
Toward Modeling of a Suturing Task

Matt LeDuc Shahram Payandeh John Dill

Experimental Robotics and Graphics Laboratory
School of Engineering Science

Simon Fraser University

Abstract

In this paper we present our initial work on simulating
suturing using mass-spring models. Various models for
simulating a suture were studied, and a simple linear
mass-spring model was determined to give good
performance. A novel model for pulling a suture through
a deformable tissue model is presented. By connecting
two separate tissues together by way of the suture, our
model can simulate a suturing task. The results are shown
using software we developed that runs on a standard PC
and models the action of two suturing devices commonly
used in minimally invasive Laparoscopic surgery.

1 Introduction
In this paper we attempt to model a suture, and create a
simulation of a suturing task realistic enough to use in a
surgical training environment, and fast enough to run on a
desktop computer. One of our main goals is for the
system to run on PC hardware, i.e. a Pentium III 933MHz
system with an NVIDIA GeForce 2 video card. Such a
goal is difficult to achieve since simulating deformable
objects and performing collision detection are both
computationally intensive. However, for development of
a surgical training environment, e.g. our Laparoscopic
Training Environment (LTE), virtual representations need
not be extremely precise. They only have to be accurate
enough to facilitate a trainee in gaining the required
dexterity and hand-eye coordination. In this paper we
model a suture and a simple deformable object
representing tissue. We also develop and describe two
tasks which use the suture and tissue models as well as
two simulated devices that the operator uses to stitch
together pieces of tissue.

Many groups have been working on surgical
simulation in general ([1, 2, 3, 4]), as well as the specific
task of simulating suturing ([5, 6, 7, 8, 9]). Measuring
surgeons’ performance using a simulation has been
investigated [5] by focusing only on the initial penetration
of the object by the suturing needle, and not considering
the entire suturing process. A group at Rice University
took the opposite approach [6] and focused only the
realistic simulation of a suture and its behavior, while not
looking at the actual suturing task. Their paper describes
a method for simulating a suture using a spline of linear
springs and large overlapping nodes. Although their

method gives up some speed and stability, they are able to
tie various types of knots in the suture material.

Suturing itself has been explored by many groups.
Webster et al. created a simulation that is based on a 2D
mass-spring model [7]. Unlike ours though, their tissue
model appears to be restricted to a 2D plane, with the
feedback forces being calculated based only upon the
depth and angle of the needle as it penetrates that 2D
plane. Brown et al. designed a system [8] for training
surgeons in the task of suturing blood vessels. The suture
was simulated using rigid links of a fixed length while the
blood vessels themselves were simulated using mass-
spring systems. The same group also designed a software
framework that supports many different kinds of surgical
tasks [9]. Unrelated to surgery simulation, but using
similar mass-spring technology, various legless animals
have been simulated [10]. This method could possibly be
used in surgical simulations to create realistically moving
organs, such as the heart and lungs.

This paper presents an initial novel approach for
simulating a suturing task, where the suture and needle
are passed between two tissues in order to connect them.
The paper is organized as follows. Sections 2 and 3
describe the deformable models we used to represent the
objects in our simulation (the suture and tissue models),
while section 4 describes the algorithm used to simulate
the suturing. Sections 5 and 6 outline two demonstrations
we developed using the techniques described in the
previous sections, while Section 7 discusses possible
directions for our future research.

2 Deformable Objects
Triangular surface meshes represent both the rigid and
deformable objects in our virtual environment, i.e. the
suture, the tissue, and the Endo Stitch and Needle Driver
devices, both of which are used to perform suturing in
laparoscopic surgery (see sections 5 and 6).

Our deformable models are mass-spring models.
Mass-spring models, along with finite-element models,
are well known ways of simulating deformable objects [6,
7, 8], so we limit our discussion to those aspects
especially relevant to our development here.

Each node in our triangular mesh has a mass
associated with it, and each triangle edge has a coincident
spring, an “edge spring”, joining together the two nodes

that define the edge. When stretched or compressed, each
spring in our models apply a force to the attached nodes
of

0
() () a

e
a

P PF K L L
P P
−

= −
−

where L and L0 are the current and rest lengths of the
spring respectively, P is the position of the node who’s
applied force is being calculated, Pa is the position of the
other node of the spring, and Ke is the elasticity of the
spring.

2.1 Home Springs
Using only a mass-spring surface model, one could not
construct 3D deformable objects that could be
compressed and stretched, since they would not return to
their initial shapes after deformation. One approach to
solving this problem is to create an internal structure
using a set of springs to give the surface the support
needed to maintain, and return to its initial shape after
being deformed. For example, this method has been used
to model blood vessels [7]. Although it proves effective
and stable for small models with small displacements,
with more complicated objects or large deformations, the
object can easily become unstable or permanently
tangled.

To address the problem of maintaining an object’s
shape, our models use “home springs” connected to each
node. These zero rest length springs connect each node to
a fixed location in 3D space and maintain the connected
vertex in its undisplaced position through the creation of
an internal force proportional, but of opposite direction,
to the displacement of the node from its “home” location.
As a result, when the deformable object has been
deformed, for example by an interaction with another
object, after the interacting object has been removed, the
deformed object will be restored back to its original shape
(for example, the square in Figures 1a and 1b).

We have used this method before in an early phase of
our LTE as well as in a surface mesh subdivision model
in [11]. It is an efficient solution since the force applied
by each home spring to its connected node is simply
calculated as (-)hF K H P= , where H is the home
position of the node. This equation consists of only a
vector subtraction, and scalar multiplication, and is
therefore much faster than the one used for the edge
springs, which involves a square-root operation plus a
divide. Since the number of home springs in a surface
model will be proportional to the number of edge springs,
this model adds only a small constant amount of
computation to the basic the mass-spring surface model.

a) b)

Figure 1: Deformation and restoration of a model

containing home springs

2.2 Node-position Integration Method
To solve for the deformed state of the object we use

Euler’s method to integrate the positions of the nodes
according the to the following equations, where M is the
node’s mass, B is a damping constant, dt is the timestep,
and , , and i i iF V P represent the force acting on the node,
the node’s velocity, and the node’s position, all at time
step i.

-1

-1

-1

() - . 1

 . 2

i i

i
i i

i i i

F spring forces BV eq

FV V dt eq
M

P P V dt

=

= +

= +

∑

Combining equations 1 and 2, we get

-1
-1

() - i
i i

spring forces BV
V V dt

M
= + ∑

If we assume that the forces on the nodes are large
compared to the node’s kinetic energy, which consistent
with tissue and the forces on it during suturing, then this
equation can be simplified to:

()
i

spring forces
V

B
= ∑

In this method, the velocity of a node at a given point
in time is calculated only from the forces acting on the
node at that instant, and does not include the velocity at
the previous time step (i-1). The advantages in using this
quasi-static method are speed and simplicity. Since there
are fewer calculations, it runs faster, 8-10% in our
application, and also allows the mass attribute M to be left
out of calculation.

3 The Suture Model
The suture uses the same deformable model data structure
used for the deformable objects. The difference is that
instead of creating a 2D mesh in 3D space, the nodes are
simply arranged linearly, one after another, and joined

together with edge-springs (see Figure 2). The result is a
1D suture in 3D space.

Because the suture must be able to move within the
scene, the home spring constant Kh of its nodes is set to
zero. We also want the suture to behave realistically
under the influence of gravity, so a constant gravitational
force is applied to each node.

Surface Mesh Suture
Figure 2: Surface mesh and Suture models.

We investigated several other possible representations

of the suture, involving various forms of springs and
dampers. The first, and simplest one, was simply masses
connected together by springs and involved no damping.
The second model added dampers running between the
masses. Three more complex, and more realistically
behaving, models involving torsion spring, torsion
dampers, and viscous damping effects were also
implemented. We chose to use the first model for the
suture in this simulation since it is less computationally
intensive. It originally looked quite unrealistic due to the
lack of damping in the model, but by using our quasi-
static method for integrating the position of the model’s
nodes, a viscous damping is introduced without adding to
the complexity of the calculations and slowing the
simulation down.

3.1 Rendering the Suture
Since the nodes of the suture lie in a linear chain, an
obvious rendering method is to simply render the suture
as a series line segments. This is fast and simple, but
would not be the same rendering method used by the
triangle-based objects, and the two would therefore look
very different.
To avoid this problem, we chose to render the suture by
creating a flexible tube made up of triangles and
containing the same number of sections as there are
segments in the suture. We then reposition this tube over
the suture before each frame is rendered. This newly
defined shell is rendered instead of the suture itself. An
illustration of the process can be seen in Figure 3. Since
the suture is now rendered using a triangle model, it can
undergo the same lighting calculations, and have an

appearance consistent with the rest of the objects in the
scene.

Cylindrical Shell Suture at time t Shell placed over suture

Figure 3: Suture rendering

4 Simulated Suturing

4.1 Basic Suturing Algorithm
In real suturing, as the needle passes through the tissue, it
creates a hole through which the thread is pulled. As long
as the forces pulling on the suture are small, friction
between the suture and tissue will tend to prevent the
suture from sliding through the hole and the suture will
pull the tissue along with it as it moves. Simulating
suturing by creating a small hole in the triangularly
modeled deformable object, and then simulating the
friction forces between it and the suture would be overly
complex.

a) b)

 Figure 4: Simulation of the suture running through a
small hole in the object.

As an alternative to the above mentioned complex

method, we model the effect of a suture passing through a
hole by treating one of the nodes of the tissue model as a
hole, and connecting this node to one of the nodes of the
suture. This can be seen in Figure 4a, where the filled
circles are the nodes of the tissue, and the hollow circles
are nodes of the suture. In Figure 4a, there is no force
being applied to the suture. In Figure 4b, a force is
applied. This force pulls the suture toward the upper
right. Since the node of the suture is joined to a node of
the tissue, the two move together as one, and the rest of
the tissue gets pulled along with it.

When real tissue gets pulled along due to the friction
between it and the suture, there is a limit to how far it will
move. Eventually the forces within the tissue will become
large enough to counter the friction force and cause the
tissue to slide down the suture.

In Figure 5a, node N of the tissue model (the hole
through which the suture has been pulled) is being pulled
down by its neighboring nodes; however, the friction
forces from the suture balance the downward force. Once
the suture and tissue have been stretched enough, the
required force from the suture to the tissue in order to
keep it from sliding will be greater than the friction
between them. To simulate this sliding, node N is
detached from node S0 of the suture, and reattached to
node S1. If the suture continues to be pulled, then node N
will continue to slide down the thread (Figure 5b),
creating the impression the suture is slipping through a
hole.

N
S0

S1
S1

S0

N

a) b)

 Figure 5: Slipping of the deformable object down the
suture.

4.2 Multiple Slipping
During suturing, pieces of tissue will be pulled together
by a suture. In Figure 6a a suture is shown between two
pieces of modeled tissue. In order to stitch the two pieces
together, the suture will first pass through the left object
and then the right. Using the suturing algorithm of section
4.1 can lead to the situation shown in Figure 6b where
two tissue nodes will be attached to the same suture node.
Since the current algorithm has no inter-object, or self-
collision detection between the deformable models;
therefore, a method is needed to ensure that the two tissue
nodes on the suture are not able to slide past each other.
For example, in Figure 6c the right piece of tissue will be
under more strain than the one on the left, and it will be
the first to slide. Because it lies above the left piece of
tissue on the suture, it can not slide without also pulling
the left piece with it.

a) b)

c) d)

e) f)

 Figure 6: Multiple objects sliding down the suture.

To handle this situation, for each suture node we store
an ordered list of tissue nodes that are attached to it. This
linked-list approach allows us to maintain the order in
which the tissue nodes were pierced by the suture. This
information allows us to handle situations such as those
shown in Figures 6c and 6d. In Figure 6c the left piece of
tissue has been stretched further that the one on the right,
is therefore under more strain, and if under enough
tension will slip down the suture leaving the other tissue
node behind (Figure 6e). In Figure 6d the right piece of
tissue is under more strain; however, it cannot slip
without pulling the left tissue’s node with it (Figure 6f).
This can happen only when the force on the right tissue’s
attached node is large enough to overcome the friction
between itself and the suture, and the combined force of
the attached nodes is enough to overcome the combined
friction between the nodes and the suture. If this is not the
case, then the tissue nodes will not slide.

It must be noted that even though several tissue nodes
can be attached to a single suture node, the opposite is not
true. Attaching a single suture node to a single tissue node
can lead to situations involving two tissue nodes attached
to the same two suture nodes. Trying to determine when
the tissue should and should not slip, and whether it
should take the other suture node with it is very difficult
to solve. We have chosen simply to not allow this, and the
method used for intersecting the needle with the tissue
(section 4.3) reflects this decision.

4.3 Attaching a Needle
The needle is modeled as a rigid polygonal model which
either moves with the device gripping it, i.e. the Endo
Stitch device or needle driver, or moves freely under the

forces applied to it by the segment of suture attached to
its non-pointed end and by the tissue the needle may be
penetrating. If the needle is in the grip of the needle
driver device and a force feedback device is being used,
these forces can be used to provide the user with force-
feedback.

In our model, the suture is not simply attached to the
end of the needle as would normally be seen in suturing
and sewing, Instead, the first few nodes of the suture are
forced to lie along the center of the needle’s current
position in the scene (see Figure 7). The needle is then
rendered over top of the suture. This method avoids the
need for a special algorithm to allow the tissue being
stitched to slide along the needle (or equivalently the
needle through the tissue); the same algorithm that lets
the tissue slide along the thread (sections 4.1 and 4.2) can
be utilized.

The collision detection between the needle and the
tissue being sutured is only calculated at the tip of the
needle, i.e. the first node of the suture. When the tip of
the needle passes through a triangle of the tissue model,
the nearest of the triangle’s vertices that isn’t already
connected to one of the vertices of the suture is then
attached to the tip of the needle (the first vertex of the
suture). If all of the triangle’s vertices are already
attached to the suture then the triangle is subdivided,
resulting in a new vertex being created. That vertex won’t
be attached to any suture node and can therefore be
attached to the tip of the needle.

Figure 7:Attaching a needle to the suture.

5 Endo Stitch Suturing Task
For the initial test of our suturing algorithm, we modeled
an Endo Stitch device and used it to perform suturing. To
simplify matters, collision detection and force feedback
were omitted. Also, since the needle is always attached to
this type of device, it didn’t need to be able to move
independently due to forces from gravity, the suture, or
the tissue the needle may be penetrating. This further
simplified the implementation.

Figure 8: Jaw with needle is under the tissue.

The end of the Endo Stitch device has two jaws, and

through the activation of a mechanical switch, can pass a
needle between them. With the needle on one of the jaws,
the surgeon can pierce the tissue. Closing the jaws and
activating the switch will pass the needle passed to the
second jaw, pulling the suture through the puncture. We
simplified the operation of the virtual Endo Stitch device
slightly: a single key press on the computer’s keyboard
will close the jaws, pass the needle across, and then open
the jaws again having passes the needle through any
tissue in the way.

Figure 9: Needle has passed from one jaw to the other,

pulling suture through first object.

In this task we defined two simple deformable objects

to represent pieces of tissue. To suture the two pieces of
tissue together, one positions the device so that the two
jaws of the device are on opposite sides of one of the
pieces (Figure 8). Pressing the keyboard key will pass the
needle through the tissue to the other jaw. Raising the
device pulls the suture through (Figure 9 Performing this
same process on the other piece of tissue, and pulling on

the suture slightly, will bring the two pieces of tissue
together (Figure 10). To continue stitching, the process is
simply repeated.

Figure 10: Objects pulled together after passing suture

through second object.

6 Needle Driver Suturing Task
The second training task is based on open surgery, as
opposed to laparoscopic surgery. This task contains the
features not implemented in the Endo Stitch training task
of section 5. When the grippers open the needle is
released and will either fall under the effects of gravity
and the attached suture material, or if the needle is
embedded in the tissue, it will remain there. If the
grippers are then closed and passed through the needle,
the latter will be picked up again. Collision detection
between the needle tip and tissue has been implemented
and the needle can be pulled back out of the tissue.

The basic surface mass-spring model serves as the
patient model, with a depression added to model the
incision. The underlying structure can be seen clearly in
the wire frame view of the simulation shown in figure 11.
The suture can also, as expected, be seen passing through
the needle. The model is texture mapped to add detail to
the incision and skin surfaces (figure 12).

The suturing in this task is performed in a manner
similar to that of the Endo Stitch task. The needle is first
passed through the tissue on one side of the incision and
then the other. To pass the needle through the tissue, the
needle is inserted in such a way that the needle’s tip exits
the tissue. The user must then let go of the needle and
grasp it again buy its exposed tip. Continuing to pass the
needle through from side to side, and pulling the suture
tight, will close the incision (figures 13 and 14).

Figure 11: A wire frame view of the Needle Driver task.

Figure 12: An incision across a patient’s chest.

Figure 13: The incision after several stitches.

Figure 14: The closed incision.

7 Future Work
One particular area we plan to pursue is improvements to
the collision detection used in this simulation. Ideally we
would like to have the tool be able to touch and deform
the objects being sutured, and have the suture be able to
rest on the surface of the objects instead of passing
through them. Having self-collision detection, i.e.
allowing objects to collide with themselves, could lead to
the ability to tie knots in the thread, and/or perform more
complex types of suturing.

Also, the current mass-spring model is too stretchy for
use as the suture. This stretchiness is both unrealistic,
since real suture material is fairly inelastic, and also
makes it difficult for the user to pull enough of the suture
through the tissue to create the next stitch. Using a higher
spring constant to reduce the stretchiness is likely not a
suitable solution since it would greatly increase the
instability of the system. The tissue model could also be
improved. For example, using a tetrahedral mesh, instead
of a the current 2D triangular surface mesh, might result
in more realistic results.

Lastly, a proper simulation of suturing and knot tying
during laparoscopic surgery needs to be developed, as
opposed to the open surgery task of section 6. It would
also be useful to perform a user study on it to evaluate its
potential for improving a subject’s suturing skills.

References
[1] P. Gorman, J. Lieser, W. Murray, R. Haluck, and T.
Krummel, “Evaluation of Skill Acquisition Using a
Force-Feedback, Virtual Reality-based Surgical Trainer”,
Proceedings of Medicine Meets Virtual Reality 1999, IOS
Press, 1999, pp. 121-123.

[2] J. Berkley, S. Weghorst, H. Gladstone, G. Raugi, D.
Berg, and M. Ganter, “Fast Finite Element Modeling for
Surgical Simulation”, Proceedings of Medicine Meets
Virtual Reality 1999, ISO Press, 1999, pp. 55-61

[3] H. Delingette, “Towards realistic soft tissue modeling
in medical simulation”, proc. of the IEEE: Special Issue
on Surgical SImulation, April 1998, pp. 512-523

[4] U. Kuhnapfel, H. Cakmak, H. MaaB, “Endoscopic
surgery training using virtual reality and deformable
tissue simulation”, Computers & Graphics 24 (2000), pp.
671-682

[5] Robert V O’toole, Robert R Playter, Thomas M
Krummer, William C Blank, Nancy H Conelius, Webb R
Roberts, Whitney J Bell, Marc Raibert “Measuring and
Developing Suturing technique with a Virtual Reality
Surgical Simulator”, Journal of the American College of
Surgeons, July 1999, pp. 114-27

[6] Andrew Ladd, “Simulated Knot tying”, Proceedings
of the 2002 IEEE International Conference on Robotics
and Automation, Washington DC

[7] Roger W. Webster PhD, Dean I Zimmermanm Betty
J, Mohler, Michael G. Melkonian MD, Randy S. Haluck
MD “A Prototype Haptic Suturing Simulator”,
Proceedings of Medicine Meets Virtual Reality 2001,
IOS Press, 2001, pp. 567-569

[8] Joel Brown, Kevin Montgomery, Jean-Claude
Latombe, and Michael Stephanides, “A Microsurgery
Simulation System”, Medical Image Computing and
Computer Aided Interventions, The Netherlands, October
2001

[9] K. Montgomery, C, Bruyns, J. Brown, S. Sorkin, F
Mazzela, G. Thonier, A. Tellier, B. Lerman, A. Menon,
“Spring: A General Framework for Collaborative, Real-
time Surgical Simulation”, Medicine Meets Virtual
Reality, IOS Press, Amsterdam, 2002

[10] Gavin S.P. Miller, “The Motion Dynamics of Snakes
and Worms”, Computer Graphics, Volume 22, November
4 1998, pp169-178

[11] Jian Zhang, Shahram Payandeh and John Dill,
“Haptic Subdivision: an Approach to Defining Level-of-
detail in Haptic Rendering”, 10th International
Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems, IEEE Computer Society, pp.
201-208

