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Abstract metric subtleties of the human head from the nuances of
The creation of realistic 3D face models is still a fun-shading and texture. As a consequence we do not require
damental problem in computer graphics. In this papétnowledge of rendering parameters (e.g., light direction,
we present a novel method to obtain the 3D shape of dntensity, etc.) which need to be specified by the user and
arbitrary human face using a sequence of silhouette inadjusted by an optimization process as in [2].
ages as input. Our face model is a linear combination of The use of geometry for face reconstruction and syn-
eigenheadswhich are obtained by a Principal Compo-thesis is supported by the premise that for a demograph-
nent Analysis (PCA) of laser-scanned 3D human face#ally diverse dataset (across gender and race) anthropo-
The coefficients of this linear decomposition are used awetric and hence structural variations best classify vari-
our model parameters. We introduce a near-automatitis groups and races. Texture often increases the uncer-
method for reconstructing a 3D face model whose silhodainty in the classification process. On the other hand,
ette images match closest to the set of input silhouettesaccurately measured reflectance values can increase the
robustness of the methods. However, texture and re-
Key words: Face model, eigenhead, principal componeffectance measurements may be used to disambiguate and
analysis, model fitting, silhouette images. synthesize new faces after reconstructing the geometry.
Another motivation to use silhouette images rests on
the assumption that a set of carefully chosen viewpoints
Creating realistic 3D face models is an important problerwould generate a unique sequence of face silhouettes for
in computer graphics and computer vision. Most existingach individual. Therefore, the set of silhouette images
methods either require a lot of manual labor by a skillegvould be sufficient to recover an optimal face in our face
artist, expensive active light 3D scanner5([4, 11], or thgpace. To verify this premise, we built a system for cap-
availability of high quality texture images as a substituteuring silhouette images of a human face by eleven cali-
for exact face geometry [[7, 12,130]. More recent effortgrated cameras.
have focused on the availability of an underlying model Finally, to match silhouette images generated by our
for human faces 1,12, 19, P4]. These model-based aface model to the given silhouette images, we adopt an
proaches make use of the fact that human faces do riatverse design and optimization approach through an ob-
vary much in their general characteristics from person tigctive function which measures the error between two
person. silhouette images. Our 3D model faces are not full in
We follow the model-based approach to reconstruct atkeir extent; the models are deprived of hair and also do
curate human face geometry from photographs. Our umet include the back of the head. Whereas, the input sil-
derlying face model is not synthetic but is based on reddouette images include the entire head. Thus, the input
human faces measured by laser-based cylindrical scasithouette has always larger area than the synthesized sil-
ners. This data-driven face model is limited in its expreshouette. We address this problem of partial silhouette
sive power by the number and variety of the faces in thmatching in a novel way through choice of appropriate
training database. However, it can be easily expanded leyror metrics. As we will show in this paper, silhouettes
incorporating new faces into the existing database. provide expedient and robust reconstruction.
Our approach is most similar to the method of Blanz We now enumerate the significant contributions of our
and Vetter[[2]. But instead of deriving an approximatepaper:
textured 3D face from a single photograph, we focus
on acquiring relatively accurate geometry of a face from
multiple silhouette images at more affordable cost and
with less user interaction. e Few user-specified parameters are required making
Why silhouettes? Using silhouettes separates the geo- our method close to an automatic method.

1 Introduction

e We report a robust and efficient method to recon-
struct human faces from silhouettes.



e We report a novel algorithm for establishing correswhich the original laser-scanned data is stofed [1]. This
spondence between two faces. method, however, does not exploit the point-to-point cor-
respondence across faces. Moreover, if the scale of the
 We use a novel and efficient error metiipundary  faces varies across samples (e.g. a young subject vs. fully
weighted XORn our optimization procedures. grown male), only partial set of points on the larger object

e The method is very robust even when presented witwIII be relevant. i )
partial information of the human head. Blanz and Vetter used a 3D variant of a gradient-

based optical flow algorithm to derive the necessary

¢ Our method is resolution-independent allowing fopoint-to-point correspondence [32]. Their method also

expedient reconstructions tailored for a given disemploys color and/or texture information acquired dur-

play. ing the scanning process. This approach will not work
well for faces of different races or in different illumina-

¢ We report extensive experimental data and statisticgibn given the inherent problems of using static textures.

analysis to support the efficacy of our methods.  \We present a simpler method of determining correspon-

. . . dences that does not depend on the color or texture infor-
In Section[2 we describe relevant previous work of .-

face reconstruction. Then, in Sectioh 3 we describe our Shape from silhouettechniques have been used to re-
face model. Sectign|4 formulates the inverse problem of N trp tthr Idimun ion Ilqu: f\: mm I:: le silh
reconstructing a 3D face from its silhouette images. | onstructthree ensional shapes 1o utipie sihou-

: : tte images of an object [10, 14,120, 27] 33]. The re-
Sectiorj  we describe our results when we apply our tecft nstructed 3D shape is called a visual hull, which is a

nique to a face database. Secfign 6 provides a summan$ ! or : . .
of our work and points to future research. aximal approximation of the object consistent with the

object’s silhouettes. The accuracy of this approximate vi-
2 Background and Related Work sual hull depends on the number and location of the cam-

Principal Component Analysis (PCA)I[9] is a statistical® > used t(.) generate the input silhouettes. In gengral, a
complex object such as the human face does not yield a

method to extract the most salient directions of data varl-

ation from large multidimensional datasets. Though Iov9OOd shape when approximated by a visual hull using a

. . . . . small number of cameras. Moreover, human faces pos-
dimensional representation using the PCA is a pOPUI%réss concavities (e.g. eye sockets and philtrum) which
method for the synthesis and recognition of 2D face imélre impossible to re'c?c;nst):uct evenin an eF>)<act visual hull
agesl|[3| 117, 18, 25, 31], its application to 3D face geom- b

etry is relatively rare and not well explored. due to its mhergnt limitation (See F|g 1.

Atick et al. [1] proposed a method to use eigenheads HOWeVer, using knowledge of the object to be recon-
to solve ashape from shadingroblem by leveraging the _structed, sﬂhouet;e information can be epr0|teq as an
knowledge of object class, which was Used to recover tHE1POrtant constraint for the exact shape of the object. We
shape of a 3D human face from single photograph. J&S€ the shape coefﬂmen?s of an eigenhead model as the
baraet al. [8] used modular eigenspaces for 3D facigimodel parameters to be fit to a sequence of silhouette im-
features and their correlation with the texture to recon?9€s-
struct the structure and pose of a human face in the live There has been work reported on recovering other
video sequences. kinds of parameters using the knowledge of object class

As pointed out earlier, Blanz and Vett&r [2] formulatedn the context of optimization by inverse rendering. In
an optimization problem to reconstruct textured 3D fac&6]. @ method was presented to search the optimal con-
from one or more photographs in the context of inversfguration of human motion parameters by applying a
rendering. Our formulation is similar in essence. Howhovel silhouette/contour likelihood term. Lensehal.
ever, our implementation of various stages are more r§13] recovered internal/external camera parameters using
bust and amenable to efficient realizations. exact information of an object and its silhouette images.

For instance, let us consider the techniques used to daur error metric is similar to the area-based difference
rive correspondence between head models. A 3D fafaeasure used in [13] but provides more elaborate guid-
model is often obtained from a laser scanner which sar@nce for the convergence of an inverse method in the pres-
ples surface of a face uniformly in cylindrical coordi-€nce of noise and clutter.
nates. For a successful application of PCA, one needs )
the same number of 3D vertex positions among the vare Face Model: Eigenheads
ous faces in the training set or the database. The easiésthis section, we describe our face model in a low di-
way to do so is to exploit the uniform cylindrical space inmensional3D face spaceand a novel method to obtain



Original Visual Hull mean + 361h1

Figure 1: Original laser-scanned face vs. visual hull obtained
using 50 viewpoints.

the point-to-point correspondence among 3D faces for the
subsequent eigen-analysis.

3.1 Principal Component Analysis

We applied PCA to a database of 3D geometries of hu-
man faces. As a consequence, we can now define face
geometries witreigenhead§l]. This decomposition can

be used to reconstruct a new or existing face through the
linear combination of these eigenheads. Therefore, a face
model is given by

M
H(a)=ho+ > amhum @
m=1

and the model parameter is = {a1,q9,...,aum},
whereh,,, is them!" eigenhead andé, is the mean or
average head.

Figure[2 illustrates how PCA captures the four largest
variations of faces in the database. The first mode cap-
tures overall scale of faces which is correlated with genFigure 2: Visualization of the first four eigenheads. o; is the
der information. The second mode depicts variations isquare root of i*"* eigenvalue of the corresponding h;
the shape of chin. The third mode describes the overall
length of faces and the fourth mode captures salient a8 F,.

pects of race. mapped to the tip of the nose &F, and so on. We define

Our face database comes from USF dataset [29] anfleqyced set of 26 landmark feature points in a fEce
consists of Cyberware scans of 97 male adult and 41 f%’sQi — {41, Gi2s s Gim ), Wherem is the number of

male adult faces with a mixture of race and age. All faceg4iyre points and_; is the vertex index for a specific
in the database were resampled to obtain point-to-poigt 4 re point. Lety; ’k = (z,y, z) be the location of the
correspondence using the technique described in the k4t re pointt in Cartesian coordinate space. Then, the
lowing subsection and then aligned to a reference faggqpiem of deriving full correspondence for all models
to remove any contamination of the PCA caused by posg s stated as: resample thé vertices for allF; under
variation and/or misalignment. the constraing; , = ¢4, # j for all 7, j andk.

3.2 Correspondence Our method is composed of the following steps:

Let each 3D face in a face databaseMei = 1..N.
Since the number of verticed4;) in F; varies, we resam-
ple all faces so that they have the same number of vertices

all in mutual correspondence. This is required given the 2. Determine locations of feature points and sefact
need to achieve correspondence in feature points across feature points from each; manually.

In other words, the tip of the nose 6f should be

1. Select a reference fadg, which is the closest face
to the mean face in the database.



3. Deform F,. so that it fits the target fac&;. This {aj, a9, -,a,}. Let S¥ k = 1..K be an input sil-
requires the interpolation of all points i, under houette image captured by came?4. Also, letT be
the constrainy, x = q; k. Let the deformed face a similarity transformation that aligns a reference model
be F?. Now F¢ has a shape similar t&; since face to the real 3D face. Thes? (a) is a silhouette
both have same locations for thealifeature points. image rendered by projectiif(M («)) onto an image
Note thatF? has exactly the same number of pointglane using the calibration information of the given cam-
ask,. eraC*. We discuss how we obtain this transformation in

the next subsection.

Provided we define a cost functigithat measures the
difference of two silhouette images, our goal is to fied
3hat minimizes the total penalty

4. For each point inF?, sample a point on the sur-
face of F; in the direction of underlying cylindri-
cal projection (as defined by the scanner configur
tion). Let the resulting resampled point set B¢

which satisfies the constraints on the feature loca- K A
tionsg,x = ¢}, anda; k= . Ela) = Z (5%, S5 (a)) )
k=1
5. Repeat step 3 and step 4 for &l's (i # ) in

database. for a suitable cost functioffi.

) 4.2 Solving The Alignment Problem
For step 3, a standard model for scattered data interpgy, ying the alignment transformatiahis not trivial us-
lation can be explonecl_ [16, 19]. Note that, at step 4, w%g only the silhouette information. The form @f de-
cannot get corresponding samples on the surfad@ ol o 4q on the pose and size of the face of a person to be

some points on the boundary &F. It is likely that the capturedT can be defined as
two faces under consideration do not match exactly on

the boundary. We keep track of the indices of those void T(x) =s(Rx +t),

sample points and use only sample points whose indice . . . o
piep y pPiep w%eres is a scale factorR is a rotation matrixt is a

are not void in any resampling @ in the database. Fig- translation vector. The alignment problem is then one of

ure[3 depicts the process to establish the correspondence
between reference and target faces.

mihimization of the functional:
L
> Ik =Tyl 3)
j=1

in terms ofs, R andt. It should be noted that; is the

4" 3D feature point in real face;; is thej* 3D feature
point in a reference model face atidis the number of
feature points to be used.

Figure 3: Getting correspondence between two faces. From We already knoij_ However,xj is determined from

left to right, reference face, target face, warped reference face, g standard non-linear least square minimization technique
resampled target face. Note the void samples in the ears of the [21],128]. A Levenberg-Marquardt algorithm is applied to
resampled target face. obtain the 3D point locations that correspond.tteature
points selected manually in a small number of (3-4) tex-

4 Fitting Model Parameters to Silhouette Images ture images. We usetl = 7 in our experiments. Once

. . . - e determinex;, then, we compute the values @f R
In this section, we describe our method for fitting modeeé\jndt such that Eq({3) is minimized. The needed parame-

parameters to a set of input silhouette images. General rs are obtained from an application of fioél ordinar
this fitting process does not require a specific face model; : bp y
rocrustes analysif5].

A novel weighted silhouette contour cost is presented in
Sectior] 4.B. The optimization strategy described in Seé-3 Partial Silhouette Matching

tion[4.4 depends on the underlying face model. We déNow, we discuss how we design the cost functjpin
scribe how our face model and database is adapted td=g.(3). The easiest way to measure difference of two bi-
specific non-linear multidimensional optimization algo-nary images is the number of ‘on’ pixels when pixelwise
rithm. XOR operation is applied to the two images|[13]. In this

4.1 Problem Formulation case,

H W
Let M(«a) be any arbitrary face model which pro- F(S*, 5% (o)) :ch(i’j) 4)

duces a polygon mesh given a vector parametee =5



o(i,j) = 0 if S*(,4) = Sh () (i, ) 2 Compute the aligned me§h(G).
7= 1 otherwise.

If our goal requires thaf = 0, that is, if two silhouettes 3 For each input silhoueti®,

overlap exactly, the optimal solution will be unique in
terms of S* (). However, if our objective functiorf
cannot be reduced to zero given inherent characteristics
of the problem, it is likely that there are multiple optimal - Compute boundary-weighted XOPRbetween
solutions. Any preference among those multiple optimal Sk andS* and add it to the total cost.

solutions should be incorporated in the cost function.

In our case, the input silhouette area covers the full This optimization process depends on the characteris-
head including hair and the back, while our face modéics of the model parameter. Here, we discuss the op-
includes the front of the face delineated by the ears on tfignization process based on our model parameter de-
sides and lower part of the forehead from the top. Thuscribed on Sectiof]3. Among the 137 eigenheads, we
our objective functionf, is often non-zero (of > 0) chose the first 60 eigenheads to reconstruct a 3D face.
since the silhouette generated by our modé|(c)) con-  Furthermore, we found this number to be sufficient to
siders only a partial area of the input silhouet§é)(see Capture most of the salient features in a human face.
Figure[8 and Figurg 10). If we use the objective funcThus, the corresponding coefficients serve as our multi-
tion f in Eq.@), we could have multiple set gsﬁ;b(a) dimensional optimization parameter of dimensionality
that minimizef and we cannot guarantee that these sd0.
lutions match the real boundary contours in the input sil- The simplex method can be easily adapted to our multi-
houettes. Our goal is to match the real boundary contougémensional face model. The initial simplex of 60 di-
between input and model silhouettes ghis required to mensions consists of 61 vertices. Let the coefficients
be the global minimum. Accordingly, we impose higherae = {0, - - -, 0} (corresponding to the mean face) be one
penalty for the mismatch near the boundary pixels of inef the initial pointsp, of the simplex. We can choose the

- ProjectT’(G) into k*" image plane and gener-
ate silhouette imagg¥,.

put silhouettes. other remaining 60 points to be
Though a mismatch in the pseudo contour area con-
tributes a higher cost tf, this contribution can be consid- pPi = Po + pi€i, @ = 1..60,
ered as a constant factor. Our new cost function replaces . _
c(i,j)in Eq.@) with wheree;’s are 60 unit vectors and; can be defined by

the characteristic length scale of each component.of

. _JoO if Sk(i,7) = Sk () (i, 5) 5 We setu; = 3v/\;, where); is thei'" eigenvalue cor-
c(i,j) = (1(1713)2 otherwise ®) responding toi'” eigenhead in our face model. With
this initial configuration, the movement of this 60 dimen-
d(i,j) = D(S*)(i, 5) + D(5%)(4, j), sional simplex is confined to be within our face space and

. . . . there is no need to perform exhaustive searches in the ex-
whereD(S) is the Euclidean distance transform of blnaryterior of the face space. Another noteworthy aspect of our

images and$ is the inverse image df. Note that rep- ptimization procedure in the chosen face space is that it

resents a distance map from silhouette contour and can %eresolution—independent. This allows for very expedient

computed once in a preprocessing step. We call this corst .
. . ; : . econstructions.
functionboundary-weighted XORwvhich provides a sim-

. . : . Although, the downhill simplex method has slow con-
ple and effective alternative to precise contour matchin : : .
. . ergence properties, the choice of the error metric can
schemes. As a result, there is no need for expensive oper- i . A :
Improve it’s efficiency significantly. The choice of our

ations of correspondence, edge-linking, curve Tlttmg, dlsb undary-weighted XOR error metric has proven to be

tance computations between boundary curves; all needée - . ) e

! . very beneficial given its low cost and simplicity. Our

when precise contour matching schemes are used. Thus : ) . .
L : results reported in a later section bear testimony to this

our optimization algorithms are fast and robust.

claim.

44 'O.ptl'mlzauon - 4.5 Texture Extraction

To minimize Eq[(R), we use downhill simplex method o , ) i

which requires only function evaluation [13,121]. TheOuroptlmlzed 3D model matc_hes all |n_put SIIhouette im-

optimization parameter is the model parameter One ages as close as possible. Since the |_nput S|Ihouette im-

function evaluation includes the following step: ages are obtained from the correspor_]dmg texture images,

we do not need any further registration process for tex-

1 Compute a mes@ from M (cv). ture extraction. We extract texture colors in object space



rather than image space and do not create a single teesolution and a 75% reduction in image resolution re-
ture map image. That is, for each 3D vertex in the resulted in only 30-40 seconds until convergence. We can
constructed 3D face, we assign a color value which igrovide this solution obtained at a lower resolution as a
determined from multiple texture images. To do so, wénitial guess of the optimization process at a higher res-
proceed as follows. olution. As a result, it is likely better results can be
Our approach is a view-independent texture extractionbtained than those obtained using only high resolution
approach[[19, 23, 30]. Each vertex is projected to all imdata. All the results presented here were obtained from
age planes and tested if the projected location is withithis hierarchical optimization technique.
the silhouette area and if the vertex is visible (not oc- Note that the shape parameteng @re not directly de-
cluded) at each projection. For all valid projections, weendent on the input silhouette image resolution and do
compute the dot product between the vertex normal anbt dictate the 3D output mesh resolution. The degree of
the viewing direction, and use the dot product as a weigtiesolution-independence built into our scheme is a very
of the texture color sampled at the projected image ladesirable feature. Our statistical shape model captures
cation. The final color value at a vertex is computed byine details (as being correlated with coarser ones) which
dividing the weighted sum of texture values of all validallows us to use lower-resolution sensing in the input im-
projections by the sum of weights. ages and low-resolution XOR computations for shape re-
covery.

. . i 5.2 Synthetic Data

In section 5.1, we discuss some implementation iSSU&Shetic data can be derived from our face model space
regarding the speed of optimization process. In the su*a'lrectly. To show the robustness of our method, we
sequent subsections, we provide experimental results fop )" 50 sample faces in the database and 50 faces
our silhouette fitting process described in Sedfiipn 4 Wit?econstructed by randomly chosen parameters, —
several different camera settings. (—0.8v/X;,0.8y/);),i = 1..60, according to the Gaus-
5.1 Implementation Issues sian distribution. Eleven synthetic cameras were posi-

One concern is the speed of the optimization procesoned in the front hemisphere around the object (Fig-
The most time-consuming part in a function evaluation igre[1). The input silhouette images were acquired by
the silhouette generation part (See Step 3 in Seffign 4.4¢ndering each of the sample faces in the eleven image
Since our face model is of very high resolution (approxPlanes. Besides the cost value, we measurgdand
imately 48000 vertices and 96000 triangles), even refdausdorff distance between each reconstructed face and
dering with flat shading takes considerable time when gorresponding original face in 3D. _

should be repeated in an optimization process. Table 1 lists the various statistical estimators of the er-

A simple remedy for this problem is to reduce the mesFPrs for all 100 samples. Table 2 demonstrates that our
resolution by vertex decimation. Also, if we reduce theeost value based on the difference in 2D silhouette images
mesh resolution, it is natural to reduce the resolution d12s strong correlation witl, distance in 3D. Also, by
silhouette images accordingly (originallp24 x 768). comparing all 100 reconstructed 3D faces to the original
The reduction in model and image resolution will accelfaces visually, we could see tte error has strong cor-
erate the XOR computation process in Step 3. In OL'[,elauon with the v!sual similarity of two SD faces. On_e
experiments, we determined that 95% decimation in tHgPortant conclusion we can draw from this observation
mesh and 50% reduction in image resolution resulted if§ that silnouette matching with sufficiently large number
a similar convergence rate and a lower (1/10) cost of th& Viewpoints provides us with a very good estimate of
required for original resolution data. With this reducedh® shape of a human face assuming that the target face is
resolution data, the total optimization expended only 3-&lréady in the 3D face space that is spanned by the eigen-
minutes on an Intel Pentium IV, 2 GHz microprocessof€ads.
Note that this reduction in input data resolution does not min max  mean med. std. dev
affect the resolution of the final reconstruction. Once we : ; ‘

estimate the optimal coefficients, we can reconstructa3DXOR cost 1509 4104 2579 2527 600.8
P ' Lo 1259 1153 4544 39.90 20.40

face in full resolution from the aggnheaQs using Eq.(l). Hausdorff 0297 2826 0762 0.676 0.424
Another way to expedite the optimization process is te

employ a hierarchical approach [13]. With more reduced Table 1: Statistical estimators of errors

resolution, we can obtain an approximation of the solu-

tion that can be achieved with original resolution data in

even lesser time. For example, 99% decimation in mesh Figure[4 shows resulting reconstructions from our op-

5 Experiments




XORcost L, Hausdorff

XOR cost 1 0.89 0.70
Ly 0.89 1 0.79
Hausdorff 0.70 0.79 1

Table 2: Correlation coefficients between error types

timization process. The selected faces in the figure cau
the minimum, average, and the maximiimerror among
all the 100 samples. We observe that our silhouet®™
matching algorithm captures the most important feature
of a face within our constructed face space. Figure
shows the difference between input silhouette images a
the rendered silhouette images of the 3D face that resu
in an averagd., error before and after optimization.

Original Face Initial Guess Final Reconstruction

Figure 5: Silhouette difference of a synthetic face before
(above) and after (below) optimization.

along vertical axis (Figurp]6c) improved the fidelity of
our cost function slightly. Note that denser sampling
around the side area of a face (Figfe 6d) did not improve
the result in terms of both errors. All the experiments
in Sectior 5.2 and Sectign 5.4 were performed with the
arrangement depicted in Figure 6b.

avg. XOR cost avgL, cort. coef

(@) 2759 45.78 0.89
(b) 2579 45.44 0.89
(© 2807 49.60 0.92
Figure 4: Reconstruction of synthetic faces: (top) minimum Lo (d) 2634 46.73 0.89

error, (middle) average Lo error, (bottom) maximum Lo error.
Table 3: Errors obtained from different camera settings.

5.3 Camera Arrangement

Like the visual hull method, it is important to choose the

viewpoints carefully to get maximal 3D information from 5.4 Real Data

a set of silhouette images. We repeated the experimentTime challenges in using pictures taken by real cameras

the previous section with different camera arrangementsclude the issues of silhouette acquisition, accuracy of

Eleven cameras were sampled on the front hemisphertamera parameters, misalignment, and ‘clutter’ (excess

around the object (see Figuré 7). Figlite 6 shows fouread area beyond the face model). We assume that sil-

different arrangements in 2D plots, which parameterizhouette images can be easily acquired by a simple back-

the shaded area in Figuré 7 in spherical coordinates gtound subtraction technique. We calibrated the eleven

a fixed radial distance; actual camera locations of circlstatic cameras (Figufg 7) by a standard technique using

marks are in the symmetric positionsgfaxis. a calibration object [28]. One could enhance this initial
Table 3 compares the results for the four camera acamera calibration by a technique that uses silhouette im-

rangements. Restricting the camera placement of tkees([6, 22]. In Sectidn 4.3 we describe how we avoid the
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Figure 7: Arrangement of a set of 11 cameras in 3D; (b) in Fig-
Figure 6: Different arrangements of eleven cameras. (a) evenly ure@ Shaded area indicates half the sampling range; (0°, 90°)
distributed set. (b) clustering at informative viewpoints. (¢)  in azimuth and (—40°,40°) in elevation
restricting variation along 6-axis. (d) denser sampling near the
side area of a face.

effect of clutter through the design of a suitable cost funcr-naIIy informative viewpoints for capturing geometry of
tion based on the boundary-weighted XOR error metric? human face.

Figure[ and Figurg 10 show how our model face fits Our methods are almost automatic. Very little user
to real silhouette images of faces of Caucasian and Asidmeraction is required. User intervention is needed for
origin. With similar quality of alignment to the aver- picking feature points on laser-scanned face surfaces to
age synthetic case in Figuré 5, these two diagrams inddbtain point correspondences for model building. Other
cate our boundary-weighted XOR cost function succesfteraction is needed for picking feature points in input
fully attracts the model-generated silhouette contour tphotographs during the alignment stage. Both steps can
the boundary of input silhouette images. Note that thise automated with robust feature point detection algo-
alignment cannot be achieved with a simple XOR-basedthms for color images, which will make the proposed
cost function due to the lack of preference in matchingystem fully automatic.
direction.

Figure[9 and Figurg 11 demonstrate the effectiveness
of 3D reconstruction and subsequent texture mapping R
the Caucasian and Asian model heads in Figure 8 an

Finally, we developed a formulation to find optimal
odel parameters which provide best fit to the given sil-

uette images. The advantage of this scheme is that
Figue T espectvey. Note i the ocaton of eyes anl SI"0VEE-base cos cton s ot e ooy
the shape of noses and lips in the texture mapped imagés pute. n p '

agree well with the reconstructed 3D geometry. It is re=2>¢ that the model matches only partial areas of the in-

. X L ut silhouette images. The proposed cost function pro-
markable that the race information, which is expected t\B/ides high fidelity in the reconstructed 3D faces but is

be coupled with silhouette contour, was successfully cap- . o .
tured by our silhouette matching scheme. pot amenable to the computation of gradient |n.format|on
in terms of model parameters. Our work provides a ro-
6 Conclusion and Future Work bust and efficient solutions to reconstructing the human
face. The separate treatment of geometry and texture will

In this paper we present a method to reconstruct faC%Snable the pursuit of even more robust and efficient al-

from silhouette projections. In experiments with syn- orithms for the various stages of the reconstruction pro-
thetic and real data, we demonstrate that 2D silhouetfs 9 P
matching in the various viewpoints captures the most im>

portant 3D features of a human face for reconstruction. In the future, we plan to use differentiable cost func-
The number and locations of cameras play an importatibns for better convergence rate. Additionally, it will
role in the quality of silhouette-based shape recovery. Wae worthwhile to also consider methods based on Monte-
plan to devise a systematic way to obtain a set of maxizarlo Markov Chains for efficient implementation.



Figure 8: Difference in real silhouette images of a Caucasian  Figure 10: Difference in real silhouette images of an Asian
head model before (above) and after (below) optimization. model before (above) and after (below) optimization.

'éé

Figure 9 : 3D recons'truction of the Caucasian model of Figure[§ Figure 11: 3D reconstruction of the Asian model of Figure[I(]
shown- in a novel viewpoint (left image is one of the 11 input  ¢hown in a novel viewpoint (left image is one of the 11 input
(real) images). (real) images).
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