
Scanning Large-Scale Articulated Deformations

Jochen Langa Dinesh K. Paib Hans-Peter Seidela

a MPI Informatik,
Saarbr̈ucken, Germany.

b Rutgers, the State University of New Jersey,
Piscataway, NJ, USA.

Abstract
Scanning the deformation behavior of real objects is a

useful technique to acquire physically realistic behavior.
It has been shown previously how to acquire physically
realistic object behavior for small deformation and how to
render the behavior at interactive rates. This paper intro-
duces a novel method to extend previous work to handle
large scale deformation. We model large scale deforma-
tion as articulation in combination with local linear de-
formation. The articulation may either reflect a underly-
ing physical structure or may be purely a modeling tech-
nique. In this paper, we show examples of both applica-
tions. Our acquisition method is applicable to deformable
modeling but it also has implications for motion capture.
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Articulated Models, Motion Capture.

1 Introduction

Deformable models are of significant interest in computer
graphics; after all, many animated characters and objects
deform as they move and interact. There has been a lot
of work in modeling deformable objects analytically in
computer graphics (see Section 2). Very recently, de-
formable models have also been acquired from measure-
ments of real objects (e.g., [17, 13]). Just as motion cap-
ture has led to more realistic human motion models, cap-
turing the deformation behavior of real objects and mod-
eling them efficiently could increase the realism of de-
formable models for visual and haptic simulation. It also
promises to make deformable object modeling very easy.

A few examples of application areas for deformation
modeling include interactive medical simulation (both for
training and for support in the operating room), modeling
objects for animation and games, and capturing the be-
havior of actors for animation including human motion
capture.

In computer graphics the deformations of interest are
visible, by definition. Visible deformations are of a large
scale in contrast to typical engineering applications. In
engineering applications the quantity of interest is mainly
the internal stress due to loads associated with typically
very small strain; in such applications the strain tensor
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Figure 1: Single compliance measurement in ACME
(1(a)) and simulation with an estimated articulated defor-
mation model (1(b)) and linear deformation model (1(c)).

is often approximated to be linear. The linear approx-
imation of the Green-Lagrange strain tensor introduces
artifacts during large scale deformation (see, for exam-
ple, [4, 18]). This is true in particular if the displacement
of points on the surface of a solid during deformation is
not well approximated by a straight line path. Consider
Figure 1(c) which shows the simulation of a hand being
pushed at its back to bend around the wrist. The simu-
lation is based on a linear deformation model acquired
by scanning a medical training phantom. The simulation
shows that the linear deformation model exhibits increas-
ing distortions for larger deformation. During deforma-
tion, points on the surface of the object describe a straight
line path rather than the expected rotational and transla-
tional path. Because of the distortion, the volume of the
object is increasing which is clearly a non-physical phe-
nomenon [23, 18, 15].

The distortion of the deformed object can be avoided
by utilizing the second order Green-Lagrange tensor [23,
18, 4] instead of the linear approximation. This makes
simulation of such models significantly more compli-
cated since the stiffness matrix relating forces and dis-
placements depends on the initial displacement. A
promising alternative, first suggested by Terzopoulos et
al. [21], and more fully developed recently [9, 15] is
to combine articulated and deformable models. These
models (called Elastokinematic models in [9]) promise



the speed of linear deformable models while being able
to capture non-linear effects in large scale deformation.
However, all work in this direction to date has only ad-
dressed analytically computed models and not models of
existing objects.

In this paper, we show for the first time how such artic-
ulated deformable models can be scanned from real ob-
jects. Our method acquires models by measuring the re-
sponse of actual physical objects. No prior segmentation
of the body into links is required — we infer the structure
directly from the measurements. The method produces a
relationship between applied traction over the surface of
the measured solid to resulting displacement of the sur-
face. The model is suitable for rendering realistic visual
deformations at interactive rates. The method is also ap-
plicable to segment and model dense displacement fields
in motion capture, based on visually captured scene-flow.

2 Related Work

An overview of approaches to physical and non-physical
deformation modeling can be found in the review by
Gibson and Mirtich [5]. Elastically deformable models
were introduced to computer graphics by Terzopoulos et
al. [20]. Since then, numerous physics-based simulation
techniques have been developed, many addressing com-
putational efficiency and physical realism of the model.
One approach to interactive physical deformation models
is to use linear models in quasi-static simulations based
on finite elements [2] or based on boundary elements [8].
Pai et al. [17] have also shown how to capture linear
quasi-static models by scanning physical deformation be-
havior of objects.

There have been various attempts to overcome the lim-
itation of quasi-static linear models while maintaining in-
teractivity. James and Pai [9] use multi-zone elastic mod-
els to accommodate articulation. Müller et al. [15] use a
per-element rotation to overcome the lack of rotational
invariance of linear models. Zhuang and Canny [23]
use a quadratic strain tensor in a dynamic finite element
simulation. They use mass lumping to diagonalize the
mass matrix in order to improve performance. Picin-
bono et al. [18] follow a similar approach but also in-
troduce adaptivity by using a linear model when appro-
priate. The success of these dynamic finite element ap-
proaches is still limited to models discretized at a coarse
resolution. Adaptive resolution techniques [22, 4, 6] aim
to address this issue. However, the instability of dynamic
elastic simulation is still an open issue, while quasi-static
models are inherently stable. In this paper, we use a
quasi-static linear model for simulation combined with
rotational pseudo-articulation. Our model is based on
scanned deformation behavior and extends the work of

Pai et al. [17].
Scanning deformation behavior of an object entails the

estimation of a relationship between a contact force and
the displacements of its surface. It is a different task than,
e.g., shape estimation in computer vision which may em-
ploy deformable models for regularization. Deformable
models have been used successfully in tracking and seg-
menting a human body by Kakadiaris and Metaxas [10].
However, the most common way to relate a skeleton to
video data is by tracking ana priori model. Bregler and
Malik [1] describe an approach to track a human during
articulated motion. Plänkers and Fua [19] use detailed
shape models in their tracker. In our work, we do not
make use ofa priori articulation structure (i.e. a skele-
ton).

In the typical motion capture set-up, the kinematic
structure is known and motion estimates are linked to in-
dividual limbs. O’Brien et al. [16] describe a technique
to adapt a skeleton to data. They solve the problem of fit-
ting data to a known structure given only rotational joints.
However, they also describe a graph based method to in-
fer the structure of a kinematic tree given measured mo-
tion of known links. The recovery of parameters of an ar-
ticulated structure from measurements is solved in robot
calibration. Hollerbach and Wampler [7] review this large
body of work.

Finally, for rendering simulations of our results we
use simple linear blending which is also called Skeletal-
Subspace Deformation [14].

3 Deformation Model

We use a “discrete Green’s functions matrix” to model the
global deformation of a solid in static equilibrium. This
discrete representation can be derived analytically based
on continuum mechanics [2, 8] and it can be directly es-
timated from observation of deformation behavior [13].
In this paper, we assume that a discrete Green’s functions
matrix is available for the object we would like to model.
The matrices in our examples are estimated from mea-
surements with the ACME facility [17] (see Figure 1(a)).

For a given boundary configuration, the discrete
Green’s function matrixΞ relates the block vector of pre-
scribed and complementary boundary values of displace-
ment and traction vectors. The boundary configuration
in our examples divides the surface in a support surface
where the object is attached to a fixed support and the free
remainder of the surface. Discrete Green’s function ma-
trices approximate the surface displacement due to a load
by straight lines. In the remainder of this paper we write
the discrete Green’s function model of deformation as a
sum as in Equation 1. The3N × 3 block vectorΞk spec-
ifies a displacement field at theN vertices of the free sur-



face. It contains a three-dimensional displacement vector
for each component of the load3 vectorp̄k at each of the
N vertices .

u =
N∑

k=1

Ξkp̄k (1)

There is a crucial difference between the Green’s func-
tions estimated from measurements and those derived
analytically by approximating the Green-Lagrange ten-
sor. A displacement field of a discrete Green’s functions
model derived from measurements is a linear approxima-
tion of the real, non-linear, large scaledeformation of
the object from the undeformed to deformed state. The
approximation can therefore be considered a secant ap-
proximation to the actual path of a point on the surface.
Analytic derivations of discrete Green’s function matri-
ces will give a tangential approximation from the unde-
formed state instead.

4 Articulation Model
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Figure 3: Articulation Model

Suppose, for the moment, that the kinematic structure
of the object is a chain ofL links; the extension to tree
structures is straightforward (see Figure 3 for definitions).
The coordinates of the vertices of each linkl in the refer-
ence (world) frame are given byΥl which is a3N vec-
tor. Vertices not belonging to the link are simply zero in
Υl, while vertices at the seams between links are blended
linearly. The coordinates of all vertices due to the articu-
lation of the joints is given by

Υ =
L∑

l=1

Υl. (2)

The articulated model of Equation 2 may be combined
with the linear deformation model of Equation 1. De-
noting the additional displacement due to deformation at
vertexk by ∆kp̄k, the articulated deformable model is
Equation 3.

υall =
L∑

l=1

Υl +
N∑

k=1

∆kp̄k (3)

The linear deformation model is capable of capturing
translational joints exactly since translational joints re-
sult in straight-line displacements of the surface of a link.

Therefore, we model only rotational joints by articula-
tion. Each of the rotational joint is a3Rjoint having three
degrees of rotational freedom. The homogeneous trans-
formation matrix

i−1
i E between the link framei and its

parent framei − 1 can then be parameterized by three
variable rotational angles(αi, βi, γi) and a fixed transla-
tion

i−1
ci corresponding to the joint location. Picking a

X-Y-Zfixed angle parameterization of the rotational sub-
matrixR yieldsR(αi, βi, γi) = RZ(αi)RY (βi)RX(γi).
The rotational axes are fixed with respect to the joint. A
simple linear rotational spring model for each joint with
a1×3 resistanceκ results inαi =

∑K
k=1 κi,k,α p̄k (with

βi andγi correspondingly).
The major challenge in fitting the articulated de-

formable model of Equation 3 to a displacement field is
to identify which vertex belongs to which link. This is
the topic of the following section.

5 Segmentation of displacement field

We would like to segment the displacement field of an
object during deformation in a rigid motion of an articu-
lated kinematic chain plus a linear displacement. We do
not assume that the number, the extent or the relative po-
sition of the individual elements of the articulated model
are known beforehand. Instead, we would like to infer
this structure directly from multiple observations of the
deformation behavior of the solid. We segment the dis-
placement field into multiple clusters based on the rigid
part of the motion of individual surface elements. The
discrete Green’s functions matrix described in Section 3
represents a displacement field in each reduced block col-
umnΞk. In particular, thex-column, they-column and
the z-column represent the displacement field due to a
unit load in thex, y andz direction, respectively. Instead,
the displacement field may also be observed directly by
tracking the surface of an object from undeformed to de-
formed state. The tracker would have to produce a dense
linear displacement field in order to be compatible with
our approach.

Clustering the displacement field of the surface of an
articulated deformable object is challenging for numer-
ous reasons. A displacement field of an articulated de-
formable object defines a non-rigid motion in three di-
mensions. This non-rigid motion is the sum of a linear
displacement field and of a rigid motion in our model.
An inherent difficulty in clustering rigid motions is the
lack of a consistent error metric inSE(3). Instead, we
choose an error metric which does not compare motions
directly but compares the effect of motions on different
areas of the surface. This is detailed in Section 5.1.

Beside the choice of a suitable error metric, the other
major task in clustering is to choose an approach which



can work with the distribution of errors in the observa-
tions. The popular approach of usingk-meansfor clus-
tering tasks is neither robust in the face of large-scale
deviations from the mean (distributions with heavy tails)
nor can it easily handle an unknown number of clustersk
(see e.g. Kaufman and Rousseeuw [12]). A more versa-
tile set of segmentation algorithms are hierarchical clus-
tering methods which build a hierarchy of segmentations.
The hierarchy encodes a clustering result for all possible
values ofk. We employ an agglomerative hierarchical
method because of its robustness [12]. Agglomerative
methods start with each data element in a separate clus-
ter, then merging clusters until the whole data set is in
one cluster. We discuss the method of our choice in Sec-
tion 5.2.

In the following sections, we use a simple “blocks
world” example to clarify the steps of our method. The
example consists of three displacement fields of a three-
link articulated rod. Vertices at the seams are linearly
blended, i.e., the displacement fields correspond to an ar-
ticulated body with deformation at the seams. The dis-
placements are shown in Figure 4(a).

(a) Articulated motion (b) Clustering result

Figure 4: Clustering the motion of an 3-Link articulated
chain with linear blending between links

5.1 Locally-Rigid Motion Estimation

Figure 5: Locally rigid motion

The motion of a triangulated surface is the set of mo-
tions of each individual triangle. We model the motion
of an individual triangle as a rigid motion plus some ad-
ditional displacement of its vertices in order to accom-
modate deformations. We estimate the rigid motion by
attaching a coordinate frame to the centroid of the trian-
gle (see Figure 5). The coordinate axes of the frame are

then

ẑ =
e01 × e02

|e01 × e02|2
,

x̂ =
e01

|e01|2
, and

ŷ = ẑ × x̂ .

The spatial velocity of the frame between deformed state
t1 and the undeformed statet0 of the triangle is

0
0ν =

0
t0Ė

t0
0 E. The transformation derivative from undeformed

t0 to deformed statet1 is
0
0Ė = 0

t1E
t0
0 E. Therefore, the

spatial velocity of a triangle is Equation 4. We like to
apply the spatial velocity to vertices of other triangles,
i.e., it is advantageous to keep the velocity as a relative
transform and not to represent them as a twist.

0
0ν = 0

0Ė
0
t0E

t0
0 E = 0

t1E
t0
0 E (4)

Having estimated the rigid spatial velocity of each trian-
gle with Equation 4, we need to select a distance met-
ric to compare the velocities of two trianglesA andB.
The estimated rigid spatial velocity of each triangle ac-
counts for the vertex displacements during deformation
up to some non-rigid motion. Non-rigid motion results
in a change of shape of the triangle. We measure the
amplitude of the non-rigid motion by the 2-norm of the
difference between the rigid motion applied to a triangle
and the actual displacement of the vertices of the trian-

gle, i.e.
∣∣∣00ν υt0 − υA

t1

∣∣∣
2
. This amplitude is a measure of

how well a rigid motion accounts for the actual displace-
ments of a triangular element. We can compare the effect
of different spatial velocities since we express all veloc-
ities in the reference coordinate frame0. This non-rigid
motion residual forms the basis of our error metric. We
employ it to calculate the residual in both directions: the
effect of the velocity of triangleB on A and vice versa.
The resulting commutative distance metric between two
velocities

0
0ν

A
and

0
0ν

B
associated with trianglesA and

B is Equation 5.

ε(A, B) =

∣∣∣00νBυA
t0 − υA

t1

∣∣∣
2
−
∣∣∣00νAυA

t0 − υA
t1

∣∣∣
2

−
∣∣∣00νBυB

t0 − υB
t1

∣∣∣
2

+

∣∣∣00νAυB
t0 − υB

t1

∣∣∣
2

(5)

5.2 Robust Clustering
Our choice of clustering algorithm starts by calculat-
ing a triangular matrix of distances between elements.
Each element corresponding to a triangle forms its own
cluster. First, the two closest elementsA and B are
merged. The task then is to decide the distance of the
combined clusterAB from other single element clus-
tersC. We used the average distance which performed



satisfactorily. The average distance isε(AB,C) =
1

|AB||C|
∑

i∈AB

∑
j∈C ε(i, j). The method continues by

merging clusters in a greedy fashion until all elements
form a single cluster. The agglomerative tree produced
by this process has a height according to the distance be-
tween clusters as they were merged. Selecting a number
of cluster is achieved by traversing down the tree in a
breadth first manner until the required number of clusters
have been encountered.

The result of the above clustering process is a group-
ing of triangles for which the spatial velocity is close in
a single rigid motion. However, a single motion of an
articulated body will typically not reveal all links since
not all degrees of freedom are executed. Additionally, if
the displacement field contains noise due to the measur-
ing process or deviations from our motion model, a sin-
gle pose will not identify links reliably. Several displace-
ment fields from different poses need to be combined. We
combine clustering results in a split-and-merge approach.
First, clustering results for single poses are combined by
a set union of their seams preserving all seams of every
pose. This combination typically results in many more
clusters than each individual pose by itself. The follow-
ing merging process reduces the clusters again.

We merge clusters across displacement fields by a hi-
erarchical clustering process again but now with the pre-
viously split clusters and the motion of their centroid as
a starting point. The distance between clusters is the dis-
tance between centroids with the error metric of Equa-
tion 5. We employ a triangular distance matrix of the
split cluster which is the weighted sum of the centroid
distances in each pose. This distance may be zero if the
split clusters are part of the same cluster in an individ-
ual pose. The weight is the inverse of the maximum dis-
tance of a velocity from the zero velocity in a pose. This
weight will prevent small motions in one pose from being
swamped by large motions in another pose. The distance
metric between clustersCA andCB is now based on cen-
troid A andB, respectively. The distance is calculated
by ε(CA,CB) = 1

|CA||CB|
ε(A,B)

|CA|+|CB| . Figure 6(a) shows
the split clusters with the three displacement fields of one
block column of the discrete Green’s functions matrix as
input. Figure 6(b) shows the result of merging the split
clusters.

6 Motion Estimation of an Articulated Chain

Estimating the motion of an articulated chain given
known chain element encompasses various sub-tasks.
First, the motion of each element in the chain has to
be estimated. Given the motion of individual elements
the relationship between them needs to be fit to a joint.
This step includes the determination of joint positions

0
cl Joint 1 Joint 2 Joint 3

Actual x 0 12 24
Location y 0 0 0

z 0 0 0
Estimated x -0.0693 11.9739 24.7461
Location: y -0.0139 0.0660 0.0602
LSQ z -0.1162 0.1641 -1.0921
Estimated x 0.0000 12.0000 24.0000
Location: y 0.0000 0.0000 0.0000
Robust z 0.0000 0.0000 0.0000

Table 1: Rod Example: Comparison of actual and esti-
mated joint Location

and joint types. In our situation we also have to deter-
mine which chain elements to link with a joint. Once the
motion of each link is known, we employ the method of
0’Brien et al. [16] in order to identify each joint location
and the tree of links. This method has produced satisfac-
tory results in our examples. If finding the tree is prob-
lematic, the neighborhood information between elements
could be employed to prune the tree first. Additionally,
if an actual kinematic structure is to be identified (see
Section7.2), joint locations which are outside of the solid
could be pruned since they are not physical.

Below, we compare two methods for estimating the
motion of a link or cluster. One method is a least squares
fitting approach of all vertices of a link to a rigid motion,
the other method is a robust method which selects the mo-
tion centroid of each link with respect to our error metric
in Equation 5. The least squares approach registers the
vertices relative to each other in a two-step algorithm ig-
noring deformation by first aligning the geometric center
of a link and then fitting a rotation. We fit the rotation
with a method (analyzed by Kanatani [11]) which is opti-
mal if the noise has a Gaussian distribution of zero mean
and is isotropic, identical and independent. This condi-
tion is violated here since the noise in our case includes
systematic deformation around the contact point.

The synthetic example of the deforming rod in Fig-
ure 4(a) gives a clear indication of the importance of ro-
bust fitting. Our distance metric identifies correctly non-
deformed triangles as centroids of the motion for each
link. This results in perfect estimation of the joint loca-
tion listed in Table 1 and perfect identification of the ro-
tational angles of each joint in the three poses. For com-
parison the least squares examples produces significant
error due to the blended vertex locations at the seams of
the links. Robust fitting is clearly necessary but the case
is slightly more complicated in the real world examples
which we discuss in Section 7.



7 Applications

7.1 Pseudo Articulation for Large Scale Deforma-
tion

Deformable object modeling is the primary application
of our method where the articulated deformation model
of Equation 3 is purely a modeling tool. The goal here is
to extend the range of applicability of linear deformation
models. We find the partioning of the discrete Green’s
functions matrix defined in Equation 6.

∀k

(
Ξk

¯̂pk =
L∑

l=1

Υ(k)l + ∆k
¯̂pk

)
(6)

In fitting the articulated deformation model, the choice of
an unit tractionp̂ to multiply the Green’s function ma-
trix is arbitrary and any small traction will work. How-
ever, employing tractions matching the ones exerted by
the robotic probe during estimation of the Green’s func-
tion ensures the best match to the observed deformation
behavior. We fit a separate articulated model

∑L
l=1 Υ(k)l

to each individual block columnk of the discrete Green’s
functions matrix. This pseudo articulation approach pro-
vides a high number of degrees of freedom for capturing
the large scale deformation behavior. It does not repre-
sent some kind of internal skeleton of the solid.

(a) Split (b) Robust (c) Least squares

Figure 6: Clustering result and joint estimation.
A cross marks a joint location. Notice the poor location
of the joint for the light grey cluster in Figure 6(c).

We demonstrate the application of our method to the
discrete Green’s functions model of the medical train-
ing phantom. The clustering result for the block column
k = 8 is shown in Figure 6. The small blue cluster be-
tween the thumb and the back of the hand is around the
location of vertex8. The clustering identifies this region
as one with similar motion. The other two clusters are the
lower arm and the upper hand corresponding to regions
with common global motion during the probing. Again,
the least squares solution to motion estimation produces
unsatisfactory results with one joint location far from the

(a) Robust (b) Least squares

Figure 8: Comparison: Robust and LSQ joint estimation

object (see Figure 6(c)). A simulation based on the so-
lution of Equation 6 is shown in Figure 7(g) and Fig-
ure 7(e). Figure 7(g) and Figure 7(e) compare the effect
of employing the robust and least squares joint estima-
tion. All the simulations of the articulated deformable
models contain a strain hardening model of the form
p̃k = pmax(1−((pmax−1)/pmax)pk), a model which we
observed but have not explicitly measured. Strain hard-
ening limits the linear displacements of the deformation
model as large forces are applied. It reduces geometric
distortions even further than the articulated deformation
model by itself. This ability to limit the linear deforma-
tion while still providing increased deformation for large
forces is another feature of our method.

7.2 Recovering Unknown Kinematic Structure

The above application of extending the range of applica-
bility of a deformable model does not aim to find a con-
sistent articulation model for all displacement fields of
an object. However, finding the number of links and the
location of the joints of an articulated structure is of inter-
est in itself in motion capture applications. Our method
solves this task by estimating a segmentation consistent
over all displacements. A consistent segmentation is
achieved by adding another hierarchical clustering step.
If we start with a Green’s functions matrix, we add a com-
bined estimation for all the block-columnsk = 1 . . .M ;
if we start with dense motion capture data, this means
simply combining a large enough number of poses in
order to exercise all degrees of freedom of the articu-
lated structure. The lower number of degrees of freedom
compared to the pseudo articulation approach will handle
noisy data better. It will also not fit a separate cluster to
any local deformation present in just a single pose or a
single block column of discrete Green’s function matrix
due to contact with a probe.

The medical wrist phantom groups into three clusters
according to the motion of its rubber skin (see Figure 8).
In this example, the least squares method performs sim-
ilar to the robust estimation method because of the large



(a) Pulled (b) Clustering result, undeformed shape,
articulation only, articulated deformation
(left to right, top to bottom)

(c) Pushed

Figure 2: A plush tiger being pulled and pushed behind its ear

(a) Linear deformation (b) Global articulation (c) Global articulated de-
formation

(d) LSQ: Articulation
(e) LSQ: Articulated deformation

(f) Robust: Articulation
(g) Robust: Articulated deformation

Figure 7: Model comparison: Linear deformation model vs. global and local articulated deformation model.
The robust joint estimation method captures also the twisting motion of the arm due to the off-center load. The load is
applied at the back of the hand on the side of the lower thumb (see Figure 7(a)).



number of displacement fields employed when estimating
the joint locations. Figure 7 compares between simula-
tion with pseudo articulation and with the global articula-
tion structure. The simulation of the articulated model in-
dicates how much of the displacement field is accounted
for by the articulation. Larger articulation is observed
with the pseudo-articulation approach since it fits the ob-
served behavior closer. This is to be expected because
of the larger number of degrees of freedom in the model
compared to the global articulation. Figure 2 shows an
example of applying the global articulation method to a
plush toy without any internal structure. Due to seams in
the textile fur the head of the the tiger apparently hinges
around its neck. The global articulation model captures
this behavior nicely.

8 Conclusion

In this paper, we present a method which is able to seg-
ment displacement fields into areas with similar motion.
We show how to apply this clustering method to fit an
articulated deformable model to real-world objects. Our
method has applications in the acquisition and simulation
of deformable objects and in motion capture. Pseudo-
articulation extends the range and versatility of linear de-
formation models maintaining their low computational
burden but providing realistic large deformation. In mo-
tion capture, the method allows the identification of the
links of the kinematic chain based only on displacement
data. This means that the motion of a subject or object
can be captured without specifying any kind of skeleton.
The only tuning parameter required in our method is the
number of expected links.
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framework for adaptive simulation. InACM Transactions on
Graphics, volume 21, pages 281–290, San Antonio, USA, Jul
2002. ACM SIGGRAPH.

[7] J.M. Hollerbach and C.W. Wampler. The calibration index
and taxonomy for robot kinematic calibration methods.IJRR,
15(6):573–591, 1996.

[8] D.L. James and D.K. Pai. ArtDefo accurate real time deformable
objects. InComputer Graphics, Annual Conference Series, pages
65–72, Los Angles, USA, Aug 1999. ACM SIGGRAPH.

[9] D.L. James and D.K. Pai. Real time simulation of multizone elas-
tokinematic models. InInternational Conference on Robotics and
Automation, pages 927–932, Washington, D.C., USA, May 2002.

[10] I.A. Kakadiaris and D. Metaxas. Three-dimensional human body
model acquisition from multiple views.International Journal of
Computer Vision, 30(3):191–218, 1998.

[11] K. Kanatani. Analysis of 3-d rotation fitting.IEEE Transactions
on Pattern Recognition and Machine Intelligence, 16(5):543–549,
1994.

[12] L. Kaufman and P.J. Rousseeuw.Finding groups in data: an in-
troduction to cluster analysis. John Wiley & Sons, New York,
1990.

[13] J. Lang, D.K. Pai, and R.J. Woodham. Acquisition of elastic mod-
els for interactive simulation.IJRR, 21(8), 2002.

[14] N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann. Joint-
dependent local deformations for hand animation and object
grasping. In Graphics Interface, pages 26–33, Edmonton,
Canada, June 1988.

[15] M. Müller, L. McMillan, J. Dorsey, R. Jagnow, and B. Cutler.
Stable real-time deformations. InSymposium on Computer Ani-
mation, San Antonio, Texas, USA, July 2002. ACM SIGGRAPH.

[16] J.F. O’Brien, B.E. Bodenheimer, G.J. Brostow, and J.K. Hodgins.
Automatic joint parameter estimation from magnetic motion cap-
ture data. InProceedings of Graphics Interface 2000, pages 53–
60, Montreal, Quebec, Canada, May 2000.

[17] D.K. Pai, K. van den Doel, D.L. James, J. Lang, J.E. Lloyd, J.L.
Richmond, and S.H. Yau. Scanning physical interaction behavior
of 3D objects. InComputer Graphics, Annual Conference Series,
pages 87–96, Los Angles, USA, Aug 2001. ACM SIGGRAPH.

[18] G. Picinbono, H. Delingette, and N. Ayache. Non-linear and
anisotropic elastic soft tissue models for medical simulation. In
International Conference on Robotics and Automation, pages
1371–1376, Seoul, South Korea, May 2001.

[19] R. Pl̈ankers and P. Fua. Articulated soft objects for video-based
body modeling. InInternational Conference on Computer Vision,
volume 1, pages 394–401, Vancouver, Canada, Jul 2001. IEEE.

[20] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically
deformable models. InComputer Graphics, Annual Conference
Series, pages 205–214, Anaheim, Ca., USA, Jul 1987. ACM SIG-
GRAPH.

[21] D. Terzopoulos and A. Witkin. Physically-based models with
rigid and deformable components. InGraphics Interface, pages
146–154, Edmonton, Canada, June 1988.

[22] X. Wu, M.S. Downes, T. Gotekin, and F. Tendick. Adaptive non-
linear finite elements for deformable body simulation using dy-
namic progressive meshes. In A. Chalmers and T.-M. Rhyne,
editors,Eurographics, Computer Graphics Forum, 20(3), pages
C349–C358, Manchester, Uk, 2001.

[23] Y. Zhuang and J. Canny. Haptic interactions with global deforma-
tions. In International Conference on Robotics and Automation,
pages 2428–2433, San Francisco, USA, April 2000.


	Introduction
	Related Work
	Deformation Model
	Articulation Model
	Segmentation of displacement field
	Locally-Rigid Motion Estimation
	Robust Clustering

	Motion Estimation of an Articulated Chain
	Applications
	Pseudo Articulation for Large Scale Deformation
	Recovering Unknown Kinematic Structure

	Conclusion

