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Abstract 

In this paper we present our initial work on simulating 
suturing using mass-spring models. Various models for 
simulating a suture were studied, and a simple linear 
mass-spring model was determined to give good 
performance. A novel model for pulling a suture through 
a deformable tissue model is presented. By connecting 
two separate tissues together by way of the suture, our 
model can simulate a suturing task. The results are shown 
using software we developed that runs on a standard PC 
and models the action of two suturing devices commonly 
used in minimally invasive Laparoscopic surgery. 

1 Introduction 
In this paper we attempt to model a suture, and create a 
simulation of a suturing task realistic enough to use in a 
surgical training environment, and fast enough to run on a 
desktop computer. One of our main goals is for the 
system to run on PC hardware, i.e. a Pentium III 933MHz 
system with an NVIDIA GeForce 2 video card. Such a 
goal is difficult to achieve since simulating deformable 
objects and performing collision detection are both 
computationally intensive. However, for development of 
a surgical training environment, e.g. our Laparoscopic 
Training Environment (LTE), virtual representations need 
not be extremely precise. They only have to be accurate 
enough to facilitate a trainee in gaining the required 
dexterity and hand-eye coordination. In this paper we 
model a suture and a simple deformable object 
representing tissue. We also develop and describe two 
tasks which use the suture and tissue models as well as 
two simulated devices that the operator uses to stitch 
together pieces of tissue. 

Many groups have been working on surgical 
simulation in general ([1, 2, 3, 4]), as well as the specific 
task of simulating suturing ([5, 6, 7, 8, 9]). Measuring 
surgeons’ performance using a simulation has been 
investigated [5] by focusing only on the initial penetration 
of the object by the suturing needle, and not considering 
the entire suturing process. A group at Rice University 
took the opposite approach [6] and focused only the 
realistic simulation of a suture and its behavior, while not 
looking at the actual suturing task. Their paper describes 
a method for simulating a suture using a spline of linear 
springs and large overlapping nodes. Although their 

method gives up some speed and stability, they are able to 
tie various types of knots in the suture material. 

Suturing itself has been explored by many groups. 
Webster et al. created a simulation that is based on a 2D 
mass-spring model [7]. Unlike ours though, their tissue 
model appears to be restricted to a 2D plane, with the 
feedback forces being calculated based only upon the 
depth and angle of the needle as it penetrates that 2D 
plane. Brown et al. designed a system [8] for training 
surgeons in the task of suturing blood vessels. The suture 
was simulated using rigid links of a fixed length while the 
blood vessels themselves were simulated using mass-
spring systems. The same group also designed a software 
framework that supports many different kinds of surgical 
tasks [9]. Unrelated to surgery simulation, but using 
similar mass-spring technology, various legless animals 
have been simulated [10]. This method could possibly be 
used in surgical simulations to create realistically moving 
organs, such as the heart and lungs. 

This paper presents an initial novel approach for 
simulating a suturing task, where the suture and needle 
are passed between two tissues in order to connect them. 
The paper is organized as follows. Sections 2 and 3 
describe the deformable models we used to represent the 
objects in our simulation (the suture and tissue models), 
while section 4 describes the algorithm used to simulate 
the suturing. Sections 5 and 6 outline two demonstrations 
we developed using the techniques described in the 
previous sections, while Section 7 discusses possible 
directions for our future research. 

2 Deformable Objects 
Triangular surface meshes represent both the rigid and 
deformable objects in our virtual environment, i.e. the 
suture, the tissue, and the Endo Stitch and Needle Driver 
devices, both of which are used to perform suturing in 
laparoscopic surgery (see sections 5 and 6).  

Our deformable models are mass-spring models. 
Mass-spring models, along with finite-element models, 
are well known ways of simulating deformable objects [6, 
7, 8], so we limit our discussion to those aspects 
especially relevant to our development here.  

Each node in our triangular mesh has a mass 
associated with it, and each triangle edge has a coincident 
spring, an “edge spring”, joining together the two nodes 



that define the edge. When stretched or compressed, each 
spring in our models apply a force to the attached nodes 
of 
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where L and L0 are the current and rest lengths of the 
spring respectively, P is the position of the node who’s 
applied force is being calculated, Pa is the position of the 
other node of the spring, and Ke is the elasticity of the 
spring.  

2.1 Home Springs 
Using only a mass-spring surface model, one could not 
construct 3D deformable objects that could be 
compressed and stretched, since they would not return to 
their initial shapes after deformation. One approach to 
solving this problem is to create an internal structure 
using a set of springs to give the surface the support 
needed to maintain, and return to its initial shape after 
being deformed. For example, this method has been used 
to model blood vessels [7]. Although it proves effective 
and stable for small models with small displacements, 
with more complicated objects or large deformations, the 
object can easily become unstable or permanently 
tangled.  

To address the problem of maintaining an object’s 
shape, our models use “home springs” connected to each 
node. These zero rest length springs connect each node to 
a fixed location in 3D space and maintain the connected 
vertex in its undisplaced position through the creation of 
an internal force proportional, but of opposite direction, 
to the displacement of the node from its “home” location. 
As a result, when the deformable object has been 
deformed, for example by an interaction with another 
object, after the interacting object has been removed, the 
deformed object will be restored back to its original shape 
(for example, the square in Figures 1a and 1b). 

We have used this method before in an early phase of 
our LTE as well as in a surface mesh subdivision model 
in [11]. It is an efficient solution since the force applied 
by each home spring to its connected node is simply 
calculated as ( - )hF K H P= , where H is the home 
position of the node. This equation consists of only a 
vector subtraction, and scalar multiplication, and is 
therefore much faster than the one used for the edge 
springs, which involves a square-root operation plus a 
divide. Since the number of home springs in a surface 
model will be proportional to the number of edge springs, 
this model adds only a small constant amount of 
computation to the basic the mass-spring surface model. 

a) b)

 
Figure 1: Deformation and restoration of a model 

containing home springs 

2.2 Node-position Integration Method 
To solve for the deformed state of the object we use 

Euler’s method to integrate the positions of the nodes 
according the to the following equations, where M is the 
node’s mass, B is a damping constant, dt is the timestep, 
and , , and i i iF V P  represent the force acting on the node, 
the node’s velocity, and the node’s position, all at time 
step i. 

 

-1

-1

-1

(  ) -       . 1

                           . 2

i i

i
i i

i i i

F spring forces BV eq

FV V dt eq
M

P P V dt

=

= +

= +

∑

 

 
Combining equations 1 and 2, we get 
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If we assume that the forces on the nodes are large 
compared to the node’s kinetic energy, which consistent 
with tissue and the forces on it during suturing, then this 
equation can be simplified to: 
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In this method, the velocity of a node at a given point 
in time is calculated only from the forces acting on the 
node at that instant, and does not include the velocity at 
the previous time step (i-1). The advantages in using this 
quasi-static method are speed and simplicity. Since there 
are fewer calculations, it runs faster, 8-10% in our 
application, and also allows the mass attribute M to be left 
out of calculation. 

3 The Suture Model 
The suture uses the same deformable model data structure 
used for the deformable objects. The difference is that 
instead of creating a 2D mesh in 3D space, the nodes are 
simply arranged linearly, one after another, and joined 



together with edge-springs (see Figure 2). The result is a 
1D suture in 3D space. 

Because the suture must be able to move within the 
scene, the home spring constant Kh of its nodes is set to 
zero. We also want the suture to behave realistically 
under the influence of gravity, so a constant gravitational 
force is applied to each node.  

 

Surface Mesh Suture  
Figure 2: Surface mesh and Suture models. 

 
We investigated several other possible representations 

of the suture, involving various forms of springs and 
dampers. The first, and simplest one, was simply masses 
connected together by springs and involved no damping. 
The second model added dampers running between the 
masses. Three more complex, and more realistically 
behaving, models involving torsion spring, torsion 
dampers, and viscous damping effects were also 
implemented. We chose to use the first model for the 
suture in this simulation since it is less computationally 
intensive. It originally looked quite unrealistic due to the 
lack of damping in the model, but by using our quasi-
static method for integrating the position of the model’s 
nodes, a viscous damping is introduced without adding to 
the complexity of the calculations and slowing the 
simulation down. 

3.1 Rendering the Suture 
Since the nodes of the suture lie in a linear chain, an 
obvious rendering method is to simply render the suture 
as a series line segments. This is fast and simple, but 
would not be the same rendering method used by the 
triangle-based objects, and the two would therefore look 
very different. 
To avoid this problem, we chose to render the suture by 
creating a flexible tube made up of triangles and 
containing the same number of sections as there are 
segments in the suture. We then reposition this tube over 
the suture before each frame is rendered. This newly 
defined shell is rendered instead of the suture itself. An 
illustration of the process can be seen in Figure 3. Since 
the suture is now rendered using a triangle model, it can 
undergo the same lighting calculations, and have an 

appearance consistent with the rest of the objects in the 
scene. 

Cylindrical Shell Suture at time t Shell placed over suture

 
Figure 3: Suture rendering 

4 Simulated Suturing 

4.1 Basic Suturing Algorithm 
In real suturing, as the needle passes through the tissue, it 
creates a hole through which the thread is pulled. As long 
as the forces pulling on the suture are small, friction 
between the suture and tissue will tend to prevent the 
suture from sliding through the hole and the suture will 
pull the tissue along with it as it moves. Simulating 
suturing by creating a small hole in the triangularly 
modeled deformable object, and then simulating the 
friction forces between it and the suture would be overly 
complex.  

 

a) b)

 Figure 4: Simulation of the suture running through a 
small hole in the object. 

 
As an alternative to the above mentioned complex 

method, we model the effect of a suture passing through a 
hole by treating one of the nodes of the tissue model as a 
hole, and connecting this node to one of the nodes of the 
suture. This can be seen in Figure 4a, where the filled 
circles are the nodes of the tissue, and the hollow circles 
are nodes of the suture. In Figure 4a, there is no force 
being applied to the suture. In Figure 4b, a force is 
applied. This force pulls the suture toward the upper 
right. Since the node of the suture is joined to a node of 
the tissue, the two move together as one, and the rest of 
the tissue gets pulled along with it. 



When real tissue gets pulled along due to the friction 
between it and the suture, there is a limit to how far it will 
move. Eventually the forces within the tissue will become 
large enough to counter the friction force and cause the 
tissue to slide down the suture.  

In Figure 5a, node N of the tissue model (the hole 
through which the suture has been pulled) is being pulled 
down by its neighboring nodes; however, the friction 
forces from the suture balance the downward force. Once 
the suture and tissue have been stretched enough, the 
required force from the suture to the tissue in order to 
keep it from sliding will be greater than the friction 
between them. To simulate this sliding, node N is 
detached from node S0 of the suture, and reattached to 
node S1. If the suture continues to be pulled, then node N 
will continue to slide down the thread (Figure 5b), 
creating the impression the suture is slipping through a 
hole. 

N
S0

S1
S1

S0

N
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 Figure 5: Slipping of the deformable object down the 
suture. 

4.2 Multiple Slipping 
During suturing, pieces of tissue will be pulled together 
by a suture. In Figure 6a a suture is shown between two 
pieces of modeled tissue. In order to stitch the two pieces 
together, the suture will first pass through the left object 
and then the right. Using the suturing algorithm of section 
4.1 can lead to the situation shown in Figure 6b where 
two tissue nodes will be attached to the same suture node. 
Since the current algorithm has no inter-object, or self-
collision detection between the deformable models; 
therefore, a method is needed to ensure that the two tissue 
nodes on the suture are not able to slide past each other. 
For example, in Figure 6c the right piece of tissue will be 
under more strain than the one on the left, and it will be 
the first to slide. Because it lies above the left piece of 
tissue on the suture, it can not slide without also pulling 
the left piece with it. 
 

a) b)

c) d)

e) f)

 Figure 6: Multiple objects sliding down the suture. 
 

To handle this situation, for each suture node we store 
an ordered list of tissue nodes that are attached to it. This 
linked-list approach allows us to maintain the order in 
which the tissue nodes were pierced by the suture. This 
information allows us to handle situations such as those 
shown in Figures 6c and 6d. In Figure 6c the left piece of 
tissue has been stretched further that the one on the right, 
is therefore under more strain, and if under enough 
tension will slip down the suture leaving the other tissue 
node behind (Figure 6e). In Figure 6d the right piece of 
tissue is under more strain; however, it cannot slip 
without pulling the left tissue’s node with it (Figure 6f). 
This can happen only when the force on the right tissue’s 
attached node is large enough to overcome the friction 
between itself and the suture, and the combined force of 
the attached nodes is enough to overcome the combined 
friction between the nodes and the suture. If this is not the 
case, then the tissue nodes will not slide. 

It must be noted that even though several tissue nodes 
can be attached to a single suture node, the opposite is not 
true. Attaching a single suture node to a single tissue node 
can lead to situations involving two tissue nodes attached 
to the same two suture nodes. Trying to determine when 
the tissue should and should not slip, and whether it 
should take the other suture node with it is very difficult 
to solve. We have chosen simply to not allow this, and the 
method used for intersecting the needle with the tissue 
(section 4.3) reflects this decision.  

4.3 Attaching a Needle 
The needle is modeled as a rigid polygonal model which 
either moves with the device gripping it, i.e. the Endo 
Stitch device or needle driver, or moves freely under the 



forces applied to it by the segment of suture attached to 
its non-pointed end and by the tissue the needle may be 
penetrating. If the needle is in the grip of the needle 
driver device and a force feedback device is being used, 
these forces can be used to provide the user with force-
feedback. 

In our model, the suture is not simply attached to the 
end of the needle as would normally be seen in suturing 
and sewing, Instead, the first few nodes of the suture are 
forced to lie along the center of the needle’s current 
position in the scene (see Figure 7). The needle is then 
rendered over top of the suture. This method avoids the 
need for a special algorithm to allow the tissue being 
stitched to slide along the needle (or equivalently the 
needle through the tissue); the same algorithm that lets 
the tissue slide along the thread (sections 4.1 and 4.2) can 
be utilized.  

The collision detection between the needle and the 
tissue being sutured is only calculated at the tip of the 
needle, i.e. the first node of the suture. When the tip of 
the needle passes through a triangle of the tissue model, 
the nearest of the triangle’s vertices that isn’t already 
connected to one of the vertices of the suture is then 
attached to the tip of the needle (the first vertex of the 
suture). If all of the triangle’s vertices are already 
attached to the suture then the triangle is subdivided, 
resulting in a new vertex being created. That vertex won’t 
be attached to any suture node and can therefore be 
attached to the tip of the needle. 

 
Figure 7:Attaching a needle to the suture. 

5 Endo Stitch Suturing Task  
For the initial test of our suturing algorithm, we modeled 
an Endo Stitch device and used it to perform suturing. To 
simplify matters, collision detection and force feedback 
were omitted. Also, since the needle is always attached to 
this type of device, it didn’t need to be able to move 
independently due to forces from gravity, the suture, or 
the tissue the needle may be penetrating. This further 
simplified the implementation.  

 

 
Figure 8: Jaw with needle is under the tissue. 

 
The end of the Endo Stitch device has two jaws, and 

through the activation of a mechanical switch, can pass a 
needle between them. With the needle on one of the jaws, 
the surgeon can pierce the tissue. Closing the jaws and 
activating the switch will pass the needle passed to the 
second jaw, pulling the suture through the puncture. We 
simplified the operation of the virtual Endo Stitch device 
slightly: a single key press on the computer’s keyboard 
will close the jaws, pass the needle across, and then open 
the jaws again having passes the needle through any 
tissue in the way. 

 

 
Figure 9: Needle has passed from one jaw to the other, 

pulling suture through first object. 
 
In this task we defined two simple deformable objects 

to represent pieces of tissue. To suture the two pieces of 
tissue together, one positions the device so that the two 
jaws of the device are on opposite sides of one of the 
pieces (Figure 8). Pressing the keyboard key will pass the 
needle through the tissue to the other jaw. Raising the 
device pulls the suture through (Figure 9 Performing this 
same process on the other piece of tissue, and pulling on 



the suture slightly, will bring the two pieces of tissue 
together (Figure 10). To continue stitching, the process is 
simply repeated. 

 
Figure 10: Objects pulled together after passing suture 

through second object. 

6 Needle Driver Suturing Task 
The second training task is based on open surgery, as 
opposed to laparoscopic surgery. This task contains the 
features not implemented in the Endo Stitch training task 
of section 5. When the grippers open the needle is 
released and will either fall under the effects of gravity 
and the attached suture material, or if the needle is 
embedded in the tissue, it will remain there. If the 
grippers are then closed and passed through the needle, 
the latter will be picked up again. Collision detection 
between the needle tip and tissue has been implemented 
and the needle can be pulled back out of the tissue. 

The basic surface mass-spring model serves as the 
patient model, with a depression added to model the 
incision. The underlying structure can be seen clearly in 
the wire frame view of the simulation shown in figure 11. 
The suture can also, as expected, be seen passing through 
the needle. The model is texture mapped to add detail to 
the incision and skin surfaces (figure 12).   

The suturing in this task is performed in a manner 
similar to that of the Endo Stitch task. The needle is first 
passed through the tissue on one side of the incision and 
then the other. To pass the needle through the tissue, the 
needle is inserted in such a way that the needle’s tip exits 
the tissue. The user must then let go of the needle and 
grasp it again buy its exposed tip. Continuing to pass the 
needle through from side to side, and pulling the suture 
tight, will close the incision (figures 13 and 14). 
 

 
Figure 11: A wire frame view of the Needle Driver task. 

 

 
Figure 12: An incision across a patient’s chest. 

 

 
Figure 13: The incision after several stitches. 

 
 
 
 



 
Figure 14: The closed incision. 

7 Future Work 
One particular area we plan to pursue is improvements to 
the collision detection used in this simulation. Ideally we 
would like to have the tool be able to touch and deform 
the objects being sutured, and have the suture be able to 
rest on the surface of the objects instead of passing 
through them. Having self-collision detection, i.e. 
allowing objects to collide with themselves, could lead to 
the ability to tie knots in the thread, and/or perform more 
complex types of suturing. 

Also, the current mass-spring model is too stretchy for 
use as the suture. This stretchiness is both unrealistic, 
since real suture material is fairly inelastic, and also 
makes it difficult for the user to pull enough of the suture 
through the tissue to create the next stitch. Using a higher 
spring constant to reduce the stretchiness is likely not a 
suitable solution since it would greatly increase the 
instability of the system. The tissue model could also be 
improved. For example, using a tetrahedral mesh, instead 
of a the current 2D triangular surface mesh, might result 
in more realistic results. 

Lastly, a proper simulation of suturing and knot tying 
during laparoscopic surgery needs to be developed, as 
opposed to the open surgery task of section 6. It would 
also be useful to perform a user study on it to evaluate its 
potential for improving a subject’s suturing skills. 
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