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Abstract
Modal analysis provides a powerful tool for efficiently

simulating the behavior of deformable objects. This
paper shows how manipulation, collision, and other
constraints may be implemented easily within a modal
framework. Results are presented for several example
simulations. These results demonstrate that for many ap-
plications the errors introduced by linearization are ac-
ceptable, and that the resulting simulations are fast and
stable even for complex objects and stiff materials.
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1 Introduction

Interactive modeling of deformable objects has a wide
range of applications from surgical training to video
games. Many of these applications require realistic,
real-time simulation for complex objects. Unfortunately,
the most straightforward simulation methods turn out to
be prohibitively expensive for modeling objects of even
modest complexity. When the high cost of simulation
couples with the reality that CPU cycles must be shared
among many tasks, the need for faster, more sophisticated
simulation methods becomes clear.

Recently several ingenious techniques for modeling
deformable objects have been proposed. Examples in-
clude multi-resolution representations that avoid wasting
time on irrelevant details (e.g.[4,6,8]), reformulating the
dynamics to make them more stable (e.g.[15,20]), exten-
sive precomputation to minimize runtime costs (e.g. [9,
10, 19, 22]), robust integration schemes that afford large
time-steps (e.g.[3]), and many other approaches that we
cannot list here due to space constraints. As of yet, none
provides a perfect solution that satisfies the requirements
for all interactive applications.

This paper reexamines a technique known as modal
analysis that was originally introduced to the graph-
ics community over a decade ago, but has since been
largely neglected, with only a couple of notable excep-

Figure 1: This example demonstrates a complex model
being deformed using a modal simulation method. The
object furthest from the viewer shows the undeformed
configuration. The nearer objects are being deformed by
a force indicated by the blue arrows.

tions (e.g. [10, 22, 23]). Like the techniques mentioned
above, modal analysis does not provide a perfect solution
for every interactive application, but it does provide a so-
lution that suits some applications quite well.

The results presented here show that modal analysis
can be used effectively to model situations where the de-
formable object is directly manipulated using constraints
and where it interacts with an environment through con-
tact forces. We demonstrate that although linear modal
analysis does incur errors because of the inherent lin-
earization of the dynamics, these errors are acceptable
in many contexts, particularly when exaggerated cartoon-
like deformations are desired. While precomputing the
modal decomposition for a complex object may take up
to a few hours of precomputation, for applications which
make use of fixed content this computational cost only
occurs during content development and it is well worth
the dramatic increase in runtime performance.

The concepts required to manipulate the modal equa-
tions are to a certain extent conceptually difficult to work
with but their implementation is surprisingly simple. The
results shown in this paper (e.g. figure 1) were gener-



ated using an implementation that we have ported to sev-
eral platforms: SGI IRIX, Windows, Linux, and Sony
PlayStation2. On each of these platforms we were able
to obtain interactive simulation times even for relatively
complex models.

2 Background

Modal analysis is a well established mathematical tech-
nique that has been used extensively in mechanical,
aerospace, civil, and other engineering disciplines for
several decades. To a large extent the work we present
in this paper follows as direct application of the methods
developed in those fields to the task of interactively simu-
lating deformable solids. There are, however, some issues
that are unique to interactive simulation, such as impos-
ing manipulation constraints and computing fast collision
responses. This paper focuses on those issues. A discus-
sion of modal analysis and its use with the finite element
method can be found in the text by Cook, Malkus, and
Plesha [5], and a more detailed discussion of modal anal-
ysis, its mathematical theory, and its applications may be
found in the text by Maia and Silva [13].

Modal analysis was first introduced to the graphics
community in 1989 by Pentland and Williams as a fast
method for approximating deformation [19]. They used
a hybrid framework, previously described by Terzopou-
los and Fleischer [24], that separated the motion of a
deformable solid into a rigid component and a deforma-
tion component. The deformable component existed in
a non-inertial reference frame that moved with the rigid
component. To avoid the cost of computing the modes
for a particular object Pentland and Williams used linear
and quadratic deformation fields defined over a rectilin-
ear volume instead of the object’s actual modes and then
embedded the object within the region in a fashion simi-
lar to a free-form deformation. Although using approxi-
mated modes is computationally inexpensive, it only gen-
erates reasonable results for compact objects that are well
approximated by a rectilinear solid. Pentland and his
colleagues also integrated their modal deformation tech-
niques into a interactive modeling system [18].

In 1997 Stam developed a modal method for model-
ing trees blowing in the wind [23]. Rather than starting
with a deformable object, he computed the low-frequency
modes from an articulated structure that described the
tree. Once the closed-form solutions for each mode were
computed, the response of the tree to a stochastic wind
field could be computed efficiently.

Most recently, James and Pai implemented a system for
computing real-time modal deformations on commodity
graphics hardware [10]. They focused on modeling de-
formable skin and soft tissues attached to moving charac-

ters or as background elements in a surgical simulation.
Shen and his colleagues have demonstrated an interac-
tive system that could simulate models with over 10,000
vertices on a laptop PC with no special hardware acceler-
ation [22].

Other related work includes sound generation tech-
niques that make use of modal synthesis, and deforma-
tion techniques that use global shape functions that have
some general similarities to a object’s mode shapes. Van
den Doel and his colleagues have used both analytically
computed modes for simple geometric shapes and sam-
pled modes from real objects to compute realistic sounds
for simulated environments [26, 27, 28]. O’Brien and
his colleagues developed similar techniques that used nu-
merically computed modes from a finite element descrip-
tion of an object [17]. Examples of deformation tech-
niques using global shape functions include: free-form
deformations and their dynamics extensions [7, 21], de-
formable superquadrics [14], and the boundary element
method [9]. Modal bases have also proven to be an ef-
ficient way to compactly encode both shapes and defor-
mations [11, 12]. Finally, this paper focuses primarily
on integrating manipulation and contact constraints into
a modal framework, and there is prior work on applying
these types of constraints to flexible body simulations [2].

3 Methods

The mechanical properties of an object can generally be
captured by a function that maps the state of the object to
a distribution of internal forces. For nearly any non-trivial
system this function will be nonlinear and the represen-
tation of state will require many variables. Consequently,
modeling the object’s behavior over time will involve in-
tegrating a large, nonlinear system of differential equa-
tions. These systems are typically far too complex to be
solved analytically, so some type of numerical solution
method must be employed.

Modal analysis is the process of taking the nonlinear
description of a system, finding a good linear approxima-
tion, and then finding a coordinate system that diagonal-
izes the linear approximation. This process transforms a
complicated system of nonlinear equations into a simple
set of decoupled linear equations that may be individually
solved analytically.

The main benefit of this modal approach is that the be-
havior of the system can be computed much more effi-
ciently. Because each of the decoupled equations can be
solved analytically, the stability limitations that plague
numerical integration methods are eliminated. Further,
one may examine each of the decoupled components and
discard those that are irrelevant to the problem at hand.



Figure 2: Using a linear formulation to model a bend-
ing bar produces acceptable results for small to moderate
amounts of deformation. For larger deformations signif-
icant amounts of distortion appear. This example shows
the deformation corresponding to the bar’s second trans-
verse mode.

There are also two drawbacks to a modal approach.
First, linearizing the original nonlinear equations means
that the solution will only be a first order approximation
of the true solution. How objectionable the lineariza-
tion error is depends on the application and the extent
to which the objects deform from their initial configura-
tions. As illustrated by figure2, small to moderate defor-
mations exhibit little or no noticeable error when casually
observed. Even when the errors do grow noticeable, they
have a cartoon-like, exaggerated appearance that may ac-
tually be desirable for some applications.

The second drawback arises because decoupling the
linear system requires computing its eigendecomposition.
However we do not believe that this drawback is partic-
ularly significant. The content in most interactive appli-
cations is constant, so that eigendecompositions can be
precomputed during content development and stored with
the objects. Furthermore, the linear systems are sparse,
so that fast, robust, publicly available codes may be used
to efficiently compute the decompositions (e.g.TRLAN
[29]).

The remainder of this section describes how one com-
putes the modal decomposition for a given object and
how that decomposition can be used to efficiently model
the object’s behavior. Some of this material has been pre-
sented elsewhere by others in the graphics community
(e.g. [10, 19]) but we include it here for completeness.
The discussion will focus in particular on including ma-
nipulation and collision constraints in the modal frame-
work. An overview of the entire process is shown in fig-
ure3.

3.1 Modal Decomposition
The modal decomposition of a physical system begins
with a linear set of equations that describe the system’s
behavior. In general, the equations describing the system
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Figure 3: This diagram illustrates both the preprocessing
steps used to construct the deformable modal model for
an object, and the processes that subsequently generate
interactive motion from this description.

may be nonlinear, and one obtains the linear equations by
linearizing about some point, typically the rest configu-
ration of the system. The linearized equations have the
general form:

Kd + Cḋ + Md̈ = f , (1)

whereK, C, andM are respectively known as the sys-
tem’s stiffness, damping, and mass matrices,d andf re-
spectively as the vector of generalized displacements and
forces, and an overdot indicates differentiation with re-
spect to time. The physical meaning of the generalized
force and displacement vectors, and the method for com-
puting the system matrices will depend on the type of
method used for modeling the system. For general fi-
nite element methods, we refer the reader to the excellent
text by Cook, Malkus, and Plesha [5]. We are using an
implementation of the piecewise-linear tetrahedral finite
element method described by O’Brien and Hodgins [16].
Details on computing the system matrices appear in [17].

Modal decomposition refers to the process of diago-
nalizing equation (1). The most general form of modal
decomposition can be used for nearly arbitrary systems,
but the systems arising from the finite element method
we use have a structure that makes them amenable to a
simpler manipulation provided we assume that the damp-
ing matrix,C, is a linear combination of theK andM .
This restriction is known as Rayleigh damping, and al-
though it is a restriction it still produces results superior to
the simple mass damping that is most commonly used in



graphics applications. With these conditions, diagonaliz-
ing equation (1) becomes equivalent to solving a general-
ized symmetric eigenproblem with symmetric, positive-
definite matrices. Cook, Malkus, and Plesha describe the
process in detail and we only repeat the end result here.

With the restriction of Rayleigh damping equation (1)
may be rewritten as:

K(d + α1ḋ) + M(α2ḋ + d̈) = f , (2)

whereα1 andα2 are the Rayleigh coefficients. Let the
columns ofW be the solution to the generalized sym-
metric eigenproblemKx + λMx = 0 andΛ be the
diagonal matrix of eigenvalues1, then equation (2) may
be transformed to:

Λ(z + α1ż) + (α2ż + z̈) = g , (3)

wherez = W−1d is the vector of modal coordinates
andg = W Tf is the external force vector in the modal
coordinate system.

Each row of equation (3) corresponds to a single scalar
second-order differential equation:

λizi + (α1λi + α2)żi + z̈i = gi . (4)

The analytical solutions to each equation are

zi = c1e
tω+

i + c2e
tω−

i (5)

wherec1 andc2 are arbitrary (complex) constants, andωi
is the complex frequency given by

ω±i =
−(α1λi + α2)±

√
(α1λi + α2)2 − 4λi
2

. (6)

The absolute value of the imaginary part ofωi is the fre-
quency (in radians/second, not Hertz) of the mode, and
the real part is the mode’s decay rate. In the special case
where the term under the radical in equation (6) is zero,
we haveω+

i = ω−i , which gives the critically damped
solution:

zi = c1te
tωi + c2e

tωi . (7)

The columns ofW are the vibrational modes of the
object being modeled. (See figure4.) Each mode has the
property that a displacement or velocity over the object
that is a scalar multiple of the mode will produce an ac-
celeration that is also a scalar multiple of the mode. This
property means that the modes do not interact with each
other, which is why decoupling the system into a set of
independent oscillators was possible. The eigenvalue for
each mode is the ratio of the mode’s elastic stiffness to the
mode’s mass, and it is the square of the mode’s natural
frequency (in radians per second). In general the eigen-
values will be positive, but for each free body in the sys-
tem there will be six zero eigenvalues that correspond to

1 Equivalently letW = L−TV whereM = LLT (Cholesky
decomposition) andV ΛV T = L−1KL−T (symmetric eigendecom-
position).

Figure 4: The two rows show a side and top view of
a bowl along with three of the bowl’s first vibrational
modes. The modes selected for the illustration are the
first three non-rigid modes with distinct eigenvalues that
are excited by a transverse impulse to the bowl’s rim.

the body’s six rigid-body modes. The rigid-body eigen-
values are zero because a rigid-body displacement will
not generate any elastic forces.

The decoupled system of equations isnot an approxi-
mationof the original linear system, it will generate ex-
actly the same results as the original linear system. Of
course the linear system may have been an approxima-
tion to some initial nonlinear one, but any problem that
could be solved using equation (2) could also be solved
with equation (3). Furthermore, simulation that would
have required numerical time integration of equation (1)
can now be solved without integration using the analyti-
cal solutions in equations (5) or (7).

3.2 Discarding Modes
Although decoupling equation (1) and then solving each
of the resulting components analytically provides signifi-
cant benefits, we can derive additional benefit by consid-
ering whether or not each of these components is needed.
In particular we can discard modes that will have no sig-
nificant effect on the phenomena we wish to model.

If the eigenvalue,λi, associated with a particular mode
is large, then the force required to cause a discernible
displacement of that mode will also be large. We can
expect that in a given environment there will be both
an upper bound on the magnitude of the forces encoun-
tered and a lower limit on the amplitude of observable
movement. For example, if modeling an indoor envi-
ronment we would not expect to encounter forces in ex-
cess of60, 000 N (the braking force of a large truck), and
we would not be able to observe displacements less than
about0.1 mm. Thus if ||wi||2/λi < min res/max frc
for some mode then that mode’s behavior will be unob-
servable.

The imaginary part ofωi determines the frequency that
a mode will vibrate at. Modes that vibrate at more than
half the display’s frame rate will cause temporal aliasing.

Removing modes that are too stiff and/or too high fre-
quency to be observed will not change the appearance of



the resulting simulation, but removing them will greatly
reduce the simulation’s cost. For most objects that we
have worked with, nearly all of the modes are unobserv-
able. A typical result is that an object with several thou-
sand vertices will have many fewer than fifty modes that
need to be retained. Furthermore, the number of modes
that must be retained is nearly independent from the res-
olution of the model.

For later convenience let̄W be the matrixW with
the columnscorresponding to the discarded modes re-
moved, and letW̄

−1
be the matrixW−1 with the rows

corresponding to the discarded modes removed. Note
thatW̄

−1 6= (W̄ )−1, W̄ andW̄
−1

are not square, and
W̄

−1
W̄ = I butW̄W̄

−1 6= I.

3.3 Oscillator Coefficients and Time Steps
The analytical solution for each mode, equation (5), de-
scribes how that mode will behave when no external
forces are acting on it. Using these solutions, however, re-
quires some way of modeling responses to external forces
and of setting initial conditions.

Given a set of initial conditions described by the node
positions,d0, and their velocities,̇d0, setting the oscil-
lators to match those conditions requires finding appro-
priate values for the coefficientsc1 and c2. First, the
initial conditions are transformed to modal coordinates:
z0 = W̄

−1
d0 and ż0 = W̄

−1
ḋ0. For each mode,c1

andc2 are given by

c1 =
z0
2

+
(α1λi + α2)z0 + 2ż0

2
√

(α1λi + α2)2 − 4λi
(8)

c2 =
z0
2
− (α1λi + α2)z0 + 2ż0

2
√

(α1λi + α2)2 − 4λi
. (9)

For the critically damped casec1 andc2 are given by

c1 =
(α1λi + α2)z0

2
+ ż0 (10)

c2 = z0 . (11)

Note that if theω±i are real thenc1 andc2 will also be
real. If theω±i are complex then theω±i and thec1 and
c2 will be complex conjugate pairs. In either case equa-
tion (6) will evaluate to a real value.

To compute the response of a mode to an impulse de-
livered at t = 0, first transform the impulse to modal
coordinates with∆tg = ∆tW̄ T

f and then computec1
andc2 as shown above withz0 set to zero anḋz0 replaced
by ∆tg. Because the modes behave linearly, the response
of the system to forces applied at an arbitrary time may
be computed by time-shifting this impulse response and
adding it to the existing values.

Becausece(t+∆t)ω = (cetω)e∆tω, the state of each
oscillator can be stored simply as a pair of complex num-
bers that reflect the current values ofc1e

tω+
andc2etω

−
.

Each time the system is advanced forward in time, these
values get multiplied bye∆tω

±
. If ∆t is constant then

the step multiplier for each mode may be cached to avoid
the cost of evaluating an exponential. Impulses applied
to the system simply require adding the appropriate val-
ues to each oscillator’s state. Finally, modes whereω+

andω− are complex conjugate pairs (i.e. underdamped
modes) can be reduced to only a single oscillator.

3.4 Constraints
Although we can compute the behavior of the decom-
posed system extremely efficiently, the method is not
particularly useful unless it accommodates manipulation
constraints and collision response. When working with
the original system constraints on the node positions are
nearly trivial to implement. Collision response requires
more sophistication but still is conceptually straightfor-
ward. Unfortunately, applying these same constraints in
the modal basis requires moving between the node po-
sitions and modal coordinates which can be unintuitive.
Matters are further complicated because if we have dis-
carded any modes then the transformations will be non-
invertible.

3.4.1 Interactive Manipulation
If we wish to include continual constraints on part of the
system, the optimal way to do so is to remove those de-
grees of freedom prior to performing the modal decom-
position. Examples demonstrating this approach can be
seen in James and Pai’s modal method for modeling tis-
sue deformation [10], and in our deformable sheet ex-
ample. (See accompanying animations.) Using this ap-
proach for dynamic constraints, however, would require
recomputing the eigendecomposition each time a con-
straint was added or removed from the system. James
and Pai accomplished something similar for a boundary
element method using Sherman-Morrison-Woodbury up-
dates but we do not know of any corresponding incremen-
tal update scheme for an eigensystem [9].

Instead we apply manipulation constraints to the de-
composed system. Letψ be the set of degrees of freedom
in the original system that we wish to constrain, and let
φ be the places where we are willing to apply forces in
order to enforce the constraints. For a manipulation task
where a point on the object is being dragged we would
typically haveφ = ψ but we will not require it. Letdψ
or fφ denote the displacement or force vectors where all
except the elements corresponding toφ or ψ have been
removed. Similarly, letW̄ ψ be W̄ where all the rows

not inψ have been removed and let̄W
T
φ beW̄

T
where

all the columns but for those inφ have been removed. Fi-
nally, let d̈

∗
ψ be the desired accelerations at the constraint

locations. By combining̈d = W̄ z̈, g = W̄
T
f and a bit



of manipulation we obtain:

d̈
∗
ψ = W̄ ψ(z̈ + W̄

T
φfφ) . (12)

Solving forfφ yields:

fφ =
(
W̄ ψW̄

T
φ

)−P (
d̈
∗
ψ − W̄ ψz̈

)
, (13)

where·−P denotes a pseudoinverse. Velocity constraints
only differ in thatfφ gets replaced by an impulse,e.g.
∆tfφ and we have:

fφ =
1

∆t

(
W̄ ψW̄

T
φ

)−P (
ḋ
∗
ψ − W̄ ψż

)
. (14)

Position constraints can be enforced in a similar fashion
so long as we adjust for how each mode will evolve over
the interval while the force is applied:

fφ =
2

∆t2
(
W̄ ψSW̄

T
φ

)−P (
d∗ψ − W̄ ψz

)
, (15)

whereS the diagonal matrix with components given by

sii =
e∆tω

+
i − e∆tω

−
i

|
√

(α1λi + α2)2 − 4λi|
(16)

that compensates for the motion of each mode during the
interval.

3.4.2 Dynamics Simulation
Implementing a deformable dynamics simulator for free
bodies using modal analysis can be accomplished by
combining the modal simulation with a standard rigid-
body dynamics simulator. The modal system is embed-
ded in a rigid-body reference frame, and both systems
evolve over time. The two systems interact with each
other though inertial effects. The modal system should
experience centrifugal and coriolis forces as the rigid-
body moves, and the inertial moments of the rigid-body
will change as the modal system deforms. Unless the ob-
ject is rotating rapidly, neither effect will be significant
so we omit them. They could be included at an additional
computational cost. Inertial effects due to translational
and rotational acceleration of the rigid-body frame do not
need to be modeled explicitly so long as the forces gen-
erating those accelerations are also applied to the modal
system.

Because we are modeling deformable objects, a colli-
sion detection method optimized for use with rigid-body
simulations requires some modification because precom-
puted data structures will become invalid as the object
deforms. The method we are using employs a hierar-
chy of axis-aligned bounding boxes, aligned to the world
axes, to efficiently find potential collisions. The tree is
initially constructed based on the undeformed shape of
the object. Each leaf node in the tree corresponds to one
of the primitives that makes up the object, and the bound-
ing box at that node encloses the primitive. The bounding

boxes of interior nodes encompass the union of their chil-
dren. The tree’s topology is chosen to minimize the over-
lap among the interior nodes. Once the object deforms
the tree will become invalid, but recomputing the tree’s
topology every time-step would be prohibitively expen-
sive. Instead we use an update scheme similar to one
described by van den Bergen [25]. After each time-step
the bounding boxes are updated, but the tree’s topology
does not change. If we expected arbitrary deformation,
this could result in a very poorly structured tree, but be-
cause the extent of deformation is limited we have found
this approach to work quite well.

Using these trees the collision system can efficiently
determine contact points and a normal for each contact.
For collisions between an object and a ground plane, the
collision normal is simply the plane’s normal. For colli-
sions between objects, we look at involved tetrahedra to
determine a normal based on their overlap [16]. We have
found that each physical contact site may produce several
pairs of colliding primitives. To reduce the computation
when using constraint-based collisions we cluster nearby
collision points and treat each cluster as a single collision
point.

We have implemented collision response using both
a penalty-based method and using constraints. As
one would expect, the penalty methods require less
work per time-step, achieving real-time performance, but
stiff penalty coefficients can lead to instability. The
constraint-based method requires more work per time-
step, but it is more stable. Because the modal system will
allow arbitrarily large time-steps in the absence of exter-
nal influences we prefer the more stable constraint-based
methods.

To implement penalty methods, when a point on a sur-
face violates one of the penalty constraints, a force pro-
portional to the magnitude of the violation is applied at
that point. Transforming the forces to modal coordinates
and then applying the force to the modal system is done
as described previously. The penalty force should be ap-
plied to both the modal and the rigid-body systems.

Constraint-based collisions require a more complex
implementation, but we find that they produce better re-
sults. First, when a collision occurs, the simulation is
backed up to the point during the time-step when the ob-
jects first came into contact. Then contact forces are cal-
culated as the minimal outward normal force to ensure
that the objects will not continue to penetrate. These are
determined by solving a linear programming problem for
the normal forces at all contact points. Baraff details an
efficient method for solving for the required forces [1].

Constraint methods are often used in traditional rigid-
body simulations only to solve for resting contact, while



impulses are used to calculate elastic response. Elastic
components of the response can be handled differently in
our modal simulation, because the elastic behavior of the
modal system models them directly. We first enforce a
velocity constraint that solves for an impulse to ensure
that none of the contact velocities are negative, then sec-
ondly it enforces an acceleration constraint that solves for
a force to ensure that none of the contact accelerations
are negative. The derivation of these methods requires
equations relating the change in velocity and acceleration
with respect to an applied impulse and acceleration, re-
spectively.

Let pl be the location of a contact point on an object
expressed in the local coordinate frame of the rigid body.
This location will be a linear function of the modal coor-
dinates so that:

pl = UWz , (17)
whereU is a matrix that averages the appropriate node
locations based on the barycentric location ofp in one of
the surface triangles. The location in world coordinates
is given by

pw = t + Rpl , (18)
wheret andR are the translation and rotation matrices
for the rigid-body frame. Differentiating with respect to
time to obtain the world velocity and acceleration ofp
yields:

ṗw = ṫ + R[ω]pl + Rṗl , (19)
p̈w = ẗ+R[ω][ω]pl+R[α]pl+2R[ω]ṗl+Rp̈l , (20)

where ω and α are the rigid-body’s angular velocity
and acceleration2. The notation[a] denotes the skew-
symmetric matrix such that[a]b = a× b = −[b]a.

Differentiating equation (19) with respect to an applied
impulse allows us to obtain the change in velocity gener-
ated by a constraint force over a time interval:

∆ṗw = ∆t
(

1
m

fw + R[H−1τ l]pl + RUWW̄
T
f l

)
(21)

whereH is the object’s inertia matrix andτ is the torque
generated byf . Differentiating equation (20) with re-
spect to an applied force produces a similar result for the
change in acceleration at the contact point. These equa-
tions are linear inf , and can be used similarly to solve
for position, joint, and collision constraints. Position con-
straints require that a point’s velocity and acceleration are
zero. Joint constraints require relative velocities and ac-
celerations are zero, merely requiring a subtraction of the
proper terms. Collision constraints require the normal
components of relative velocities and accelerations are
nonnegative, and only solve for the nonnegative normal

2In order to adhere to common convention we are reusingω and
α, that were previously used for the modal frequencies and Rayleigh
damping coefficients. The intended meaning should be clear from con-
text and the presence/absence of bold notation.

Example Fig Verts. Nodes Tets. Modes Time

Brain 1 18,847 304 997 40 68.5sec

Dodo 5 336 113 295 40 6.2sec

Bunny 8 2,633 37,114 15,507 32 24min

Sphere video 66 80 282 40 2.9sec

Sheet video 195 195 486 20 14.4sec

Bat video 241 310 1,030 20 68.9sec

Table 1: This table list the number of vertices in the
rendered models, the number of nodes and elements in
the finite element models, the number of modes retained,
and the time required to compute the decomposition for
some of the demonstration objects.

force magnitude. All constraints are solved simultane-
ously as a linear program. Solving cannot always be done
in real-time if there are a large number of contact points,
although system response does remain interactive.

We model friction at the contacts using a simplified
Coulomb friction model. The system computes a force
opposite the tangential velocity at the contact points. The
magnitude of the force equals the magnitude of the nor-
mal force multiplied by a friction coefficient. If the fric-
tion force causes the predicted tangential velocity to be
reversed then it is limited to the force that would cause
no slipping. If interactivity can be sacrificed, a more pre-
cise method would be to add an additional no-slip con-
straint to be re-solved with the other constraints. We find
our heuristic reasonable for producing plausible friction
effects.

4 Results

We have implemented a system that models deformable
objects using a hybrid formulation that combines rigid-
body motion with deformation computed using modal
analysis. Objects may be interactively manipulated by
the user with both penalty forces and displacement con-
straints. The modal objects may collide with each other
and with their environment. Collisions can be treated
with either penalty forces or constraints, and objects may
also be attached together using joint constraints. Table1
lists several of the models we have used to demonstrate
our results and shows the geometric and kinematic com-
plexity of the models along with how much precomputa-
tion time was required to perform the modal decomposi-
tion for each model.

The brain model in figure1 demonstrates pulling and
pushing using force application. Force vectors are pro-
jected into the modal basis, modifying the modal state,
and then are projected out, resulting in realistic deforma-
tion. The images in figure6 and figure7 show pulling and
pushing using manipulation constraints. Typically, up to



Figure 5: This image sequence shows frames from an animation of a pair of objects colliding with each other. Each
object is a hybrid simulation that incorporates a rigid and a deformable (modal) component.

Figure 6: These images shows how constraints can be
used to deform objects. The object on the left of each im-
age shows the object prior to deformation, and the right
object shows the results after the red constraint points
have been moved.

Figure 7: These images are screen shots from an applica-
tion running natively on a Sony PlayStation2. The yellow
circle highlights the cursor that the user is using to poke
and pull an elastic figure.

around 10 points on the model can be constrained in real-
time on a moderate speed computer (300 MHz Pentium
II or Sony Playstation2). A limit is reached because the
solutions to equation (13) and equation (15) require a rel-
atively expensive computation of singular value decom-
positions, which cannot be calculated in real-time once
the matrices become too large.

We have created several animations (see supplemental
materials) demonstrating this system, each simulated in-
teractively for moderately complex objects. The results
appear plausible, and resemble animations that might be
simulated using more straightforward but more compu-
tationally expensive methods. The bottlenecks in hybrid
modal/rigid-body simulation are collision detection and
solving the linear program for the constraints. To reduce
the computation used in solving the linear program, the
extent of contact point clustering may be tweaked to sac-
rifice accuracy for speed. Figures5 and8 show objects
involved in collisions with a ground plane and each other.

Figure 8: A sequence of images showing the Stanford
Bunny model bouncing off a ground plane.

As with other methods based on tetrahedral finite el-
ements, we can embed high-resolution or non-manifold
surfaces inside a tetrahedral volume model. The bene-
fits of this technique are that the surface shading and tex-
turing can be specified independently from the dynam-
ics, and poorly constructed “polygon-soup” models may
be used. Both the brain model in figure1, an extremely
complex object, and the “dodo” model in figure5, a non-
manifold object, are modeled in this way. The “dodo”
model also demonstrates non-uniform material proper-
ties: the legs and beak are made of a stiffer material than
the rest of the body.

5 Conclusions

Modal analysis has been shown to be a useful tool for in-
teractively producing realistic simulations of elastic de-
formation. Both the analytic calculation of modal ampli-
tudes using complex oscillators and the removal of high-
frequency modes have a stabilizing effect on simulations,
allowing for large time steps to be taken.

Despite the approximation of linearity in modal anal-
ysis, the simulation results are quite plausible for most
objects. The exceptions are long, thin, or highly de-
formable objects, where nonlinear behavior dominates
the expected behavior. Despite these specific drawbacks,
many objects can be manipulated quite efficiently and re-
alistically using modal models.

The already small costs of modal analysis can be re-
duced further by leveraging graphics hardware, as shown
by James and Pai [10] or our own implementation on the
Sony PlayStation2. Using such hardware, CPU costs can
be reduced to modifying mode amplitudes during evolu-
tion of time steps, projection of forces, and application of
manipulation constraints.



We recognize that there are many implementation de-
tails that cannot fit into this paper, so we have re-
leased the source code for our Linux implementation
under the GNU License. It is our hope that making
this code available will encourage others to work with
modal simulation methods. The code may be accessed at
www.cs.berkeley.edu/∼job/Projects/ModeDef.
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