
Simulating Fluid-Solid Interaction

Olivier Génevaux Arash Habibi Jean-Michel Dischler

LSIIT UMR CNRS-ULP 7005
Boulevard Śebastien Brant, F67400 Illkirch, France
{genevaux, habibi, dischler}@dpt-info.u-strasbg.fr

Abstract
Though realistic eulerian fluid simulation systems now

provide believable movements, straightforward render-
able surface representation, and affordable computation
costs, they are still unable to deal with non-static objects
in a realistic manner. Namely, objects can not have an
influence on the fluid and be simultaneously affected by
the fluid’s motion. In this paper, a simulation scheme for
fluids allowing automatic generation of physically plau-
sible motions alongside realistic interactions with solids
is proposed. The method relies mainly on the definition
of a coupling force between the solids and the fluid, thus
bridging the gap between commonly used eulerian fluid
animation models and lagrangian solid ones. This new
method thus improves existing fluid simulations, making
them capable of generating new kinds of motions, such
as a floating ball displaced by the wave created thanks to
its own splash into the water.

Key words: Fluid simulation, interactions, Navier-Stokes
equations, spring-masses simulation.

1 Introduction

Since realism is one of the major goals of computer
graphics, numerous works attempt to provide so-called
”realistic” methods to allow an easy creation of digital
equivalents for natural phenomena. Within these, the an-
imation of fluids, and especially liquids, is a particularly
difficult task due to the underlying laws that govern flu-
ids’ motions. Indeed, these laws, known as the Navier-
Stokes, equations are highly unstable partial differential
equations that are quite difficult to solve in an efficient
way, and even difficult to solve at all.

Multiple types of methods were proposed to simulate
fluids. The first kind of method, which consists of what
can be called ”empirical hand-crafted models”, does not
involve the Navier-Stokes equations at all, or even phys-
ical correctness, but offloads the task of creating a con-
vincing velocity field to an animator, using velocity prim-
itives [4]. Such an approach may be complemented us-
ing a small scale turbulent velocity field that is added to
the large scale hand-designed flow to increase details and

give the fluid a more turbulent, thus better looking, be-
havior [17, 18].

Figure 1: A ball falling inside a tank. — The ball is
pushed upward due to the pressure wave it created.

The second kind of method, which encompasses parti-
cle based simulations, does not make use of the Navier-
Stokes equations either, but are nevertheless based on
physical considerations. Indeed, they are able to ex-
hibit realistic fluid behaviors without resorting to an ex-
plicit description of motions. These motions naturally
spring from the local forces in action between the par-
ticles [13, 2, 9]. It should be noted that these models are
already able to deal with convincing interactions between
solids and liquids. This arises from the fact that both en-
tities are simulated using the same lagrangian represen-
tation [10]. However this kind of simulation comes with
a high computation cost stemming from the huge num-
ber of forces that must be computed between the many
particles needed to obtain realistically looking motion.

To avoid such a plethora of particles, physical macro-
scopic modeling may be used. This is what is employed
in a number of different works, from heavily simplified
simulation models to thorough ones. These simplifica-
tions can be limitations to the simulable behaviors, such
as non turbulent fluids [20, 19], or fluids that can be rep-
resented by a heightfield [11, 15]. In any case, it should
be noted that physical considerations are taken into ac-
count, either explicitly by the solver or implicitly by the
underlying simulated equations.

The last class of simulators extends the former one.
Indeed, the Navier-Stokes based simulators are undoubt-
edly physically based, but what makes them specific is
that they use a comprehensive fluid model to its maxi-
mum extent: they don’t put any restrictions on the prop-



erties of the simulated fluid, nor on the motions that can
be simulated starting from these equations. The only lim-
itation arises from the allowed computational cost, which
can be quite substantial when large scale but precise sim-
ulations are required. Despite much less demanding than
lagrangian systems, these simulators can thus still be
costly. The cost, along with the problem of liquid track-
ing and surface determination, explains why these sim-
ulators were first developed to run on two dimensional
domains [1], before being expanded to full three dimen-
sional domains [8]. Another interesting point of these
simulation schemes is that movements can be easily con-
trolled by animators without ruining the physical believ-
ability of the whole animation [6].

Further development led to the solution of the two
aforementioned problems related to these methods: com-
putation speed was improved using a more stable evolu-
tion scheme [16], and a visually appealling surface rep-
resentation was devised to allow realistic visualization of
liquids [7, 5]. This last point is not to be underestimated
due to the fact that current liquid simulations often rely
on marker particles to discriminate between the fluid and
its surrounding environment, thus not readily exhibiting
a clear and good looking surface to be visualized.

However, if these schemes are able to handle a fluid in-
side its static environment fairly well, they don’t provide
any means to deal with true reciprocal interactions be-
tween fluid and arbitrary solids, except for one work ap-
plied to the explosion simulations [21], and another work
restricted to heightfield represented water [15]. The first
work is not directly relevant to liquid simulation though,
because it does not deal with free surface liquid while the
heightfield nature of the second work is highly limitating
its use.

As a consequence, no animation system based on the
Navier-Stokes equations is able to automatically deal
with a simple ball that splashes into water and then os-
cillates due to the waves it just created without lots of
animator’s work. This extraneous work therefore puts a
damper on the usage of liquids in computer graphics pro-
ductions.

In this paper, a new method allowing to link a com-
monly used eulerian fluid simulation to a lagrangian solid
simulation is proposed. While not new to fluid mechanics
[3], such a method is new to the field of computer graph-
ics. This way, arbitrary objects can be realistically in-
corporated into fluid simulations without resorting to any
external intervention, as shown in Figure 1. Resulting
motions of fluid and solids automatically appear physi-
cally correct since the strong coupling between the two
different entities are handled in a coherent way. This is a
definite improvement on previous work, where only uni-

directional actions between fluids and solids were con-
sidered, so solids either responded to fluid’s motion but
without any action on it, or vice-versa.

The new method presented in this paper relies essen-
tially on the definition of a new force, computed by tak-
ing into account both of the fluid and the solids, to capture
the interaction. This new force is then simultaneously in-
troduced in both models, thus guaranteeing coherent be-
haviors. Though this method may appear simple, it was
found to be computationally effective while producing
satisfactory results, as can be seen in the included pic-
tures and videos.

The remaining of the paper is organized as follows:
section 2 describes both the separates fluids’ simulation
model and the solids’ one. Section 3 details the coupling
scheme between these two models. Section 4 presents
limitations of the method. Section 5 provides results
while section 6 analyses the proposed method as well as
provides some hints about improvements that could be
made.

2 Underlying simulations

Before describing how the interaction between liquids
and solids is handled, a description of the two distinct
elementary simulation models is given.

2.1 Liquid simulation
The liquid related part of the simulator is based on the
Navier-Stokes equations:

∂u
∂t

= −(u · ∇)u− 1
ρ
∇p + ν∇2u + F, (1)

∇ · u = 0, (2)

where a fluid of densityρ and viscosityν is described:
u stands for the velocity field,p for the pressure field,
andF for the external forces, such as gravity. Equation
1 expresses momentum conservation, while equation 2
states that the liquid is incompressible, which means that
volume must be conserved over time.

Since the simulator must be able to cope with a liquid
that does not fill all the simulation space, a way to dis-
crimate between the liquid and its surrounding empty en-
vironment must be devised. Moreover, full three dimen-
sional motions must be achievable, so heightfield-like so-
lutions, where waves are not able to overturn, are not rel-
evant. The way to solve these two problems is to resort
to Markers And Cellssimulation. In this kind of simu-
lations, velocity and pressure are evaluated on cells of a
rectilinear static grid that defines the simulation domain,
meanwhile liquid is tracked as a cloud of markers mov-
ing inside this grid, as shown in Figure 2. These massless



markers are passively advected according to the under-
lying velocity field, which is updated over time using the
Navier-Stokes equations. Whether a given cell of the grid
is considered full or empty of fluid by the simulator de-
pends on the presence of at least one marker inside the
considered cell.

Figure 2: Fluid Simulation. — Realized using a grid car-
ryind fluid velocity and many markers to delineate the
fluid presence.

It should be noted that the grid does not sample both
the pressure and the velocity fields at the same location
but instead makes use of staggered sampling. The differ-
ent components of the velocity field are not sampled on
the same position either. Focusing on the velocity sample
taken on a cell, each component is sampled on the cen-
ter of the orthogonal faces to the considered component
orientation, whereas pressure is sampled on the center of
the cell. Such a scheme is chosen due to better stability
properties compared with a scheme where the samples
are taken from the same location. A more detailed de-
scription of the simulation grid can be found in articles
that introduced the method in computer graphics [8].

Fluid evolution is achieved using the method pro-
posed in [7]. The different parts of equation 1 are simu-
lated using different strategies depending on their nature.
The convection term−(u · ∇)u is handled by a semi-
lagrangian integration process, the viscous termν∇2u
is solved using direct differentiation while the external
force termF contribution is based on simple Euler in-
tegration. Mass conservation∇ · u = 0 is enforced by
means of a projection step inside the target divergence
free space. This projection is computed by solving an ad-
equately built equations system using a conjugate gradi-
ent solver. This last step takes care of the pressure related
term−1/ρ ∇p of equation 1 too.

Apart from liquid simulation, liquid visualization must
also be addressed. In order to get a surface, a marching
cube algorithm [12] is used. The underlying data field of
the marching cube is built by counting the fluid markers
inside each cell of a fine grid and smoothing these values.
While not creating the best looking surfaces, this strategy
was chosen among others because it is quite fast and easy
to implement while it gives satisfactory smooth surfaces.
However, a major drawback of such a surface extraction

system is that artificial fluid dissipation is introduced by
the smoothing step. Nonetheless attention must be drawn
to the fact that this dissipation is only visual, and no fluid
at all is lost at the simulation level using this technique.
This dissipation can be seen on Figure 2 where some of
the droplets visually disappear during the simulation.

2.2 Solid simulation
Although fluid is simulated through a rather complex pro-
cess, solids are much easier to handle. While solids can
be represented as rigid bodies delineated by a surface
made of triangles, they can also be represented as a set
of linked point masses [14]. This latter model, for which
a simple example is given in Figure 3, is especially well
suited to animation. It is used in the presented method be-
cause of its flexibility to handle both rigid and non-rigid
bodies, its easy manipulation, and the way it fits well in
the interacting composite model.

Figure 3: Solid Simulation. — Example of a 2D square:
4 nodes are linked using viscous springs.

A spring-mass solid, as one can infer from its name, is
made of a set of masses linked by interactions. These
cohesion interactions are chosen to be not only elastic
but visco-elastic, which means that the intensityf of the
force between two given particlesi andj is not only de-
pendant on their distance but on their closing speed too:

f = −kcoh · (|xi − xj | − dcoh)

−zcoh ·
d

dt
|xi − xj |.

The forceF is obviously aligned with the direction im-
plied by the positions of the two particles:

F = f · xi − xj

|xi − xj |
.

To evolve the solid over time, the position of each mass
is updated independently of the others according to New-
ton’s second law taking account of all the applied forces:

x =
1
m

∫∫ ∑
i

Fi dt2.

TheFi forces encompass all the applied forces to the
mass, coming either from the internal or external interac-
tions, such as gravity or obstacle collision forces. The



aforementioned flexibility of spring-mass solids arises
from this separate time evolution process of every mass:
since their relative position is allowed to change related
to the stiffness of interactions, all kind of solids can be
built, from extremely plastic to the most sturdy ones.

3 Interfacing the two models

To allow a true reciprocal interaction between the two
different eulerian and lagrangian models prevously de-
scribed in sections 2.1 and 2.2, an interface to bind them
is needed.

This interface is chosen to stand as a representation of
the fluid for the solids, that is, to build a lagrangian de-
scription of the eulerian world. In fact, looking at the
fluid simulator, this very representation is already avail-
able through the use of the massless markers whose role
is to delineate the presence of fluid. Thus, the interface is
chosen to be built out of these markers. This way, no new
entity is introduced inside the model, helping to avoid un-
necessary overcomplication of the whole composite sim-
ulator.

Indeed, these markers are already able to easily, yet
precisely, discriminate where fluid is actually located in-
side the environment. This is an extremely important fact
since the position of the interface is part of the way it af-
fects both models. This position dependance is undoubtly
needed due to the free-surface nature of the simulated
liquids. Indeed, since solids can be half-submerged, it
would be a rough oversimplification to assume that all of
their surrounding environment is composed only of fluid.
Moreover, the point cloud nature of this interface will al-
low linkage of the interface with the two different models.

Another interesting property of this interface is that
since it is defined as a set of points, it is trivial to de-
fine a restricted interface as a subset of all the markers.
This property is of the utmost interest since it allows one
to easily manipulate an almost steady interface made of
a constant number of points even if the number of fluid
markers is increased to improve fluid representation. This
allows an animator to avoid altering dynamic properties
of the interface between a low resolution prototyping an-
imation and a full resolution production one.

The composite simulator is thus formed of three logical
entities:

• The eulerian Navier-Stokes based fluid simulator;

• The lagrangian spring-mass solids simulator;

• The interface that must be able to flow data between
them, translating these data when they are not read-
ily interpretable by the destination model.

The final coupling is asymmetric at a coarse level, as
can be seen on the synthetic decription depicted in Figure

4 and is comprised of two parts. On the one hand, the
connection between the interface and the solid model is
symetric through the definition of a force equally reintro-
duced in the two entities. On the other hand, the binding
between the fluid model and the interface is an assymet-
ric one, where velocity information are transferred from
liquid toward the interface while forces information flow
the reverse way. This scheme has been chosen instead of
the converse one, where velocity would flow from solids
to liquid and force from liquid to solids, since it allows
the aforementioned interface definition which is experi-
mentally found to be effective and efficient.

Figure 4: Overview of the coupling scheme.

3.1 Interface / Solids relationship
The relation between the interface and the solids is han-
dled in an efficient way by the use of a force exerted be-
tween each markeri of the interface and each nodal mass
j of the solids. This elementary forcefelemij

is visco-
elastic, such as the internal cohesion force of solids, but
with a limited radius of influence:

f̄elemij = −kint · (|xi − xj | − dint)

−zint ·
d

dt
|xi − xj |,

felemij
=

{
f̄elemij

if |xi − xj | ≤ R
0 if |xi − xj | > R

.

This way, solids are naturally affected by the nearby in-
terface, which is itself determined by liquid movements.
The limited interaction distance between solid and in-
terface guarantees that objects are only influenced by
closely located liquid motions, and not by far, thus phys-
ically irrelevant, liquid movements.

The radiusR is closely related to the way solids are
modeled: its size must be big enough to avoid holes in
the solids while correctly approximating their surfaces.



No general guideline can be given to setup the stiffness
kint and the viscosityzint, except thatkint must be stiff
enough to repel water markers from the interior of the
solid. Unless interior is preserved from fluid, objects
will be filled with fluid, preventing a buoyancy force to
develop. This buoyancy force automatically stems from
pressure difference in the fluid around the object due to
gravity.

Given this force definition, the complete interaction
force can be computed for each node belonging to a solid
Fsolid, as well as for all of the interface markersFmark,
as the sum of the forces in which the entity is involved:

Fsolidi
=

∑
j

Felemij
, Fmarkj

=
∑

i

Felemij
.

This resulting force is directly taken into account by
the solids as one of the many gathered forces, such as
gravity or internal cohesion. No further consideration is
necessary since this raw expression of the new force per-
fectly fits the evolution scheme of solids.

However, if a lagrangian simulator can make direct use
of this force, an eulerian simulator can not. Although not
of a straightforward use, this force should not be wasted
since it carries all the information to update the eulerian
simulator to make it react to the solids. The interaction
force is thus stored on the interface marker basis to be
reintroduced in the eulerian simulator after suitable trans-
formation.

3.2 Interface / Fluid relationship
On the other side of the interface, half of the relation be-
tween the interface and the fluid is already built. Indeed,
since the interface is formed out of the fluid advected
markers, the interface is already under the influence of
fluid in a physically realistic way, and fluid velocity is
able to affect solids through the interface.

The last link that must be devised to complete the in-
teraction scheme is the link between the interface and the
fluid, to keep the solid to liquid force flowing from inter-
face to the fluid model. Recalling the last term of equa-
tion 1, the Navier-Stokes equation related to momentum
conservation, external forces, such as the interaction one,
can be incorporated inside the simulation. However, un-
like gravity, the interaction is spatially dependant, which
means that last term of the the equation should be updated
to F(x) instead ofF, as depicted in Figure 5.

To populate this force fieldFinter(x), a simple yet ef-
fective method, summarized in Figure 6 is used. Forces
stored at interface markers are summed on a per compu-
tational grid cell basis, so as to obtain the forceF̄inter

globally applied to the fluid located inside each cellC:

F̄inter(C) =
∑
i∈C

Fmarki .

Figure 5: The interaction is defined as a spatially depen-
dant force field for the fluid simulator.

The key point of this method is that partially filled cells
do not require special handling with respect to completely
submerged ones. Indeed, the relative number of interface
markers per cell is automatically able to handle this filling
discrepancy.

Once these per-cell forces have been computed, the
force field is ready to use. Due to the staggered nature
of the grid, the actual forceFinter used during time evo-
lution of the velocity carried by a given face inside the
grid is obtained by averaging the two forces stored in the
neighboring cells. Using the Kronecker’s deltaδpq, for
coordinates denoted asn = 0, 1, 2, this can be expressed
as:

Finter(x(i,j,k)+δ/2) = F̄inter(Ci,j,k)/2� δ

+ F̄inter(C(i,j,k)+δ)/2� δ

where δ = [δ0n, δ1n, δ2n] and where� stands for
component-wise multiplication:(xi)� (yi) = (xi · yi).

Figure 6: Processing of raw per-marker interaction forces
to take account of interaction into eulerian simulator. —
Left: Forces of markers are summed on a grid cell basis.
Right: Adjacent cell forces are used to compute force re-
quired in speed evolution of faces.

4 Limitations of the method

Despite the clear improvement of allowing a simple two
way interaction, the method still suffers from some draw-
backs.

Indeed, the discretization of the force field is extremely
coarse and imprecise. This imprecision can sometimes



lead to ”spurious currents” that may appear at the inter-
face between the solids and the fluid. However, it was
found that these currents are most of the times unnotice-
able and without tangible influence on the liquid surface
position. It should be noted though that this problem is
intrinsic to the discretization of a force field in eulerian
simulation methods and that the Computational Fluid Dy-
namics community is still trying to address this problem.

Another limitation of the method is its relatively diffi-
cult setup. Indeed, multiple interlocked parameters need
to be devised, each having dramatic influence on the re-
sults.

5 Results

This section presents results obtained from the previously
described simulator. Pictures are rendered using the Ra-
diance photo-realistic renderer1. The liquid surface is ex-
tracted from the simulation using the technique described
in section 2.1. All simulations were run on an Athlon XP
1800+ with 512MB RAM. Meaningful parameters of the
different examples are gathered in Table 1. The timestep
used for all the simulations is1/240 second, but an export
of the surface is only performed every1/24 second.

This small timestep is due to the solids introduced in
the simulation. Indeed, they must have small displace-
ments during a timestep compared to the size of a cell
of the fluid simulation grid. This is a requirement if one
wants to avoid instabilities and to produce meaningfull
results.

Figure 7 illustrates buoyancy. At the beginning of the
simulation, both the fluid and the ball are completely
steady, but buoyancy allows the ball to surface.

Figure 8 shows a ricochet of a ball thrown in a tank.
Figure 9 involves a high speed jet striking a cube.

The cube is made of an elastic material that deforms
but quickly regains its shape such as rubber. It is mod-
eled as thousand nodes arranged in a regular cubic lat-
tice scheme. When the jet strikes the cube, water is able
to temporarily tear the cube, showing that the interaction
force can be precisely localized in space, even down to a
sub-object level. This can be seen in the close up shots
depicted in Figure 10. Meanwhile, the cube is able to
deflect the tip of the jet, before being put into move-
ment. It should be noted that the noisy appearance that
fluid develops in complex motions areas is not induced
by the simulator itself but is rooted in the fact that the
fluid surface evolves in a too convoluted mesh to be ren-
dered smoothly.

Figure 11 depicts a U-shaped container, half filled with
water, where two different cubes are dropped on top of
the water, in the two branches of the U container. The red

1http://radsite.lbl.gov/radiance/HOME.html

cube is five times as heavy as the yellow one and nearly
three times as rigid. The container has a square cross-
section, almost identical to the cross-section of the two
cubes. With such a situation, when a cube hits the fluid,
the movement is entirely transmitted at the opposite end
of the fluid without loss of momentum, like in a hydraulic
brake system. The interaction between the cubes and the
fluid is clearly visible looking at the lighter yellow cube,
on the left of the device. When it first hits the water, it
pushes the fluid upward in the opposite part of the con-
tainer, but when the second heavier cube hits the water a
bit later, it is itself propelled upward by the water. The
two way interaction is thus clearly demonstrated: solid to
fluid forces are seen first and then fluid to solids forces
are visible.

6 Conclusions and future works

A new method that allows realistic interaction between
a free surface fluid and solids has been presented. This
method proved to be easy to implement, computationally
affordable and efficient to fulfill its role.

This method is believed to provide a definite improve-
ment in the visual realism of animations involving fluid
by providing a simple way to add more life in these
scenes.

Since the method does not involve deep modifications
of classic eulerian fluid simulators, it should be possible
to integrate this extension into more sophisticated simula-
tors that give better representation of the fluid’s surface to
further increase realism of animation without much trou-
ble.

Improvements could also be made by taking steps to
insure that simulation grid refinement does not affect dy-
namic properties of the interaction, in order to allow an
efficient transition between prototype and production an-
imations. Moreover, more intuitive parameters would be
of great help during the setup phase of the simulation.

Another possible enhancement lies in the solid repre-
sentation. Indeed, not all objects are easy to represent
as a set of nodal masses fitted with spherical interaction
fields. It would thus be interesting to extend the definition
of the interaction force to an interaction between fluid’s
markers and triangles, to deal with complex triangulated
meshes in an obvious way.

References

[1] Jim X. Chen and Niels Da Vitoria Lobo. Toward
interactive-rate simulation of fluids with moving ob-
stacles using Navier-Stokes equations.Graphical
models and image processing: GMIP, 57(2):107–
116, March 1995.

http://radsite.lbl.gov/radiance/HOME.html


Figure Simulation Particles Solid Interaction Avg frame Avg surface
grid size number or nodes particles simulation reconstruction

introduction rate subset time time
7 40× 50× 40 4 676 065 1 1 / 8 45.4 sec 9.5 sec
8 100× 40× 20 1 600 000 1 1 / 16 23.2 sec 4.1 sec
9 40× 40× 20 800 000 / sec 1000 1 / 8 12 sec 9 sec
11 20× 40× 5 250 000 2000 1 / 1 8 sec 1.6 sec

Table 1: Parameters of the different simulations.

[2] N. Chiba, S. Sanakanishi, K. Yokoyama,
I. Ootawara, K. Muraoka, and N. Saito. Visual
simulation of water currents using a particle-based
behavioural model. The Journal of Visualiza-
tion and Computer Animation, 6(3):155–171,
July–September 1995.

[3] Eric Climent and Martin R. Maxey. Numerical
simulation of random suspensions at finite reynolds
numbers.International Journal of multiphase flows,
2001.

[4] D. S. Ebert, W. E. Carlson, and R. E. Parent. Solid
spaces and inverse particle systems for controlling
the animation of gases and fluids.The Visual Com-
puter, 10(4):179–190, March 1994.

[5] Douglas P. Enright, Stephen R. Marschner, and
Ronald P. Fedkiw. Animation and rendering of com-
plex water surfaces. InSIGGRAPH 2002 Confer-
ence Proceedings, pages 736–744, 2002.

[6] N. Foster and D. Metaxas. Controlling fluid anima-
tion. Computer Graphics International 1997, June
1997.

[7] Nick Foster and Ronald Fedkiw. Practical anima-
tion of liquids. In SIGGRAPH 2001 Conference
Proceedings, pages 23–30, 2001.

[8] Nick Foster and Dimitri Metaxas. Realistic anima-
tion of liquids. Graphical Models and Image Pro-
cessing, 58(5):471–483, September 1996.

[9] Patrick Fournier, Arash Habibi, and Pierre Poulin.
Simulating the flow of liquid droplets. InGraphics
Interface, pages 133–142, June 1998.

[10] A. Habibi, A. Luciani, and A. Vapillon. A
physically-based model for the simulation of reac-
tive turbulent objects. InWinter School of Computer
Graphics 1996, 1996.

[11] Michael Kass and Gavin Miller. Rapid, stable fluid
dynamics for computer graphics.Computer Graph-
ics, 24(4):49–57, August 1990.

[12] William E. Lorensen and Harvey E. Cline. March-
ing cubes: A high resolution3D surface construc-
tion algorithm. Computer Graphics, 21(4):163–
169, July 1987.

[13] Gavin Miller and Andrew Pearce. Globular dynam-
ics: A connected particle system for animating vis-
cous fluids. Computers and Graphics, 13(3):305–
309, 1989.

[14] Gavin S. P. Miller. The motion dynamics of snakes
and worms. InSIGGRAPH 88 Conference Proceed-
ings, pages 169–178, 1988.

[15] J. F. O’Brien and J. K. Hodgins. Dynamic simu-
lation of splashing fluids. InComputer Animation
’95, pages 198–205, 1995.

[16] Jos Stam. Stable fluids. InSIGGRAPH 99 Confer-
ence Proceedings, pages 121–128, 1999.

[17] Jos Stam and Eugene Fiume. Turbulent wind fields
for gaseous phenomena. InSIGGRAPH 93 Confer-
ence Proceedings, pages 369–376, 1993.

[18] Jos Stam and Eugene Fiume. Depicting fire
and other gaseous phenomena using diffusion pro-
cesses. InSIGGRAPH 95 Conference Proceedings,
pages 129–136, 1995.

[19] Henrik Weimer and Joe Warren. Subdivision
schemes for fluid flow. InSIGGRAPH 99 Confer-
ence Proceedings, pages 111–120, 1999.

[20] Jakub Wejchert and David Haumann. Animation
aerodynamics. InSIGGRAPH 91 Conference Pro-
ceedings, pages 19–22, 1991.

[21] Gary D. Yngve, James F. OBrien, and Jessica K.
Hodgins. Animating explosions. InSIGGRAPH 00
Conference Proceedings, pages 29–36, 2000.



Figure 7: Buoyancy — The ball is initially steady but automatically surface.

Figure 8: Ricochet of a ball inside a tank.

Figure 9: High speed collision of a water jet and a cube.

Figure 10: Close-up of the jet collision with the cube. — In upper row, regular scene is used. In lower row, only the
cube is represented.

Figure 11: U-shaped container and two cubes.


	Introduction
	Underlying simulations
	Liquid simulation
	Solid simulation

	Interfacing the two models
	Interface / Solids relationship
	Interface / Fluid relationship

	Limitations of the method
	Results
	Conclusions and future works

