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Abstract

Scanning the deformation behavior of real objects is ¢
useful technique to acquire physically realistic behavior,
It has been shown previously how to acquire physicall
realistic object behavior for small deformation and how to
render the behavior at interactive rates. This paper intrd
duces a novel method to extend previous work to handl
large scale deformation. We model large scale deform
tion as articulation in combination with local linear de-
formation. The articulation may either reflect a underly- @) (b) ©

ing physical structure or may be purely a modeling teChFigure I: Single compliance measurement in ACME

hique. In this paper, we show examples of both appllc and simulation with an estimated articulated defor-

tions. Our acquisition method is applicable to deformablmOH model and linear deformation model {T(c)).

modeling but it also has implications for motion capture.
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Articulated Models, Motion Capture. is often approximated to be linear. The linear approx-
_ imation of the Green-Lagrange strain tensor introduces
1 Introduction artifacts during large scale deformation (see, for exam-

Deformable models are of significant interest in computeple, [4,018]). This is true in particular if the displacement
graphics; after all, many animated characters and objed points on the surface of a solid during deformation is
deform as they move and interact. There has been a It well approximated by a straight line path. Consider
of work in modeling deformable objects analytically inFigure[I(c) which shows the simulation of a hand being
computer graphics (see Sectioh 2). Very recently, déoushed at its back to bend around the wrist. The simu-
formable models have also been acquired from measurétion is based on a linear deformation model acquired
ments of real objects (e.gl, [17.]13]). Just as motion cafy scanning a medical training phantom. The simulation
ture has led to more realistic human motion models, caghows that the linear deformation model exhibits increas-
turing the deformation behavior of real objects and modhg distortions for larger deformation. During deforma-
eling them efficiently could increase the realism of detion, points on the surface of the object describe a straight
formable models for visual and haptic simulation. It alsdine path rather than the expected rotational and transla-
promises to make deformable object modeling very easv'onéﬂ path. Because of the distortion, the volume of the
A few examples of application areas for deformatiorPbject is increasing which is clearly a non-physical phe-
modeling include interactive medical simulation (both foomenon([25, 18, 15].
training and for support in the operating room), modeling The distortion of the deformed object can be avoided
objects for animation and games, and capturing the by utilizing the second order Green-Lagrange terisar [23,
havior of actors for animation including human motioril8,[4] instead of the linear approximation. This makes
capture. simulation of such models significantly more compli-
In computer graphics the deformations of interest areated since the stiffness matrix relating forces and dis-
visible, by definition. Visible deformations are of a largeplacements depends on the initial displacement. A
scale in contrast to typical engineering applications. Ipromising alternative, first suggested by Terzopoulos et
engineering applications the quantity of interest is mainlgl. [21], and more fully developed recently| [9,]115] is
the internal stress due to loads associated with typicaltp combine articulated and deformable models. These
very small strain; in such applications the strain tensamodels (called Elastokinematic models in [9]) promise



the speed of linear deformable models while being ableai et al.[[17].

to capture non-linear effects in large scale deformation. Scanning deformation behavior of an object entails the
However, all work in this direction to date has only ad-estimation of a relationship between a contact force and
dressed analytically computed models and not models @fe displacements of its surface. Itis a different task than,
existing objects. e.g., shape estimation in computer vision which may em-
In this paper, we show for the first time how such articploy deformable models for regularization. Deformable
ulated deformable models can be scanned from real omodels have been used successfully in tracking and seg-
jects. Our method acquires models by measuring the rgsenting a human body by Kakadiaris and Metakas [10].
sponse of actual physical objects. No prior segmentatiddowever, the most common way to relate a skeleton to
of the body into links is required — we infer the structurevideo data is by tracking aa priori model. Bregler and
directly from the measurements. The method produceshalik [1] describe an approach to track a human during
relationship between applied traction over the surface @frticulated motion. Rinkers and Fua [19] use detailed
the measured solid to resulting displacement of the sushape models in their tracker. In our work, we do not
face. The model is suitable for rendering realistic visuanake use of priori articulation structure (i.e. a skele-
deformations at interactive rates. The method is also afen).
plicable to segment and model dense displacement fieldsin the typical motion capture set-up, the kinematic
in motion capture, based on visually captured scene-flowtructure is known and motion estimates are linked to in-
dividual limbs. O’Brien et al.[[16] describe a technique
2 Related Work to adapt a skeleton to data. They solve the problem of fit-

An overview of approaches to physical and non-physiczﬂng data to a known structure given only rotational joints.

deformation modeling can be found in the review byfowever, they also describe a graph based method to in-
Gibson and Mirtich[[5]. Elastically deformable modelsf€r the structure of a kinematic tree given measured mo-

were introduced to computer graphics by Terzopoulos dpn of known links. The recovery of parameters of an ar-

al. [20]. Since then, numerous physics-based simulatidf?wated structure from measurements is solved in robot

techniques have been developed, many addressing coplibration. Hollerbach and Wamplér [7] review this large

putational efficiency and physical realism of the modelP0dy of work.
One approach to interactive physical deformation models Finally, for rendering simulations of our results we
is to use linear models in quasi-static simulations basé¢s€ simple linear blending which is also called Skeletal-
on finite elements$]2] or based on boundary elemérts [gfubspace Deformation [114].
Pai et al. [[1¥] have also shown how to capture linear )
quasi-static models by scanning physical deformation b Deformation Model
havior of objects. We use a “discrete Green’s functions matrix” to model the
There have been various attempts to overcome the lirglobal deformation of a solid in static equilibrium. This
itation of quasi-static linear models while maintaining in-discrete representation can be derived analytically based
teractivity. James and Pai [9] use multi-zone elastic modn continuum mechanics|[2, 8] and it can be directly es-
els to accommodate articulation.(lMer et al. [15] use a timated from observation of deformation behavior![13].
per-element rotation to overcome the lack of rotationdn this paper, we assume that a discrete Green’s functions
invariance of linear models. Zhuang and Canhyl [23[natrix is available for the object we would like to model.
use a quadratic strain tensor in a dynamic finite elemerihe matrices in our examples are estimated from mea-
simulation. They use mass lumping to diagonalize theurements with the ACME facility [17] (see Figure 1(a)).
mass matrix in order to improve performance. Picin- For a given boundary configuration, the discrete
bono et al.[[18] follow a similar approach but also in-Green’s function matrig relates the block vector of pre-
troduce adaptivity by using a linear model when approscribed and complementary boundary values of displace-
priate. The success of these dynamic finite element apient and traction vectors. The boundary configuration
proaches is still limited to models discretized at a coarsie our examples divides the surface in a support surface
resolution. Adaptive resolution techniquesl[22, 4, 6] ainwhere the object is attached to a fixed support and the free
to address this issue. However, the instability of dynamitemainder of the surface. Discrete Green’s function ma-
elastic simulation is still an open issue, while quasi-statitrices approximate the surface displacement due to a load
models are inherently stable. In this paper, we use lay straight lines. In the remainder of this paper we write
quasi-static linear model for simulation combined withthe discrete Green’s function model of deformation as a
rotational pseudo-articulation. Our model is based osum as in Equatign| 1. TH&V x 3 block vector=;, spec-
scanned deformation behavior and extends the work @fes a displacement field at th€ vertices of the free sur-



face. It contains a three-dimensional displacement vectdherefore, we model only rotational joints by articula-
for each component of the lo&dvectorpy, at each of the tion. Each of the rotational joint isZRjoint having three
N vertices . degrees of rotational freedom. The homogeneous trans-

a formation matrixj:*lE between the link frame and its
u=>
k

[1]

kPk @) parent frame — 1 can then be parameterized by three
=1 variable rotational anglegy;, 5;,~;) and a fixed transla-
There is a crucial difference between the Green's fungon “~'¢, corresponding to the joint location. Picking a
tions estimated from measurements and those derivgdy.zfixed angle parameterization of the rotational sub-
analytically by approximating the Green-Lagrange tenmatrix R yields R(cv. §;,7:) = Ry (cw) Ry (5:) Rx (7).
sor. A displacement field of a discrete Green'’s functionghe rotational axes are fixed with respect to the joint. A

model derived from measurements is a linear approximaimple linear rotational spring model for each joint with
tion of thereal, non-linear, large scaleleformation of 51 « 3 resistance: results ino; = ZkK_l Ki k.o Pk (With

the object from the undeformed to deformed state. Thg. and~; correspondingly).
approximation can therefore be considered a secant ap~rpq major challenge in fiting the articulated de-

proximation to the actual path of a point on the surfacgymable model of Equaticf 3 to a displacement field is
Analytic derivations of discrete Green’s function matri-;, identify which vertex belongs to which link. This is
ces will give a tangential approximation from the undey, o topic of the following section.

formed state instead.

4 Articulation Model 5 Segmentation of displacement field

We would like to segment the displacement field of an

frame; . object during deformation in a rigid motion of an articu-
3R—joint _ Ve[,tl'ces lated kinematic chain plus a linear displacement. We do
link | not assume that the number, the extent or the relative po-

link I;_, origin ¢ o e .
sition of the individual elements of the articulated model

are known beforehand. Instead, we would like to infer
this structure directly from multiple observations of the
. . deformation behavior of the solid. We segment the dis-

Suppo_se, f(.)r the m_oment_, that the klnemfmc StruCturﬁlacement field into multiple clusters based on the rigid
of the Ob]e.Ct IS a chain af, links; the extension t.o.t.ree art of the motion of individual surface elements. The
structures is straightforward (see Figlfe 3fordef|n|t|ons)ziscrete Green’s functions matrix described in Sedfion 3

The coordinates of the velrtlces of eac;h I?nh the refer- represents a displacement field in each reduced block col-
ence (world) frame are given Y, which is a3V vec- umnZEg. In particular, thex-column, they-column and
tor. Vertices not belonging to the link are simply zero ir(l%ﬂ]

Figure 3: Articulation Model

. : . e z-column represent the displacement field due to a
T;, while vertices at the seams between links are blend

i v, Th di  all ices d h . it load in thex, y andz direction, respectively. Instead,
Inearly. The coordinates of all vertices due to the articug, o displacement field may also be observed directly by
lation of the joints is given by

tracking the surface of an object from undeformed to de-
L formed state. The tracker would have to produce a dense
T — Z T, @) linear displacement field in order to be compatible with
= our approach.

Clustering the displacement field of the surface of an
The articulated model of Equatignt 2 may be combinegticulated deformable object is challenging for numer-
with the linear deformation model of Equatiph 1. De-oys reasons. A displacement field of an articulated de-
noting the additional displacement due to deformation ggrmable object defines a non-rigid motion in three di-
vertexk by Aypi, the articulated deformable model ismensions. This non-rigid motion is the sum of a linear

Equatior] . displacement field and of a rigid motion in our model.
. N An inherent difficulty in clustering rigid motions is the
_ _ lack of a consistent error metric ifiZ(3). Instead, we
Vall = lz_; Ti+ ; ArPr () ¢thoose an error metric which does not compare motions

directly but compares the effect of motions on different
The linear deformation model is capable of capturingreas of the surface. This is detailed in Sedfioh 5.1.
translational joints exactly since translational joints re- Beside the choice of a suitable error metric, the other
sultin straight-line displacements of the surface of a linkmajor task in clustering is to choose an approach which



can work with the distribution of errors in the observathen

tions. The popular approach of usikgmeandor clus- o1 X €02
tering tasks is neither robust in the face of large-scale = m )
deviations from the mean (distributions with heavy tails) X eo1

nor can it easily handle an unknown number of clusters S m , and
(see e.g. Kaufman and Rousseelw [12]). A more versa- . f

tile set of segmentation algorithms are hierarchical clus- y = =2xr.

tering methods which build a hierarchy of segmentationsthe spatial velocity of the frame between deformed state

The hierarchy encodes a clustering result for all possiblg and the undeformed staté of the triangle isgz/ —

values ofk. We employ an agglomerative hlerarchlcglo E SOE. The transformation derivative from undeformed
method because of its robustness! [12]. Agglomerativk . 02, 0 L t0
: ; 10 to deformed statel is )E = ,,E o E. Therefore, the
methods start with each data element in a separate clus-__. . . . . .
) ) . .spatial velocity of a triangle is Equati¢n 4. We like to
ter, then merging clusters until the whole data set is in . : : .
. . apply the spatial velocity to vertices of other triangles,
one cluster. We discuss the method of our choice in Sect"™ . . ;
tionB2 I.e., it is advantageous to keep the velocity as a relative

. . . u transform and not to represent them as a twist.
In the following sections, we use a simple “blocks

world” example to clarify the steps of our method. The 8” — 8E ?OE f,OE — ‘t)lE BOE (4)
example consists of three displacement fields of a three-

link articulated rod. Vertices at the seams are linearljiaving estimated the rigid spatial velocity of each trian-
blended, i.e., the displacement fields correspond to an &le with Equatior] 4, we need to select a distance met-
ticulated body with deformation at the seams. The digiC to compare the velocities of two trianglesand B.

placements are shown in Figlire 4(a). The estimated rigid spatial velocity of each triangle ac-
counts for the vertex displacements during deformation

up to some non-rigid motion. Non-rigid motion results
in a change of shape of the triangle. We measure the
amplitude of the non-rigid motion by the 2-norm of the
difference between the rigid motion applied to a triangle
and the actual displacement of the vertices of the trian-

il =¥ gle, |.e.‘0u Vo — vﬁ‘ . This amplitude is a measure of
/ how well a rigid motion accounts for the actual displace-
ments of a triangular element. We can compare the effect

N>

(a) Articulated motion (b) Clustering result of different spatial velocities since we express all veloc-
Figure 4: Clustering the motion of an 3-Link articulated  ities in the reference coordinate frarbie This non-rigid
chain with linear blending between links motion residual forms the basis of our error metric. We

employ it to calculate the residual in both directions: the
5.1 Locally-Rigid Motion Estimation effect of the velocity of trianglé3 on A and vice versa.

The resulting commutative distance metric between two
velocitiesgz/A andguB associated with triangled and
Bis Equatior] b.
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Figure 5: Locally rigid motion 2

5.2 Robust Clustering
The motion of a triangulated surface is the set of mo©ur choice of clustering algorithm starts by calculat-

tions of each individual triangle. We model the motioning a triangular matrix of distances between elements.
of an individual triangle as a rigid motion plus some adEach element corresponding to a triangle forms its own
ditional displacement of its vertices in order to accomeluster. First, the two closest elememsand B are
modate deformations. We estimate the rigid motion bynerged. The task then is to decide the distance of the
attaching a coordinate frame to the centroid of the triarcombined clusterdB from other single element clus-
gle (see Figurf]5). The coordinate axes of the frame atersC. We used the average distance which performed



=

Joint 1 Joint 2 Joint 3

)

satisfactorily. The average distance 464B,C) =

1 P i Actual X 0 12 24
BT Y icaB ngCE(ZJ)- The mgthod cpntmues by Location | y o 0 5
merging clusters in a greedy fashion until all elements 7 0 0 0
form a single cluster. The agglomerative tree produced Estimated| x | -0.0693 | 11.9739| 24.7461
by this process has a height according to the distance be- Location: | 'y | -0.0139 | 0.0660 | 0.0602
tween clusters as they were merged. Selecting a number | t5Q z | 01162 0.1641 | -1.0921

¢l . hi dyb 9 d h 9 X Estimated| x | 0.0000 | 12.0000 | 24.0000
of cluster is achieved by traversing down the tree in a Location: | y | 0.0000 | 0.0000 | 0.0000
z

breadth first manner until the required number of clusters Robust
have been encountered.

The result of the above clustering process is a grouplable 1: Rod Example: Comparison of actual and esti-
ing of triangles for which the spatial velocity is close inmated joint Location
a single rigid motion. However, a single motion of an
articulated body will typically not reveal all links since
not all degrees of freedom are executed. Additionally, if
the displacement field contains noise due to the measw@nd joint types. In our situation we also have to deter-
ing process or deviations from our motion model, a sinmine which chain elements to link with a joint. Once the
gle pose will not identify links reliably. Several displace-motion of each link is known, we employ the method of
ment fields from different poses need to be combined. W& Brien et al. [16] in order to identify each joint location
combine clustering results in a split-and-merge approachnd the tree of links. This method has produced satisfac-
First, clustering results for single poses are combined kpry results in our examples. If finding the tree is prob-
a set union of their seams preserving all seams of evelgmatic, the neighborhood information between elements
pose. This combination typically results in many morecould be employed to prune the tree first. Additionally,
clusters than each individual pose by itself. The followif an actual kinematic structure is to be identified (see
ing merging process reduces the clusters again. Sectiofi7.p), joint locations which are outside of the solid

We merge clusters across displacement fields by a Hiould be pruned since they are not physical.
erarchical clustering process again but now with the pre- N
viously split clusters and the motion of their centroid as B_elow, we compare two methods fqr estimating the
a starting point. The distance between clusters is the diiotion of alink or cluster. One method is a least squares
tance between centroids with the error metric of Equd!ting approach of all vertices of a link to a rigid motion,
tion[§. We employ a triangular distance matrix of thein® Other method is arobust method which selects the mo-
split cluster which is the weighted sum of the centroicf'on cent_r0|d of each link with respect to our error metric
distances in each pose. This distance may be zero if tHe E_quaﬂorﬂ@. The least squares approach regl_sters_ the
split clusters are part of the same cluster in an individ?€tiCes relative to each other in a two-step algorithm ig-
ual pose. The weight is the inverse of the maximum didaoring deformation by first aligning the geometric center

tance of a velocity from the zero velocity in a pose. Thi®f @ link and then fitting a rotation. We fit the rotation
weight will prevent small motions in one pose from beind"”th a methqd (analyzed by Kana‘ganl' [11,]) which is opti-
swamped by large motions in another pose. The distangéal if the noise has a Gaussian distribution of zero mean
metric between cluster@4 andCB is now based on cen- and is isotropic, identical and independent. This condi-

troid A and B, respectively. The distance is calculateotion is violated here since the noise in our case includes

_ £(A,B N systematic deformation around the contact point.
by (CA,CB) = mm. Figur ) shows

the split clusters with the three displacementfields of one The synthetic example of the deforming rod in Fig-
block column of the discrete Green’s functions matrix a%re[4(@) gives a clear indication of the importance of ro-
input. Figure 6(F) shows the result of merging the splibyst fitting. Our distance metric identifies correctly non-
clusters. deformed triangles as centroids of the motion for each
link. This results in perfect estimation of the joint loca-
tion listed in Tabl¢ [l and perfect identification of the ro-
Estimating the motion of an articulated chain givertational angles of each joint in the three poses. For com-
known chain element encompasses various sub-taskmrison the least squares examples produces significant
First, the motion of each element in the chain has terror due to the blended vertex locations at the seams of
be estimated. Given the motion of individual elementshe links. Robust fitting is clearly necessary but the case
the relationship between them needs to be fit to a joinis slightly more complicated in the real world examples
This step includes the determination of joint positionsvhich we discuss in Sectidn 7.

0.0000 | 0.0000 | 0.0000

6 Motion Estimation of an Articulated Chain



7 Applications

7.1 Pseudo Articulation for Large Scale Deforma- P P

tion ‘ :
Deformable object modeling is the primary application
of our method where the articulated deformation model
of Equatior{ B is purely a modeling tool. The goal here is
to extend the range of applicability of linear deformation
models. We find the partioning of the discrete Green’s
functions matrix defined in Equatifn 6. (a) Robust (b) Least squares

Figure 8: Comparison: Robust and LSQ joint estimation

Vk <:kpk =" T(k)+ Akf)k) (6)
= object (see Figurg 6(c)). A simulation based on the so-
In fitting the articulated deformation model, the choice ofution of Equation § is shown in Figufe 7{g) and Fig-
an unit tractionp to multiply the Green’s function ma- ure[7(€). Figur¢ 7(¢) and Figure 7(e) compare the effect
trix is arbitrary and any small traction will work. How- of employing the robust and least squares joint estima-
ever, employing tractions matching the ones exerted kion. All the simulations of the articulated deformable
the robotic probe during estimation of the Green’s funcmodels contain a strain hardening model of the form
tion ensures the best match to the observed deformatipn = paz(1—((Pmaz—1)/Pmaz)P*), @ model which we
behavior. We fit a separate articulated mo@glrz1 T(k); observed but have not explicitly measured. Strain hard-
to each individual block columh of the discrete Green’s ening limits the linear displacements of the deformation
functions matrix. This pseudo articulation approach promodel as large forces are applied. It reduces geometric
vides a high number of degrees of freedom for capturindistortions even further than the articulated deformation
the large scale deformation behavior. It does not reprenodel by itself. This ability to limit the linear deforma-
sent some kind of internal skeleton of the solid. tion while still providing increased deformation for large
forces is another feature of our method.

7.2 Recovering Unknown Kinematic Structure

The above application of extending the range of applica-
bility of a deformable model does not aim to find a con-
sistent articulation model for all displacement fields of
an object. However, finding the number of links and the
location of the joints of an articulated structure is of inter-
est in itself in motion capture applications. Our method
solves this task by estimating a segmentation consistent

(a) Split (b) Robust (c) Least squares over all displacements. A consistent segmentation is
achieved by adding another hierarchical clustering step.
Figure 6: Clustering result and joint estimation. If we start with a Green’s functions matrix, we add a com-
A cross marks a joint location. Notice the poor location  bined estimation for all the block-columis=1... M,
of the joint for the light grey cluster in Figure|[6(c), if we start with dense motion capture data, this means

simply combining a large enough number of poses in
We demonstrate the application of our method to therder to exercise all degrees of freedom of the articu-
discrete Green’s functions model of the medical trainlated structure. The lower number of degrees of freedom
ing phantom. The clustering result for the block columrfompared to the pseudo articulation approach will handle
k = 8 is shown in Figur§]6. The small blue cluster ben0isy data better. It will also not fit a separate cluster to
tween the thumb and the back of the hand is around ti#y local deformation present in just a single pose or a
location of vertex. The clustering identifies this region Single block column of discrete Green's function matrix
as one with similar motion. The other two clusters are th@ue to contact with a probe.
lower arm and the upper hand corresponding to regions The medical wrist phantom groups into three clusters
with common global motion during the probing. Again,according to the motion of its rubber skin (see FidJre 8).
the least squares solution to motion estimation producds this example, the least squares method performs sim-
unsatisfactory results with one joint location far from thédlar to the robust estimation method because of the large
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(b) Clustering result, undeformed shape,
articulation only, articulated deformation
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Figure 2: A plush tiger being pulled and pushed behind its ear

(a) Linear deformation (c) Global articulated de-

formation

(d) LSQ: Articulation

(f) Robust: Articulation (g) Robust: Articulated deformation

Figure 7: Model comparison: Linear deformation model vs. global and local articulated deformation model.
The robust joint estimation method captures also the twisting motion of the arm due to the off-center load. The load is
applied at the back of the hand on the side of the lower thumb (see Figure[7(a)).



number of displacement fields employed when estimatinge]
the joint locations. Figurg]7 compares between simula-
tion with pseudo articulation and with the global articula-
tion structure. The simulation of the articulated model in- 7]
dicates how much of the displacement field is accounteé
for by the articulation. Larger articulation is observed
with the pseudo-articulation approach since it fits the ob48]
served behavior closer. This is to be expected because
of the larger number of degrees of freedom in the mode
compared to the global articulation. Figliie 2 shows an
example of applying the global articulation method to a
plush toy without any internal structure. Due to seams if10]
the textile fur the head of the the tiger apparently hinges
around its neck. The global articulation model capture[sill
this behavior nicely.

9]

8 Conclusion [12]

In this paper, we present a method which is able to seg-
ment displacement fields into areas with similar motion.
We show how to apply this clustering method to fit arf3l
articulated deformable model to real-world objects. Ou 14
method has applications in the acquisition and simulation
of deformable objects and in motion capture. Pseudo-
articulation extends the range and versatility of linear de-
formation models maintaining their low computational°]
burden but providing realistic large deformation. In mo-
tion capture, the method allows the identification of the,g
links of the kinematic chain based only on displacement
data. This means that the motion of a subject or object
can be captured without specifying any kind of skeleton.
The only tuning parameter required in our method is th
number of expected links.
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