, this costly 
process must be repeated.   

There are two primary research contributions of this 
paper. First, we introduce a technique that enables 
multiple cameras to simultaneously view a mesh in a 
continuous LOD system without sacrificing the 
exploitation of temporal coherence.  This is achieved by 
identifying and separating the camera - specific 
attributes of the data structures used to implement a 
continuous LOD system.  The empirical results 
presented in Section 4 show the effects of this 
separation, and thus provide insight into the value of 
temporal coherence in the single camera case. 

Second, we introduce a technique for the use of 
indexed primitives as a means of passing the polygons to 
the graphics API in a continuous LOD system.  Our 
algorithm preserves discrete attributes such as texture 
coordinates and surface vertex normals during the 
continuous LOD refinement. 

Section 2 provides an overview of several current 
continuous LOD techniques.  Section 3 presents the 
details of our enhanced continuous LOD technique.  
Section 4 discusses the results of several experiments 
that were performed during the development of this 
technique.  Section 5 discusses conclusions that can be 
drawn from this work and areas for further investigation. 

2 Previous work 

Several techniques have been developed for continuous 
LOD.  Lindstrom [8] introduces a technique for 
continuous LOD for triangulations of height fields.  A 
quadtree data structure is used to recursively partition a 
height field.  Each level in the quadtree is dynamically 
tessellated to achieve continuous LOD.  Duchaineau [1] 
introduces a related technique that uses a triangle bintree 
structure for continuous LOD. 

Luebke [10] introduces a technique that maintains a 
hierarchy of vertex clusters.  The hierarchy is used to 
dynamically tessellate the polygons in an environment.  
Each node in the vertex hierarchy contains one or more 
vertices as well as a single representative vertex.  To 
simplify part of a triangle mesh, the vertices in a node 
are folded into the representative vertex for the node, and 
any degenerate polygons are removed. 

 Hoppe [4] introduces the progressive mesh 
representation for continuous LOD.  This representation 
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is based on a vertex split operation and its 
corresponding edge collapse operations.  Each split 
operation encodes the changes that are made to the 
geometry of the mesh along with discrete and scalar 
attributes such as texture coordinates and normal 
vectors.  An intermediate wedge structure is used to 
keep track of vertices that have more than one set of 
discrete and scalar attributes at the vertex location.  
Borders of discrete attribute discontinuity are 
considered during the construction of the 
representation.  Collapse operations that move these 
important visual cues are penalized when selecting the 
next edge to collapse. 

Hoppe [6] extends the progressive mesh 
representation to take into account the camera position 
in the scene.  This involves the re-organization of the 
split operations in [4] into a hierarchy of split 
operations.  This hierarchy of split operations allows 
different parts of the mesh to be displayed at low 
resolution and other parts to be displayed at high 
resolution.  A split operation consists of a parent vertex, 
vs, and two child vertices vt and vu.  Polygons fl and fr 
are located to the left and right of the edge introduced 
in a split operation.  Performing a split operation 
removes vs from the active list of vertices, adds vt and vu 
to the active list of vertices, and adds fl and fr to the 
active list of polygons.  Performing a collapse operation 
adds vs to the active list of vertices, removes vt and vu 
from the active list of vertices, and removes fl and fr 
from the active list of polygons. 

Selective refinement of the mesh is achieved by 
traversing the active list of vertices and determining if 
the vertex should be split into its child vertices, 
collapsed into its parent vertex (along with its sibling), 
or left unchanged.  A triangle strip representation of the 
active polygon mesh is generated for optimal rendering.  
Hoppe reports that the algorithm is able to generate 
strips long enough to realize performance gains. 

Hoppe [5] specializes the view-dependent progressive 
mesh framework of [6] for the case of real time 
rendering of terrain.  This technique involves a re-
organization of the view-dependent progressive mesh 
data structures in an effort to minimize memory 
requirements. 

Xia and Varshney [14] present a scheme similar to 
that of Hoppe.  Similar to [6], a hierarchy of split 
operations is constructed off line and traversed at run 
time.  While Hoppe uses an energy function for 
selecting an edge to collapse during compilation, Xia 
and Varshney use a shortest edge heuristic while 
constructing the vertex hierarchy.  

To maintain the integrity of the mesh throughout the 
refinement process, all adjacent polygons to the vertex 
involved in a split operation must be present in the 

current mesh before the split may take place.  As a 
result, only gradual changes from high resolution to low 
resolution are possible in the mesh.  In contrast, [6] 
requires that only the two neighbour polygons of the two 
new polygons introduced in the split operation are 
present. 

3 CAVECLOD mesh representation 

In this section, we introduce the Camera Aware View-
dEpendent Continuous LOD (CAVECLOD) mesh 
representation.  A CAVECLOD mesh is a new 
representation for continuous LOD that allows multiple 
cameras to simultaneously exploit temporal coherence 
while viewing the mesh and utilizes Microsoft Direct3D 
Vertex Buffers and Index Buffers.  Similar to [5, 6, 14] 
the CAVECLOD mesh representation uses a hierarchy 
of split and collapse operations to achieve continuous 
LOD. 
3.1. CAVECLOD basics 
Indexed primitives are an effective mechanism for 
passing polygons to a 3D graphics API.  An application 
first passes the graphics API an array of vertices that 
consist of each vertex’s location, normal vector, texture 
coordinates, and so on.  The indices in this array are used 
when defining the list of polygons for the graphics API 
to draw.  This method is more efficient than passing the 
information about each vertex since vertices are often 
reused, less data is transmitted, and the graphics API 
only needs to transform the vertex and perform lighting 
calculations at the vertex once [11].  Indexed primitives 
are supported by both Microsoft DirectX and OpenGL.  

While several polygons may share a single vertex’s 
location, each polygon may have a different normal 
vector or different texture coordinates associated with 
the vertex location.  Currently, indexed primitives 
require vertex locations such as these to be duplicated in 
the vertex array. This duplication introduces problems in 
a continuous LOD representation since steps must be 
taken to ensure that refinement of the mesh does not 
separate these duplicated vertices [3]. 

The CAVECLOD mesh representation uses Microsoft 
DirectX 8 Vertex Buffers and Index Buffers.  Each 
D3Dvertex consists of x, y, and z coordinates, a normal 
vector, and texture coordinates.  Since a particular vertex 
location may be present more than once in the vertex 
array, the CAVECLOD mesh representation utilizes an 
intermediate data structure called a node to maintain 
connectivity throughout the mesh.  Nodes are stored in 
an array, and a node identifier is used to find a particular 
node in the array.  A polygon consists of three node 
identifiers.  A node maintains a node position identifier, 
which uniquely identifies a location in 3D space where 
one or more D3Dvertices is found. 



A polygon consists of surface properties such as 
colour and a texture identifier that specifies which 
texture is to be applied to a surface.  In the 
CAVECLOD mesh representation, polygons contain a 
surface identifier that uniquely identifies the set of 
surface properties applied to the polygon.  Polygons are 
stored in an array, and a polygon identifier is used to 
find a particular polygon in the array. 

Figure 1: Normal vector discontinuity forms a surface 
group boundary 

Figure 2: Surface identifier discontinuity forms surface 
group boundary 

Adjacent polygons that share the same surface 
identifier and that share the same normal vector and 
texture coordinates at both shared node positions 
belong to the same surface group.  A polygon mesh 
may be partitioned into surface groups by examining 
the normal vector and texture coordinates at each node 
position.  A surface group is enclosed by a surface 
group boundary1, which is the set of nodes that are part 
of more than one surface group.  Figure 1 and Figure 2 
depict two examples of surface group boundaries in a 
polygon mesh. 

Each polygon is assigned a surface group identifier.  
Since polygons in the same surface group will use the 
same D3Dvertex at a particular node position, a 
polygon’s surface group identifier and the polygon’s 
three node identifiers can be used to identify the 
polygon’s D3Dvertices.  The CAVECLOD mesh 
representation maintains a two-dimensional array of 
D3Dvertex indices called the D3Dindex array.  When 
drawing a polygon, the polygon’s surface group 
identifier and the node position identifier are used to 
lookup the appropriate D3Dvertex index in the 
D3Dindex array. 
                                                           
1 For meshes with boundaries, nodes along the boundaries of 
the mesh are also considered surface group boundaries. 

3.2. Continuous LOD 
Similar to [5, 6, 14], continuous LOD is achieved 
through a hierarchy of split and collapse operations.  
Since nodes maintain connectivity information about the 
vertices in the mesh, split and collapse operations are 
expressed as a hierarchy of nodes.  Each node maintains 
the node identifier of its parent node and two child 
nodes.  Similar to [6], a node also stores the identifiers of 
the two polygons that are created when the node is split 
(to the left and right of the new edge that is created) 
along with the required neighbour polygons that must be 
present in order for the split to take place.  Similar to [5], 
node positions do not move during collapse or split 
operations.  A parent node’s location must be the same 
as one of its child nodes.  The formation of the node 
hierarchy is shown in Figure 3. 

 

Figure 3: A node hierarchy 
An edge collapse operation replaces two child nodes 
with one parent node.  The child node with the same 
node position identifier as its parent is known as the 
stationary child node (NID1 in Figure 3).  The 
appearance of polygons that contain the stationary child 
node remains unchanged before and after a split or 
collapse operation.  The child node that does not have 
the same node position identifier as its parent node is 
known as the floating child node (NID2 in Figure 3).  
The corners of polygons that contain the floating child 
node appear to move during split and collapse 
operations. 

To maintain the integrity of the mesh during the entire 
refinement process, potential split or collapse operations 
must meet certain conditions before the operations take 
place.  The split and collapse preconditions of [6] are 
used.  In Figure 3, the split of active node NID3 is legal 
if the polygons PID1, PID3, PID6 and PID7 are active.  
The collapse of active nodes NID1 and NID2 is legal if 
the polygons PID1, PID3, PID6 and PID7 are active and 
in the configuration of Figure 3. 
3.3. Surface group preservation 
Surface group boundaries such as edges and texture 
boundaries are often important visual cues for object 
recognition [2].  Therefore, preserving these boundaries 
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during the refinement process is desirable.  In the 
CAVECLOD mesh representation, a polygon belonging 
to a particular surface group cannot contain a node at a 
node position where surface group information does not 
exist for the surface group.  
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particular surface group.  As a result, the two-
dimensional array may be sparsely populated. 

We may reduce the size of the D3Dindex array by re-
using surface group identifiers.  Let s1 and s2 be surface 
group identifiers.  Let N1 be the set of node position 
identifiers that contain a D3Dvertex for s1 in the high-
resolution mesh and let N2 be the set of node position 
identifiers that contain a D3Dvertex for s2 in the high-
resolution mesh.  Let p be a polygon with surface group 
identifier s1.  No legal edge collapse may modify p to 
contain a node with a node position identifier n, ∉n N1.  
Therefore, if N1 and N2 are mutually exclusive, no series 
of legal edge collapses will cause them to intersect. 

In other words, if two surface groups do not share a 
common node position in the high-resolution mesh, no 
series of legal edge collapses will cause the two surface 
groups to share a common node position at any level of 
detail.  This means that if two surface groups do not 
share a common node position, they may be assigned the 
same surface group identifier.  Figure 6 depicts an 
example of two surface groups that are assigned the 
same surface group identifier. 

Figure 6: Assignment of surface group identifiers 

3.4. Multiple camera considerations 
The CAVECLOD mesh representation enables multiple 
cameras to simultaneously exploit temporal coherence.  
This is achieved by separating the camera – specific 
attributes of the data structures.   
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Several aspects of the data structures need not be 
duplicated when an additional camera views the mesh.  
The D3Dindex array, the node hierarchy, polygon 
surface identifiers and surface group identifiers, and the 
DirectX Vertex Buffer are examples of these data 
structures.   

In order for each camera to exploit temporal 
coherence, each camera must maintain its own active 
polygon list and active node list.  In order to properly 
display and update the mesh, an active polygon in a 
camera’s active polygon list must maintain the node 
identifiers that define its current geometry as well as the 
polygon’s current neighbours in order to determine 
whether a potential collapse or split is legal.  A camera 
refinement data structure is maintained for each camera 
that is viewing the mesh.  This data structure maintains 
the active node list and the active polygon list for a 
particular camera. 

The active node lists and active polygon lists are 
implemented as doubly linked lists.  However, during 
split and collapse operations, we must also quickly be 
able to determine if a particular node or polygon is 
active for a given camera.  For this reason, each camera 
refinement data structure maintains an array of pointers 
to active nodes and an array of pointers to active 
polygons.  To determine if a particular polygon is 
active, we may use the polygon identifier to lookup the 
pointer in the camera refinement data structure’s array 
of pointers to active polygons.  If the pointer is NULL, 
the polygon is inactive.  If the pointer is not NULL, it 
points to an ActivePolygon data structure that maintains 
the current information about the polygon. 

The data structures are designed to minimize the 
amount of additional memory required as the number of 
cameras viewing the mesh increases.  The memory 
requirements are summarized in Equation 1. 

3.5. Rendering 
When a CAVECLOD mesh is loaded into memory, a 
DirectX Vertex Buffer is constructed with the list of 
D3Dverticies for the mesh.  Drawing the scene for a 
particular camera is performed by traversing the active 
polygon list.  The polygon’s node position identifiers, 

along with the polygon’s surface group identifier are 
used to lookup three D3Dvertex indices in the D3Dindex 
array.  These indices are added to a DirectX Index 
Buffer that is passed to the DirectX API when traversal 
of the active polygons is complete.  A separate DirectX 
Index Buffer is maintained for each surface identifier.  
This approach minimizes the number of texture state 
changes that are required when rendering.  

Two runtime refinement criteria are used.  The view 
frustum criterion of [6] is used to coarsen areas of the 
mesh that are not visible, and the screen space error 
metric of [9] is used to estimate the visual importance of 
polygons in the mesh. 
3.6. Algorithm summary 
For a particular camera, the incremental selective 
refinement algorithm of [6] is used to achieve continuous 
LOD.  At each active node, we examine the node to 
determine if it should be split, collapsed into its parent, 
or remain unchanged.  An evaluate_node function 
examines the node parameters with respect to the criteria 
described in the previous section. 

The polygons surrounding an active node that should 
be split may be configured in a manner such that the split 
is illegal.  In this case, we first split the nodes that form 
the polygons.  A collapse operation may not be legal 
even though evaluation of the node states that it should 
be collapsed.  In this scenario, the node is not collapsed.  
In summary, a portion of the mesh moves from low 
resolution to high resolution when necessary and moves 
from high resolution to low resolution when possible [6]. 

4 Results 

We present the results of several tests and experiments 
that were performed to demonstrate use of the 
CAVECLOD mesh representation.  Testing was 
performed on a 1.1 GHz AMD Athlon personal 
computer running Windows 2000 Professional with 384 
MB of PC133 RAM and an ATI RADEON™ (64MB) 
graphics card. 
4.1. Testing overview 
In order to measure the effectiveness of the 
CAVECLOD mesh representation, two applications 
were tested.  The first application uses the CAVECLOD 
mesh representation to achieve continuous LOD for 
multiple cameras.  A second application calculates a 
continuous LOD representation for each camera without 
using the CAVECLOD representation.  When displaying 
the scene for several cameras, the mesh is refined to 
display the scene for Camera A, then refined to display 
the scene for Camera B, and so on.  Temporal coherence 
is not exploited for each camera since the refinement 
process that calculates the scene for camera B begins 
with the mesh that was displayed for Camera A.  As a 

b = 44n +12p +32d + 2se + 12na                   (1) 
+ 36pa + c(4n +4p +16) 

where  
b  = the total number of bytes required for the mesh 
n = the total number of nodes in the hierarchy 
p = the total number of polygons in the high-resolution mesh
d = the total number of D3Dvertices 
s = the number of unique surface group identifiers 
e = the number of unique node positions in the hierarchy. 
na = the number of active nodes (total for all cameras) 
pa = the number of active polygons (total for all cameras) 
c = the number of cameras 



result, this application must perform a significant 
number of refinement operations each frame to display 
the scene for each camera. 

The system was tested on three terrain models.  The 
Three Lakes terrain model (Figure 7) consists of 80,000 
polygons and represents a fictional patch of terrain 70 
km by 70 km.  The model consists of nine different 
textures that form surface group boundaries.  Five 
unique surface group identifiers are assigned to the 
surface groups.  The D3Dindex array is a 5 x 40,401 
array that is 21% populated since only 21% of the 
surface group identifier – node position identifier 
combinations are in use. 

The Cliff terrain model (Figure 8) consists of 107,184 
polygons and represents a fictional patch of terrain 70 
km x 70 km.  The model consists of four surface group 
identifiers and uses five different textures.  The edge 
separating the top of the cliff from the side of the cliff is 
an example of a surface group boundary that is defined 
by normal vector discontinuity.  The D3Dindex array is 
a 4 x 54,056 array that is 26% populated. 

The Grand Canyon model (Figure 9) is based on data 
from the United States Geological Survey.  The model 
represents an area surrounding the Grand Canyon that is 
approximately 122 km by 245 km.  The model contains 
126,480 polygons and a single texture is applied to the 
entire model.  As a result, the model contains only one 
surface group, and the D3Dindex array is reduced to a 
one-dimensional array that contains all of the D3D 
vertex indices. 

Testing was performed through a series of two-minute 
flyovers over the terrain models.  A one-camera flyover 
was performed with Camera A.  A two-camera flyover 
was performed with Camera A and Camera B.  Three 
and four camera flyovers were performed with Cameras 
A, B, C and Cameras A, B, C, D respectively.  When 
displaying the scene for one camera, the display covers 
the entire screen.  When displaying the scene for two 
cameras, the second camera’s display occupies the top 
left quarter of the screen.  Three cameras are displayed 
by placing the second and third cameras across the top 
half of the screen.  The view from each camera is drawn 
in a separate quadrant for the four-camera flyover. 

All testing was performed at a full screen resolution 
of 800 x 600.  The view frustum run time criterion of 
[6] is used along with the screen space error criterion of 
[9].  For the screen space error criterion, a 7% error 
tolerance is used. 
4.2. Exploiting temporal coherence 
The CAVECLOD mesh representation is designed to 
enable multiple cameras to simultaneously exploit 
temporal coherence. 

Figure 10 shows the number of refinement (split and 
collapse) operations that take place per second for a 

four-camera flyover of the Grand Canyon in the 
application that does not use the CAVECLOD mesh 
representation.  The terrain model is refined for Camera 
A, rendered, refined for camera B, rendered, and so on.  
In this application, a significant number of refinement 
operations must be made each frame to display the scene 
for each camera. 

With the CAVECLOD mesh representation, each 
camera maintains its own active polygon and active node 
lists and incrementally refines these lists.  This 
dramatically reduces the number of refinement 
operations required each frame.  Figure 11 depicts the 
number of refinement operations that take place per 
second during the same four-camera flyover of the 
Grand Canyon model.  The number of split operations 
required per second for each camera stays below 2000 
for most of the flyover compared to an average of 14,868 
refinements per camera per second without the 
CAVECLOD representation.  As shown in Figure 12 the 
use of the CAVECLOD representation impacts the frame 
rate of the system. 

Similar flyover experiments were performed on each 
model with one, two, three and four cameras 
respectively.  Complete details of all flyovers for all 
models can be found in [7]. 
4.3. Memory requirements 
As outlined in Section 3.4, the introduction of additional 
cameras does not significantly increase the amount of 
memory required by the CAVECLOD mesh 
representation.  As shown in Equation 1, three factors 
affect the memory required to store a CAVECLOD 
mesh: 

• the size of the static structures of the mesh (n, p, 
d, s, and e in Equation 1) 

• the number of cameras (c in Equation 1) 
• the number of active polygons and active nodes 

(na and pa in Equation 1) 
Table 1 displays the actual memory requirements for 

the three models.  On average, the amount of additional 
memory required per camera is 10.5% of the memory 
requirements for the static portions of the mesh. 

Table 1: Memory requirements for each model 

 Grand 
Canyon 

Three 
Lakes 

Cliff 

Static structures 
44n +12p +32d + 

2se 

9,297,526 
bytes 

6,284,962 
bytes 

8,261,168 
bytes 

Memory required 
per camera 
4n +4p +16 

1,016,184 
bytes 

643,064 
bytes 

861,088 
bytes 

The number of active polygons and active nodes is 
determined at run time and varies as the user moves 
throughout the environment.  As more cameras are 



added, the number of active polygons and active nodes 
will increase.  Figure 13 depicts the number of active 
polygons for each camera during the flyovers of the 
three lakes terrain model.  Figure 14 depicts the 
memory required for the various flyovers of the model.  
Clearly, the introduction of additional cameras does not 
dramatically increase the amount of memory required 
by the system. 
4.4. Vertex buffer coverage 
As outlined in Section 3.5, rendering a CAVECLOD 
mesh is achieved through the use of DirectX Vertex 
Buffers and Index Buffers.  During the rendering 
process, the vertex buffer is transferred to the graphics 
card, and index buffers are constructed that refer to the 
vertices in the vertex buffer.  All of the D3Dvertices in 
the high-resolution mesh are transferred to the graphics 
card each frame even though not all of the D3Dvertices 
may be used.  As expected, as the number of cameras 
increases, the number of D3Dvertices that are used will 
increase.  Even though the entire vertex buffer is 
transferred to the video card, performance gains are still 
realized.  The graphics processor only transforms and 
performs lighting calculations on vertices that are used.  
Also, since the number of polygons drawn each frame 
has been dramatically reduced from the high-resolution 
model, less processing takes place during the 
rasterization stage of the rendering process. 

5 Conclusions and future work 

We have introduced the CAVECLOD mesh 
representation that enables multiple cameras to 
simultaneously exploit temporal coherence in a 
continuous LOD algorithm.  The system uses Microsoft 
DirectX Vertex Buffers and Index Buffers for efficient 
rendering.  We have shown in Section 4 that the system 
is capable of rendering large models at interactive rates 
on commercially available hardware.  The results in 
Section 4 also demonstrate the importance of the 
exploitation of temporal coherence in a continuous 
LOD algorithm. 

While this new representation has been developed, 
several areas are left as future work.  Since each camera 
maintains its own active node and active polygon lists, 
a parallelized version of the algorithm may be 
advantageous.  The refinement process for each camera 
only reads from the shared static portions of the data 
structures and modifies the active node and polygon 
lists for a single camera.  For this reason, the refinement 
process for each camera may take place in a separate 
thread without introducing significant synchronization 
issues.  Future work would explore the performance 
gains that could be realized by parallelizing the 
algorithm in this fashion and running it on a 
multiprocessor platform. 
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Figure 7: Two-camera flyover of the three lakes model 

 
Figure 8: Four-camera flyover of the Cliff model 

 
Figure 9: Three camera flyover of the Grand Canyon 
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Figure 10:Refinement operations on the Grand Canyon 
model without the CAVECLOD representation 
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Figure11: Refinement operations/sec on the Grand 
Canyon model with the CAVECLOD representation 
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Figure 12: Frame rates with and without CAVECLOD 
model in the 4-camera flyover of the Grand Canyon 
model 
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Figure 13 Active polygon counts for the four-camera 
flyover of the Three Lakes model 

Figure 14 Memory requirements for the flyovers of the 
Three Lakes model 
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