
Easy Realignment of k-DOP Bounding Volumes

Christoph Fünfzig Dieter W. Fellner

Institute of ComputerGraphics
Technical University of Braunschweig, Germany

Abstract
In this paper we reconsider pairwise collision detection
for rigid motions using a k-DOP bounding volume hi-
erarchy. This data structure is particularly attractive be-
cause it is equally efficient for rigid motions as for arbi-
trary point motions (deformations).

We propose a new efficient realignment algorithm,
which produces tighter results compared to all known al-
gorithms. It can be implemented easily in software and
in hardware. Using this approach we try to show, that
k-DOP bounding volumes can keep up with the theoret-
ically more efficient oriented bounding boxes (OBBs) in
parallel-close-proximity situations.

Key words: virtual reality, collision detection, distance
computation

1 Introduction

Collision detection is an important component in any VR
application with user interaction like virtual prototyping
and virtual simulation systems. In general the collision
detection component can be structured into a pipeline
much like the rendering pipeline [18].

In Figure 1 the collision detection pipeline is shown
with its pipeline stages. The frontend consists of the ob-
ject handler, which allows to define and identify the ob-
jects and to state the application’s collision interest. Then
comes a first neighbor-finding stage, which reduces the
set of all objects to smaller neighbor sets of the interest-
ing objects. Within each neighbor set a pairwise collision
detection is performed. For this pairwise collision de-
tection problem several algorithms have been proposed.
The first class uses a hierarchy of simpler bounding vol-
umes on the face set to stop the search for colliding faces
in sublinear time. Here the performance depends on the
tightness of the bounding volume and on the complexity
of the collision test for the bounding volume. A wealth of
different bounding volumes have been proposed: spheres
[6], oriented-bounding-boxes [11], axis aligned bound-
ing boxes [16], k-DOPs (generalization of axis aligned
bounding boxes) [7], swept sphere volumes [9], up to
arbitrary convex polytopes [3]. Roughly speaking, the
bounding volumes like oriented bounding boxes and ar-

Application

Object Handler

Object Definitions

Collision Interest

(e.g. Indexed face set and
local coordinate system)

(e.g. Connected components of a
graph)

Conservative
Neighbor-finding Filter

e.g.
Sweep-and-Prune Algorithm
Regular Grid
None

Pairwise
Exact Algorithm

e.g.
Divide-and-Conquer Alg.
on BVol-Hierarchy
Exact Algorithm
on f *f face pairsA B

Colliding face pairs

O
b

je
c
t

in
p

u
t

Collision Detection Pipeline

Figure 1: Collision detection can be considered as a
pipeline of successive filters. The frontend handles
complete objects (of a scenegraph system), intermediate
stages use some simpler entities like bounding volumes
and the backend handles face pairs.

bitrary convex polytopes have very good enclosing prop-
erties, moderately complex collision tests and complex
constructions of the bounding volume and the bounding
volume hierarchy. Spheres, axis aligned bounding boxes
and its generalization k-DOPs have very simple collision
tests and constructions of the bounding volume and the
bounding volume hierarchy, but have only moderately
good enclosing properties. Because of the simple con-
structions of the bounding volume itself and the bounding
volume hierarchy they are particularly suited for arbitrary
point motions (deformations) like in cloth animation [12].

In this paper we are concerned with pairwise collision
detection for the special case of euclidean motions us-
ing k-DOP bounding volumes. A discrete orientation
polytope (k-DOP) is defined by a fixed small set of k
directions (D1 , .. . , Dk) and a tuple (d1 , .. . , dk) ∈ Rk of
scalars by

{p | Di · p ≤ di , i = 1, .. . , k} =
k⋂

i=1

Hi (1)

with halfspaces

Hi := {p ∈ R3 | Di · p ≤ di}

Usually the set of directions is restricted, so that for each
direction Di there is an antiparallel one Di+k/2 = −Di

{p | Di · p ≤ di , i = 1, .. . , k} =
k/2⋂
i=1

Si (2)

both together defining so-called slabs

Si = {p ∈ R3 | − di+k/2 ≤ −Di+k/2 · p,
Di · p ≤ di}

= {p ∈ R3 | − di+k/2 ≤ Di · p ≤ di}
With this restriction the collision test for k-DOPs reduces
to k/2 interval overlap-tests. In order to use this simple
collision test also with euclidean motions, at least one of
the tested k-DOPs is defined by rotated directions (D′

i)
and has to be realigned to the original directions (Di).
This paper proposes a new algorithm for realigning k-
DOPs which is more efficient than all known algorithms,
and also produces tighter results. The calculation of the
bounding volume and the bounding volume hierarchy is
only slightly more complex.

In the next section we briefly summarize previous work
on the realignment problem for k-DOP bounding vol-
umes. In Section 3 we first present our realignment ap-
proach for bounded rotations. Afterwards we describe
how to extend it to the full range of rotations by apply-
ing a remapping of directions. With this the full k-DOP
intersection test can be presented. Section 5 then extends
to proximity computations: Minimum Distance and Ap-
proximate Minimum Distance. In Section 6 we show the
performance statistics for the whole spectrum of collision
scenarios and compare with the other realignment algo-
rithms and with the performance of RAPID [10], using
OBBs as bounding volumes. Finally, we conclude and
identify directions for future work.

2 Previous work

In a scenegraph system two objects A and B are usually
defined by their geometry in a local coordinate system,
which is given by a transformation matrix MA and MB ,
respectively. In case of the k-DOP bounding volumes
given in the local coordinate systems, we can do the col-
lision tests in A’s (or B’s) coordinate system.

The realignment problem then is to calculate a k-DOP
bounding volume for M ·B, where M = M−1

A ·MB is the
matrix for the change of coordinate system from object B
to object A.

Three approaches for the realignment problem can be
found in the literature. In the original paper Klosowski
et al [7] propose two methods: hill-climbing method and
approximation method. The hill-climbing method relies

on the convex hull, stored with each inner node of the
bounding volume hierarchy of object B. During traver-
sal the convex hull is lazily transformed by matrix M,
to find new bounds d′i+k/2 and d′i for the k-DOP. This
method is quite expensive in time and space and as stated
in [7] it is only justified for the root node. The approx-
imation method does not try to compute a k-DOP from
scratch. Instead, it transforms the vertices of the origi-
nal k-DOP by matrix M and computes a k-DOP for the
transformed vertex set (see Figure 2). For non-degenerate
situations this requires Ω(k) vertex transformations and
k
2 Ω(k) scalar product computations.

All other work tries to make the approximation
method more computationally efficient. In [16, SATlite]
only the major axis directions {D0 = (1, 0,0), D1 =
(0,1,0), D2 = (0,0,1)} are considered for the realign-
ment problem (see Figure 3). The resulting approxima-
tion algorithm requires only k scalar product evaluations.

Di

A

B

Figure 2: Approximation method using all k-DOP direc-
tions.

Di

A

B

Figure 3: Approximation method using only the major
axis directions.

The approximation method in its original form requires
to compute the boundary representation (BRep) of the k-
DOP. Possible algorithms for the special case of 18-DOPs

can be found in [1] and for the general case in [14, Con-
vex polyhedrons as halfspace intersections]. Zachmann
[17] proposes a different implementation of the approx-
imation method (figure 2), which does only require the
BRep for the unit DOP (all di = 1). The algorithm com-
putes the new bounds d′i by a scalar product with a vector
D′′

i

d′i = D′
i ·


 Dji,1

Dji,2
Dji,3




−1

·

 dji,1

dji,2
dji,3




= D′′
i ·


 dji,1

dji,2
dji,3




(3)

where ji,h , 1 ≤ h ≤ 3 are the indices of k-DOP halfspaces
Hji,h , supporting an extremal vertex pi of the original k-
DOP. The correspondence ji,h , 1 ≤ h ≤ 3 and therefore
D′′

i is the same for all DOPs in the tree and can be com-
puted once at the beginning of the tree traversal from the
unit DOP. Altogether this algorithm requires k matrix in-
versions and k matrix-vector products once and k scalar
product computations per realignment.

3 Realignment as Table Lookup

This work proposes a new realignment method, falling in
between the approximation method and the hill-climbing
method. First, a point c used as the rotation center is
stored with each node of the bounding volume hierarchy.
Its coordinates are set as the center-of-mass of the con-
tained points.

a
=1

0

Di

Rn Rn

Rn-1Rn-1

R1

c

a
=1

-(
1-

a)
/(
n-

1)

1 a
=1

-2
(1

-a
)/
(n

-1
)

2 a
=a

n-
1

Figure 4: Angle cone, subdivided into n− 1 rings Rj plus
the remaining directions Rn (shown in two dimensions)

Then the k-DOP bounding volume is calculated as
usual. In a second pass for each k-DOP direction Di in-
formation is added about the point locations in a conical
region around Di (see Section 3.1). The conical region

is subdivided into a number of rings Rj , each with a sin-
gle bit j recording if there is a point in the voidage region
Gj . During the realignment algorithm this information is
used to scale the value di according to the transformed
directions D′

i . For arbitrary rotations we need an addi-
tional remapping σ of directions Di , which is described
in Section 3.2.

3.1 Realignment for Bounded Rotations
In order to keep the information about the point locations
in the neighborhood of direction Di small, we have to
keep the angle between directions Di and D′

i small.

1

Di

Rn Rn

Rn-1
Rn-1

R1

0

diG1 G2 Gn-1
G2Gn-1

GnGn

c

Di

0

1

diG1 G2 Gn

Rn

R1

c

Figure 5: Voidage regions Gj in halfspace Hi

Suppose Di · D′
i ≤ a with 0 � a ≤ 1. Then we subdi-

vide the angle cone with aperture a into n − 1 rings

aj := 1 − j 1−a
n−1

Rj := {D ∈ S2 | aj−1 > D · Di ≥ aj}
with j = 1, .. . , n − 1 and the remaining directions

Rn := {D ∈ S2 | a > D · Di }
as shown in Figure 4.

In the second phase of the k-DOP bounding volume
construction we store the information, if there is a point

p in the voidage region Gj with

Gj := {p | ‖p − c‖ > di ,
p−c

‖p−c‖ ∈ Rj}

For efficiency we choose n = 32 and encode it as bit j in
an unsigned data member. Figure 5 shows the geomet-
ric meaning of this occupancy table, which contains the
occupancy status of all regions Gj .

For the points p in the remaining region Gn we calcu-
late the projected length lp of (p − c) onto the shell of
the outermost ring Rn . With these projected lengths we
set

ri := min
p∈Gn

{
di

lp

}
(4)

as the minimum ratio between the scalar di and the pro-
jected lengths (Figure 6).

Using the occupancy table the realignment problem
can be solved as follows. Let direction D′

i be in Rm for
index m ∈ {1, . . . , n − 1}.

1

Di

Rn Rn

Rn-1

R1

0

diG1G2Gn-1

Gn

D’i

Rm

p

D

D (p-c)�

c

Figure 6: Geometric consideration for points lying in the
remaining region Gn (shown in two dimensions)

1. First consider the remaining region Gn and set

fi :=
a(n−2)−m

ri
(5)

if bit n is set. Otherwise we initialize fi := a. The
resulting halfspace H′

i = {p | D′
i p ≤ fi di } contains

the points, lying in the region Gn . Figure 6 shows
why this statement holds.

2. Consider all inner regions Gm−h , h = 0, .. . , m and
evaluate

fi := max
(

fi ,
ah−1

am−h

)
(6)

Because the sequence ah−1
am−h

is monotonously de-
creasing the maximum search can be stopped for the

1

Di

Rn Rn

Rn-1

R1

0

diG1G2Gn-1

Gn

D’i

Rm

p

c

a /a =1/a0 1 1

Figure 7: Geometric consideration for points lying in in-
ner regions Gm−h relative to direction D′

i (shown in two
dimensions)

first bit m − h found to be set. In the term ah−1
am−h

the denominator gives the length of the shell of ring
Rm−h and therefore is a lower bound on the projec-
tion of a direction in ring Rm−h . The numerator is
just an upper bound on the cosine between the direc-
tion of the point and D′

i (see Figure 7).

1

Di

Rn Rn

Rn-1

R1

0

di
G1G2Gn-1

Gn

D’i

Rm

p

c

a /a =1/a0 3 3

Figure 8: Geometric consideration for points, lying in
outer regions Gm+h relative to direction D′

i (shown in two
dimensions)

3. Consider all outer regions Gm+h , h = 1, .. . , (n −
2) − m and evaluate

fi := max
(

fi ,
ah−1

am+h

)
(7)

This sequence ah−1
am+h

is monotonously increasing and
again the maximum search can be stopped for the
first bit m +h found to be set, if searching inversely.
The explanation for the term ah−1

am+h
is similar to the

previous one (see Figure 8).

We then use the factor fi calculated to scale the value
di

d′i := fi di (8)

3.2 Remapping of Directions
In the previous section we have assumed that direction D′

i
satisfies Di · D′

i ≤ a. Now we show how to ensure that
for arbitrarily rotated directions D′

i .
First note, that for a k-DOP the aperture a has to be

chosen large enough to cover the directions of S2 com-
pletely (see Figure 9).

�(1)=8

�(3)=6

�(8)=4
�(13)=10

�(2)=9

�(4)=5

�(0)=0

Figure 9: Remapping of directions (here with the 14-
DOP). Note, that the conical regions Rj (with aperture
a) cover the sphere S2 completely!

The value a depends on k and the regularity of direc-
tions Di . In Table 1 the values of a are given for 14-
DOP, 18-DOP, 26-DOP and for the platonic solids 6-DOP
(Cube), 12-DOP (Dodecahedron). For performance rea-
sons larger values of a are preferable.

a
6-DOP 0.57735(54.7deg)
12-DOP 0.787539(38.04deg)
14-DOP 0.806898(36.2deg)
18-DOP 0.816497(35.26deg)
26-DOP 0.886452(27.57deg)

Table 1: Aperture a of direction cone for various k-DOP
bounding volumes.

At the beginning of the bounding-volume-tree traversal
we once calculate a remapping σ of directions

σ(i) := h, so that
D′

i lies in region Rm relative to direction Dh
(9)

However, note that the remapping σ is not a permuta-
tion in general. Besides finding the remapping, the index
m of the region (relative to direction Dσ(i)) can be calcu-
lated easily.

4 Intersection Test

For the full k-DOP intersection test we have to add all
components together. If the k-DOP of object B is re-
aligned, we need the occupancy table dop2.occ and the
values dop2.ri to calculate the scaling factors fi . Ad-
ditionally the rotation center dop2.c is required to cal-
culate the movement correct due to the rotated cen-
ter. This is given by the matrix-vector product Di ·
(M dop2.c), projected onto direction Di . In the actual im-
plementation it is done in one scalar product using a table
of the scalar products (Di ·M·1 , Di ·M·2 , Di ·M·3) with
the columns of the matrix M.

for (i=0; i<k; ++i) {
unsigned mini = sigma(i+k);
unsigned maxi = sigma(i);
real correct = dop2.c1 (Di · M·1)

+dop2.c2 (Di · M·2)
+dop2.c3 (Di · M·3);

real min2 = (dop2.dmini-dop2.cmini)· fmini
+ correct;

real max2 = (dop2.dmaxi-dop2.cmaxi)· fmaxi
+ correct;

if (max(dop1.di+k,min2)>min(dop1.di,max2))
return false;

}
return true;

Altogether the intersection test requires k multiplica-
tions in Equation 8, k multiplications/divisions in Equa-
tion 5 and k scalar products (for the rotation of the center
point). The quotients in Equations 6 and 7 can be evalu-
ated by a two dimensional table lookup. With 5k multi-
plications the method is nearly as efficient as the approx-
imation method restricted to the major axis directions.

5 Extension to Proximity Computation

In this section we show how to use the realignment algo-
rithm for proximity computation problems.

Minimum Distance Find a face pair with minimum dis-
tance.

Approximate Minimum Distance Given an absolute
error or relative error, find all face pairs with dis-
tance values lying within the error bounds above the
minimum distance.

Computation of the approximate minimum distance can
be done by solving a weaker problem first:

Weak Approximate Minimum Distance Given an ab-
solute error or relative error, compute a sequence of
face pairs (fA,l , fB,l)l=1,... ,n , such that

dist(fA,i , fB,i)
.≤ min

j=1,... ,i−1
{dist(fA,j , fB,j)}

is within the error bounds for all i and
minj=1,... ,n{dist(fA,j , fB,j)} is the minimum
distance.

In a second pass over the resulting sequence of the Weak
Approximate Minimum Distance problem we can then
solve the Approximate Minimum Distance problem.

The algorithm for the Weak Approximate Minimum
Distance problem using k-DOP bounding volumes is of
branch-and-bound type [8]. The pruning with lower
bounds on the minimum distance of the faces, contained
in two k-DOPs dop1 and dop2, is done as follows

for (i=0; i<k; ++i) {
unsigned mini = sigma(i+k);
unsigned maxi = sigma(i);
real correct = dop2.c1 (Di · M·1)

+dop2.c2 (Di · M·2)
+dop2.c3 (Di · M·3);

real min2 = (dop2.dmini−dop2.cmini)· fmini
+ correct;

real max2 = (dop2.dmaxi−dop2.cmaxi)· fmaxi
+ correct;

real diff1 = dop1.di−min2;
real diff2 = dop1.di+k−max2;
if (diff1>=0 && diff2>=0)
if (diff2>getDistance()+getAbsError())
return false;

else if (diff1<0 && diff2<0)
if (-diff1>getDistance()+getAbsError())
return false;

}
return true;

6 Results

We have implemented a system based on k-DOP bound-
ing volumes for collision detection and proximity com-
putations on top of the OpenSG scenegraph. This C++
implementation has a DoubleTraverser template-
class, which traverses two bounding volume hierarchies
in parallel and does the dispatching of the four possi-
ble cases: InnerNode–InnerNode, InnerNode–LeafNode,
LeafNode–InnerNode and LeafNode–LeafNode. The
different versions of this template-class incorporate dif-
ferent caching strategies, like the generalized front cache
[3] or the simple caching of a single face pair. By a
Traits class in the template parameters it can be con-
figured to use any intersection test or proximity compu-
tation with one of the realignment algorithms presented.

In order to show the efficiency of the new realign-
ment method, we have run a series of benchmarks on a
Windows-PC with 1GHz processor clock-rate. Bench-
marking collision detection algorithms realistically is a
difficult task. This is so, because there is a wealth of mod-
els with different characteristics and motions relative to
each other [15]. In [17] a benchmarking scheme for two
models each contained in a unit-box is proposed, where
the second object performs full-z rotations at decreasing
distances relative to the first one.

Figure 10 shows the intersection test times for the ap-
proximation method restricted to the major-axis direc-
tions, the approximation method using all directions and
the new realignment algorithm. For the benchmarks the
k-DOP intersection test is used also in the mixed situ-
ations InnerNode–LeafNode and LeafNode–InnerNode,
instead of the primitive test using the face in the leaf
node. In practical applications it is reasonable to use
only the primitive tests in mixed situations and safe for
the k-DOP bounding volumes in leaf nodes. This safes
one half of the total memory consumption. In each test
the realignment algorithm is performed on the fly and the
realignment result is never cached, which would reduce
the number of realignments to one half. Concerning the
construction of the hierarchy we always used a binary hi-
erarchy with subdivision of the longest k-DOP direction
at the midpoint median [10], because it is well known
and the node depths are balanced. Of course, there are
other possibilities [17]. For the triangle-triangle intersec-
tion test we use the approach proposed by Möller [13]
with some simple modifications (i.e. without divisions).

The new realignment algorithm performs good on av-
erage, but is sometimes outpaced by the approximation
algorithm using all k-DOP directions.

Figure 11 shows the performance in a classic scenario:
parallel-close-proximity. Here we have modified the sce-
nario of a sphere containing another sphere of slightly
smaller radius by randomly perturbing the inner sphere
coordinates. As already stated in [10] and [15], RAPID
performs especially good in this scenario. With the new
realignment algorithm the number of bounding volume
and triangle tests reduce with increasing k. Unfortunately
in the current implementation this decrease does not com-
pensate the cost increase per bounding volume test.

Figure 12 shows the performance in another classic
scenario: point-close-proximity. In this scenario with an
increasing number of collisions RAPID has a very ho-
mogeneous behavior and falls in between all the k-DOP
algorithms.

7 Conclusion and Future Work

We have presented a system for collision detection and
proximity computations with k-DOP bounding volumes
(on top of the OpenSG scenegraph). Integrated into this
system is a new realignment algorithm for the k-DOPs,
which is slightly more complex to implement than the
simple approximation algorithm using only the major di-
rections. Because it never requires the boundary repre-
sentation of a k-DOP, it is much easier to implement than
the approximation algorithm using all k-DOP directions,
presented in [17]. In its current implementation it is only
sometimes more efficient than RAPID.

Our next step will be to do some low-level optimiza-
tions (like optimizing memory layout) guided by profil-
ing. We want to further remove the direction insensitivity
of the approach (see Figure 5). One idea for this might
be to subdivide the rings further into ring sections. Cur-
rently the k-DOP bounding volumes are defined in the
local coordinate system of the models. It might be rea-
sonable to choose a different coordinate system for better
performance.

An efficiency analysis of this algorithm, as done in [19]
for axis-aligned bounding boxes, also requires some fur-
ther research.

Acknowledgements

This work has been supported by the German Research
Foundation (DFG) under grant Fe-431/4-3 and by the
German Federal Ministry of Education and Science
(BMB+F) in the OpenSG PLUS project under grant 01
IRA 02G.

References

[1] A. Crosnier and J.R. Rossignac. Tribox bounds for
three-dimensional objects. Computers & Graphics,
23(3):429–437, 1999.

[2] Olivier Devillers and Philippe Guigue. Faster
triangle-triangle intersection tests. Rapport de
recherche 4488, INRIA, 2002.

[3] S. Ehmann and M.C. Lin. Accurate and fast prox-
imity queries between polyhedra using convex sur-
face decomposition. In Computer Graphics Forum
(Proc. of Eurographics 2001), 2001.

[4] M. Held. Erit — a collection of efficient and reli-
able intersection tests. Technical report, University
at Stony Brook, 1996.

[5] M. Held, J.T. Klosowski, and J.S.B. Mitchell. Eval-
uation of collision detection methods for virtual re-
ality fly-throughs. In Proc. 7th Canadian Confer-
ence on Computational Geometry, pages 205–210.

Canadian Conference on Computational Geometry,
August 1995.

[6] Philip M. Hubbard. Approximating polyhedra with
spheres for time-critical collision detection. ACM
Transactions on Graphics, 15(3):179–210, 1996.

[7] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sow-
izral, and K. Zikan. Efficient collision detec-
tion using bounding volume hierarchies of k-DOPs.
IEEE Transactions on Visualization and Computer
Graphics, 4(1):21–36, /1998.

[8] P. Konecny and K. Zikan. Lower bound of dis-
tance in 3d. Technical Report 1, Masaryk Univer-
sity, 1997.

[9] E. Larsen, S. Gottschalk, M.C. Lin, and
D. Manocha. Distance queries with rectangu-
lar swept sphere volumes. In Proc. of IEEE
Int. Conference on Robotics and Automation, 2000.

[10] M.C. Lin and S. Gottschalk. Collision detection be-
tween geometric models: A survey. In Proc. of IMA
Conference on Mathematics of Surfaces, 1998.

[11] M.C. Lin, S. Gottschalk, and D. Manocha. Obb-
tree: A hierarchical structure for rapid interfer-
ence detection. In Computer Graphics (SIGGRAPH
Conference Proceedings), 1996.

[12] J. Mezger, S. Kimmerle, and O. Etzmuß. Im-
proved collision detection and response techniques
for cloth animation. Technical Report 5, WSI/GRIS,
Universität Tübingen, Aug 2002.

[13] T. Möller. A fast triangle-triangle intersection test.
Journal of Graphics Tools, 2(2):25–30, 1997.

[14] F.P. Preparata and M.I. Shamos. Computational Ge-
ometry — An Introduction. Springer Verlag, New
York, 1985.

[15] P. Terdiman. Opcode benchmark, 2002.
http://www.codecorner.com/OpcodeDemo.htm.

[16] Gino van den Bergen. Efficient collision detection
of complex deformable models using AABB trees.
Journal of Graphics Tools: JGT, 2(4):1–14, 1997.

[17] G. Zachmann. Rapid collision detection by dynami-
cally aligned dop-trees. In Proc. of IEEE Virtual Re-
ality Annual International Symposium; VRAIS 98,
1998.

[18] G. Zachmann. Optimizing the collision detection
pipeline. In Proc. of The First International Game
Technology Conference GTEC, Jan 2001.

[19] Yunhong Zhou and Subhash Suri. Analysis of a
bounding box heuristic for object intersection. Jour-
nal of the ACM (JACM), 46(6):833–857, 1999.

0

20000

40000

60000

80000

100000

N
um

be
r T

es
ts

ApproxMajorAxis ApproxAllAxis NewRealignment Rapid

0

50

100

150

200

250

0 50 100 150 200 250

C
ol

lis
io

n
Ti

m
e

[m
s]

ApproximationMajorAxis
ApproximationAllAxis

NewRealignment
Rapid

Figure 10: Intersection test statistics for the models Dinosaur and Horse (around 20000 triangles each) with 14-DOPs.
In the lower row the diagrams give the number of bounding-volume tests (blue)/mixed tests (green)/triangle tests (red).

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

C
ol

lis
io

n
Ti

m
e

[m
s]

Frame Number

ApproximationMajorAxes_6DOP
NewRealignment_6DOP

NewRealignment_14DOP
NewRealignment_18DOP
NewRealignment_26DOP

Rapid

Figure 11: Intersection test statistics for the parallel-close-proximity scenario (sphere models with 5140 triangles
each).

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250

C
ol

lis
io

n
Ti

m
e

[m
s]

Frame Number

ApproximationMajorAxis_6DOP
NewRealignment_6DOP

NewRealignment_14DOP
NewRealignment_18DOP
NewRealignment_26DOP

Rapid

Figure 12: Intersection test statistics for the point-close-proximity scenario (sphere models with 5140 triangles each).

	Introduction
	Previous work
	Realignment as Table Lookup
	Realignment for Bounded Rotations
	Remapping of Directions

	Intersection Test
	Extension to Proximity Computation
	Results
	Conclusion and Future Work

