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Abstract
We present a novel algorithm for simultaneous visual

hull reconstruction and rendering by exploiting off-the-
shelf graphics hardware. The reconstruction is accom-
plished by projective texture mapping in conjunction with
the alpha test. Parallel to the reconstruction, rendering
is also carried out in the graphics pipeline. We texture
the visual hull view-dependently with the aid of fragment
shaders, such as nVIDIA’s register combiners. Both re-
construction and rendering are done in a single rendering
pass. We achieve frame rates of more than 80 fps on a
standard PC equipped with a commodity graphics card.
The performance is significantly faster than that of previ-
ously reported similar systems.

Key words: Image-Based Modeling and Rendering, Vi-
sual Hull, Hardware-accelerated Rendering, Projective
Texture Mapping.

1 Introduction

For the past several years, real-time 3D object recon-
struction and rendering from real scenes have become re-
search hotspots in both computer graphics and computer
vision. Promising applications, such as 3D interactive TV
and immersive tele-communication, stimulate the emer-
gence of a number of real time image-based modeling
and rendering systems. Some of the most prominent ex-
amples [10, 11, 12] are all based on the concept ofVisual
Hulls [9].

The visual hull is an approximate geometry represen-
tation resulting from theshape-from-silhouette3D recon-
struction method [18]. It is the maximal object silhouette-
equivalent to the actual 3D geometry (refer to [9] for an
in-depth analysis of the visual hull). Although visual
hulls have been successfully employed in the real-time
systems mentioned above, the speed and quality of recon-
struction and rendering still need further improvements
before this technique might be applicable in consumer
applications.

In this paper we present a novel algorithm for recon-
struction and rendering of the visual hull by exploiting
the capabilities of graphics hardware. Our method has
several advantages: (1) It reconstructs a polyhedral vi-

sual hull robustly and has no voxelization artifacts. (2)
Reconstruction and rendering are merged into one pro-
cess. Hence, there is no latency problem between the re-
construction and rendering. (3) The algorithm is fully
hardware-accelerated and shows significant performance
improvements over previous methods. Frame rates reach
more than 80 fps for four input silhouette images.

The remainder of this paper is organized as follows.
Section 2 reviews some previous work. Section 3 and 4
present our hardware-accelerated visual hull reconstruc-
tion and rendering algorithm. Section 5 gives implemen-
tation details and compares our system’s performance
with similar systems. Conclusion and future research di-
rections are discussed in the last section.

2 Previous Work

A lot of effort has been put into voxel-based reconstruc-
tion and rendering of visual hulls. An early off-line sys-
tem was developed by Moezzi et al. [14]. The voxel-
based approach can be accelerated by processing a set
of planes instead of individual voxels. Matsuyama et
al. [20] distribute the visual hull computation among a
cluster of PCs. Reconstruction is achieved at interactive
frame rates. However, rendering is still off-line. Kautz et
al. [7] present a hardware-accelerated displacement map-
ping technique, which can be used as well to reconstruct
and render visual hulls. They draw a stack of slice planes
with texture mapping and applying the alpha test. Lok’s
on-line 3D reconstruction system [10] bases on a similar
idea. A major drawback of voxel-based systems is that
they suffer from quantization and aliasing problems.

Image-based visual hulls [11] overcome the aliasing
problem by directly generating the desired view from the
silhouette images. Matusik et al. [12] compute an ex-
act polyhedral representation of the visual hull by inter-
secting all the cones generated from the silhouettes. The
intersection computation is made more efficient by reduc-
ing it from 3D to 2D. However, reconstruction runs at a
lower frame rate than rendering.

Unlike the visual hull approach, which only em-
ploys the silhouette information,Voxel Coloring[17] and
Space Carving[8] check color consistency across mul-
tiple views. However, the color consistency check is



very time-consuming. Even with today’s computational
power, they are still too slow to be ready for real-time
applications.

The visual hull can also be computed using CSG (con-
structive solid geometry) intersection of silhouette cones.
Rappoport et al. [15] use the stencil buffer to render gen-
eral CSG models interactively. But they do not handle
textured 3D objects.

Debevec et al. [5] and Buehler et al. [3] map images
from multiple viewpoints onto a 3D object using projec-
tive texturing [16]. The geometry information of the 3D
object must be knowna priori. This implicates that the
real-time performance of these algorithms is only related
to the rendering. Compared with them, our algorithm
achieves real-time performance for the whole reconstruc-
tion and rendering process.

3 Visual Hull Reconstruction

All visual hull reconstruction algorithms take the sil-
houettes of an object as input. In this section, we first
describe briefly how we obtain the silhouettes of the
foreground object in the scene. Then the hardware-
accelerated reconstruction algorithm is explained.

3.1 Silhouette extraction

The background of our scene is assumed to be static.
Multiple fixed video cameras are mounted around the
scene. The dots in Figure 1 indicate the camera posi-
tions. In the initialization phase of our system, we com-
pute a background image for each view. While the system
is running, the moving foreground object in the scene is
segmented from the background usingimage differenc-
ing [1]. Morphological operators are then applied to fill
small holes in the foreground object silhouette mask. Fi-
nally, the contour is retrieved from the silhouette as a 2D
polygon. The edges of the polygon are called silhouette
edges. After the silhouette edges of all viewpoints are
available, we are ready to reconstruct the visual hull rep-
resentation of the foreground object.

3.2 Reconstruction algorithm

With the camera calibration data, we back-project the sil-
houette edges to form a silhouette cone, composed of sil-
houette faces. Then the visual hull is computed by in-
tersecting the silhouette cones from multiple viewpoints,
illustrated in Figure 1.

We classify the intersection into two types: face-cone
intersection and polygon-polygon intersection. The first
one is the intersection of a silhouette face with a silhou-
ette cone from another viewpoint. It produces one poly-
gon on the silhouette face. When repeating this intersec-
tion for multiple silhouette cones, we obtain a set of poly-
gons on the silhouette face. Then these polygons are used

Figure 1: Intersection of silhouette cones. These cones
are generated from silhouette images taken from different
viewpoints.

in the second kind of intersection — polygon-polygon
intersection. The result is one visual hull face. An ex-
ample is shown in Figure 2a. Consider the silhouette
faceABC2. The face-cone intersectionABC2

⋂
S1 and

ABC2

⋂
S3 produce the polygonKLMN andPQRS,

respectively (for clarity, the face-cone intersections are
not drawn in the figure). By applying polygon-polygon
intersection betweenKLMN and PQRS, the visual
hull facePLMS is obtained.

In [12], the face-cone intersection is computed by pro-
jecting the silhouette face into each image plane and in-
tersecting the projected face with the silhouette edges.
These intersection results are lifted from the image planes
back to the silhouette face again. Then the polygon-
polygon intersection on the silhouette face is computed.
The image-based visual hull technique [11] shares the
same spirit in reducing the intersection computation from
3D to 2D. The difference is that the two kinds of inter-
sections are discretized into line-polygon and segment-
segment intersections. Nevertheless, both approaches
carry out the intersections geometrically.

In our reconstruction algorithm, the intersection com-
putation is performed in image space. It does not suf-
fer from any numerical instability problems which exist
for geometric intersection methods. Therefore, our algo-
rithm works robustly for arbitrarily complex input silhou-
ette shapes.

Given a novel viewpoint, we compute the face-cone
intersection by rendering a silhouette face using projec-
tive texturing. The texture is set to the silhouette image
from another view. We also load the projective texture
matrix according to the calibration data associated with
that view. The alpha value of the texture is set to 1 for
the foreground object and 0 for the background. As a re-
sult, when the silhouette face is rendered, an alpha value
of 1 is only assigned to the intersection part. The other
part can be removed by enabling the alpha test. Figure 2b
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Figure 2: The principle of our visual hull reconstruction. C1,C2,C3 are source cameras locations. We assume the
visual hull is reconstructed from these 3 views. (a) Face-cone intersection and polygon-polygon intersection. The
hatched area on each image plane is the silhouette of the object. For the silhouette face ABC2, the polygons KLMN
and PQRS are the face-cone intersection results with respect to silhouette cone S1 and S3. The polygon-polygon
intersection between KLMN and PQRS produces the visual hull face PLMS. (b) Flatland version of Figure 2a.
For view 1, the alpha value of KL is textured to one. For view 3, the alpha value of PQ is one. By multiplying the
alpha value per-pixel, only the common part PL gets texture value 1 in the alpha channel.

illustrates the idea in 2D.
The polygon-polygon intersection is accomplished by

multiplying the alpha channels of the projective textures
from all views except for the vieŵk that produces the sil-
houette face currently being rendered. This alpha modu-
lation can be expressed as:

A =
N∏

k=1

k 6=k̂

Ak , (1)

whereN is the total number of input images, andAk

denotes the alpha channel of thek-th projective texture.
This formula tells us that only the intersecting region of
all polygons coming from the face-cone intersection has
the alpha value 1. Again we use the alpha test to retrieve
this intersection region.

So far we have described the intersections for only one
silhouette face of a silhouette cone. When we iterate
this computation over all silhouette faces of all silhou-
ette cones, we obtain the intersection result of multiple
silhouette cones, the visual hull. For example, in Figure
2b, the area enclosed by thick lines is a cross-section of
the resulting visual hull. Since the reconstruction is cou-
pled with the rendering process, we give the reconstruc-
tion algorithm in pseudo-code together with the rendering
algorithms (Figure 3 and Figure 5) in the next section.

4 Visual Hull Rendering

4.1 Flat-shaded visual hull
The flat-shaded visual hull (see Figure 4) is useful to visu-
alize which surfaces on the visual hull comes from which
silhouette cone. This leads to a better understanding of
the visual hull reconstruction, and helps to perform ac-
quisition planning for a visual-hull based visualization
system.

In order to render a flat-shaded visual hull, we load
the silhouette images as intensity textures into the texture
units on the graphics card. In RGBA format, the texture
color for the foreground object is (1, 1, 1, 1), and for the
background it is (0, 0, 0, 0). As explained in Section 3, for
each silhouette face, if we set the alpha value of each ver-
tex to 1 and the texture environment toGL_MODULATE,
the visual hull reconstruction will be done in the alpha
channel of the rendering pipeline. For the color channel
in the same rendering process, when we specify a differ-
ent color for each silhouette cone, theGL_MODULATE
texture environment automatically generates the desired
result, assigning the different color to the visual hull
faces. Reconstruction and rendering are performed si-
multaneously. Figure 3 gives the pseudo-code for the ren-
dering algorithm. Figure 4 shows the rendering result of
the flat-shaded visual hull. In this figure, we can observe
some aliasing artifacts along the intersection boundaries
due to the discrete nature of the image space computa-



Set and enable alpha test
foreachview i

Load the silhouette mask imagei as an intensity
textureTi and enable it

Set up the projective texture matrix forTi

Set the texture environment to GL_MODULATE
End foreach
foreachsilhouette coneSi

Disable textureTi

Set the color associated with the coneSi

foreachsilhouette face(triangle)4j of Si

Draw4j

End foreach
Enable textureTi

End foreach

Figure 3: Flat-shaded visual hull reconstruction and ren-
dering algorithm.

tion. By using higher-resolution input images these arti-
facts can be easily alleviated.

Figure 4: Flat-shaded visual hull. Different colors repre-
sent different silhouette cones. The visual hull is rendered
from four input images.

4.2 Textured visual hull
To achieve realistic rendering results, the 3D object must
be textured with the color images. In the context of
image-based modeling and rendering, original images
taken from different viewpoints are often used to map
onto the recovered 3D geometry. This way, the user
can freely choose a novel viewpoint to examine the ob-
ject, which resembles its counterpart in the real world.
One technical problem to be tackled here is that one sin-
gle image normally cannot cover all surfaces of the ob-
ject. Therefore, we must stitch multiple textures. For the
parts covered by more than one texture, we blend them to

achieve a smooth appearance.

Multiple texture blending
If we haveN input images, the rasterized fragment color
Cf for a visual hull facef can be computed using the
following formula:

Cf =

[
N∑

k=1

Vk,f ∗Wk ∗ Tk

]
/

N∑
k=1

Vk,f ∗Wk , (2)

whereTk is the texture color from thek-th input im-
age,Wk is a weighting factor (see below) andVk,f is the
visibility function for facef with regard to viewk:

Vk, f =
{

1 , f is visible from view k
0 , otherwise

(3)

There are two points that need to be clarified for this
visibility function. First, among the reference views,
there exists one vieŵk, from which face f is gener-
ated. In this case, we state thatf is invisible from viewk̂
(namely,Vk̂,f = 0) since the vieŵk does not contribute
to the reconstruction and rendering of facef .

Secondly, the surface normal can be used to compute
the visibility if the silhouette cone is convex. For concave
geometry, partially visible or self-occluded faces may oc-
cur. This visibility issue can be addressed by either clip-
ping the silhouettes faces in advance or using shadow
mapping [16].

We achieve view-dependent texturing [5] by including
the weighting factorWk in Equation 2. The criterion
to choose the weight is the angle deviation between the
viewing direction of the reference view and that of the
target view. A smaller angle gets higher weight. This
function can be defined as:

Wk = 1/acos(d̄k • d̄t) , (4)

where d̄k and d̄t represent the reference and target
viewing direction, respectively.

In Equation 2, there is an expensive per-pixel divi-
sion operation. In order to avoid this, we first normalize
Vk,f ∗Wk:

Ŵk,f = Vk,f ∗Wk/
N∑

k=1

Vk,f ∗Wk (5)

Then by substituting Equation 5 into Equation 2, we
obtain the multiple texture blending function which is go-
ing to be evaluated in graphics hardware:

Cf =
N∑

k=1

Ŵk,f ∗ Tk (6)



Rendering algorithm
In order to implement multiple texture blending, we need
a more complex fragment coloring mechanism than the
simple OpenGL texture environment. Fortunately, the
OpenGL extensionRegister Combiners[4] provides a
flexible way to compute per-fragment color. This is used
to implement our rendering algorithm.

The register combiners take interpolated colors, fil-
tered texel values, and some other registers as input. After
some computations are performed in a number of general
combiner stages, a final combiner stage output an RGBA
value for each fragment. On the Geforce3 graphics card,
four texture units are available. This means we are able to
handle four silhouette images in one rendering pass. To
evaluate the fragment color expressed in Equation 6, we
make use of four general combiner stages and the final
combiner stage.

For each vertex of a silhouette facef , we encode the
normalized weights in the color/alpha channel of the pri-
mary color and the red/green channel of the secondary
color1. At the first general combiner stage, we use the
dot product to separate the weights in the secondary
color into two registers. For the general combiner stage
k (k = 2, 3, 4), we modulate the texel valueTk with Ŵk,f

and perform the accumulation at the same time. The final
stage adds the contribution from̂W1,f ∗ T1. This way,
multiple textures are blended together with appropriate
weights to produce the color values of the silhouette face.

The above register combiner configuration is used only
for the color evaluation of the silhouette face. In addi-
tion, we must compute the alpha value and enable the
alpha test to remove the extra part of the silhouette face.
The alpha portion of the register combiners is configured
to simulate theGL_MODULATEfunctionality, which is
used in reconstructing flat-shaded visual hull. Again, re-
construction is carried out on-the-fly parallel to render-
ing.

The rendering algorithm is presented in Figure 5. We
show snapshots of the rendering results from two novel
viewpoints in Figure 6. Since the separation of fore-
ground objects from background is not perfect, some
black pixels can be observed along the silhouettes on the
person. However, this problem can be fixed by using a
better segmentation algorithm.

5 Implementation and Results

The proposed algorithm has been implemented in a real-
time visualization system. The system architecture fol-
lows a client-server paradigm. Image acquisition and sil-

1The function glSecondaryColor only accepts 3-component color.
Therefore, we cannot encode the weights in the same way as the primary
color.

Set and enable alpha test
foreachview i

Load the silhouette color imagei as an RGBA
textureTi and enable it

Set up the projective texture matrix forTi

End foreach
Configure Register Combiners and enable this exten-
sion
foreachsilhouette coneSi

foreachsilhouette face(triangle)4j of Si

Compute visibility and weight vector for all views
Compute normalized weight vector
Encode normalized weight vector in the primary

and secondary color of each vertex of4j

Draw4j

End foreach
End foreach

Figure 5: Textured visual hull reconstruction and render-
ing algorithm.

houette extraction are performed on the client machines.
This provides good scalability and allows us to use more
cameras for acquisition without substantially decreasing
overall system performance.

We use four Sony DFW500 FireWire cameras con-
nected to four client computers which communicate with
the server via a standard TCP/IP network. All cameras
are calibrated in advance, and video acquisition is syn-
chronized at run-time. The server is a P4 1.7GHz dual-
processor machine with a GeForce3 graphics card. The
clients are Athlon 1.1GHz computers. The video images
are acquired at 320x240-pixel resolution.

We have carried out experiments using four video
streams. Each 2D silhouette polygon consists of 100 to
120 edges. The resolution of the rendered novel view is
set to 640x480 pixels. Without background rendering,
we achieve 124 fps for the flat-shaded visual hull and
84 fps for the textured rendering. Video clips demon-
strating the fast reconstruction and rendering results
are available on our websitehttp://www.mpi-sb.
mpg.de/~ming/DynaVisualHull.html . For the
time being, the only bottleneck of our system is the speed
of synchronized video acquisition at 15 fps.

A performance comparison between our system and
similar systems is given in Table 1. Our algorithm shows
considerable improvements regarding reconstruction and
rendering performance.

Notice that our rendering algorithm is not limited only
to nVIDIA graphics cards or the OpenGL API. Similar
multi-texture blending computations can be performed on
ATI’s graphics cards as well by using the OpenGL exten-

http://www.mpi-sb.mpg.de/~ming/DynaVisualHull.html
http://www.mpi-sb.mpg.de/~ming/DynaVisualHull.html


volume number of input image processing frame rate
(voxels) cameras resolution power (fps)

IBVH N/A 4 256x256 quad 500MHz PC(4x600MHz PC) 8
GVE 2m x 2m x 2m(Res.:2cm) 9 640x480 unknown(9x600MHz PC) offline(8.77)
OMR 8ft x 6ft x 6ft (Res.:1cm) 5 720x486 SGI Reality Monster 12-15
PVH N/A 4 320x240 dual 933MHz PC(4x600MHz PC) 30(15)

HAVH 2m x 2m x 3m 4 320x240 dual 1.7GHz PC(4x1.1GHz PC) 84

Table 1: Performance comparison. In the column “processing power”, if the system is in client-server mode, we
distinguish the rendering server from the clients. The machines listed in parentheses are client PCs. For the frame rate,
the number in parenthesis is the reconstruction frame rate when rendering is decoupled from reconstruction. IBVH:
Image-Based Visual Hulls [11]. GVE: Generation, Visualization and Editing of 3D Video [20]. OMR: Online Model
Reconstruction for Interactive Virtual Environments [10]. PVH: Polyhedral Visual Hulls for Real-Time Rendering
[12]. HAVH: Our system. Hardware-Accelerated Visual Hull Reconstruction and Rendering.

(a)

(b)

Figure 6: Textured visual hull. (a) novel front view. (b)
novel back view. The visual hull is rendered by blending
the textures from multiple viewpoints. The background
scene is modeled as a box. Four reference views are used.

sion ATI_fragment_shader [6]. The DirectX 8 API also
provides an alternative for implementing our algorithm.

In our current implementation, the number of input sil-
houette images is restricted to the maximum of texture
units available on the graphics hardware. To allow for
more input images, one possible way is to divide the ren-
dering process into multiple passes. Thus, the blending
functionality of the frame buffer can serve the purpose of
accumulating the individual rendering results. However,
for the multi-pass rendering, the frame rate drops down as
the pass number increases. Fortunately, the next genera-
tion graphics hardware, e.g. the Radeon 9700 from ATI
or the GeForce FX from nVIDIA, supports eight pixel
pipelines. This means eight input images can be pro-
cessed in one single pass. A plot in the work [13] shows
that by using eight silhouettes, the rendering quality of
visual hulls improves considerably. Therefore, the new
graphics hardware is capable of providing convincing vi-
sual hull rendering results in real-time.

6 Conclusions and Future Work

In this paper we have presented a new hardware-
accelerated algorithm to reconstruct and render a poly-
hedral visual hull from multiple-view video streams in
real time. While the acquisition system is implemented
using several PCs, the reconstruction and rendering algo-
rithm itself runs on only one PC equipped with a com-
mon graphics card. We support two different styles of
rendering: flat-shaded and textured visual hull. The for-
mer one provides an intuitive visualization of the recon-
struction process of visual hulls, whereas the latter yields
realistic rendering results ready for various applications.
Thanks to the fast progress in graphics hardware devel-
opment, the reconstruction and rendering speed is greatly
increased compared with the performance of previously
reported similar systems.



An obvious improvement to our system will be to in-
corporate more elaborate blending schemes such as feath-
ering [19] to smooth the transition from one texture to an-
other. The more complex computation will be alleviated
by the introduction of generally programmable fragment
shaders [2] on the new graphics hardware.

We will also enhance the algorithm with fully-correct
visibility handling by using shadow mapping, as sug-
gested in Subsection 4.2.

The rendering of the background scene is another im-
portant component of the system because it gives the user
the sense of immersion. So far we apply multiple back-
ground rendering passes. With more texture units avail-
able on future graphics hardware, it is not difficult to re-
duce the number of passes to one.
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