
CInDeR
Collision and Interference Detection in Real-time using Graphics Hardware

Dave Knotta,b Dinesh K. Paia,c

a Department of Computer Science
University of British Columbia

b Radical Entertainment c Department of Computer Science
Rutgers University

Abstract
Collision detection is a vital task in almost all forms of

computer animation and physical simulation. It is also
one of the most computationally expensive, and there-
fore a frequent impediment to efficient implementation of
real-time graphics applications. We describe how graph-
ics hardware can be used as a geometric co-processor to
carry out the bulk of the computation involved with col-
lision detection. Hardware frame buffer operations are
used to implement a ray-casting algorithm which detects
static interference between solid polyhedral objects. The
algorithm is linear in both the number of objects and
number of polygons in the models. It also requires no
preprocessing or special data structures.

Key words: Collision detection, Graphics hardware, Im-
agespace computations, Geometric modeling

1 Introduction

A vital task in almost all forms of computer animation
or physical simulation is the act ofcollision detection.
When polyhedral objects are being animated, it is critical
to determine if and when they are about to, or have al-
ready, come into contact with each other. Example prob-
lem domains where collision detection is almost ubiqui-
tous include rigid and deformable body simulation, com-
puter games, virtual reality, surgical simulation, robotics,
path planning, and computer-aided design and manufac-
turing (CAD/CAM). Collision detection is also one of the
most computationally demanding tasks in each of these
domains and therefore one of the most common bottle-
necks in the simulation pipeline.

In recent years, the computational power of graphics
hardware has made enormous leaps, not only in speed
but also in functionality. A typical graphics processor
now contains more logical transistors than the CPU of
the computer that it resides in.

It is reasonable, then, to ask whether the computation
involved with collision detection can be offloaded from

contact e-mail:{knott|pai}@cs.ubc.ca

the computer’s primary processor and memory, and be
performed instead on the graphics hardware. To do so
frees up CPU power for other tasks and enables the ap-
plication to make use of a computational resource that
might otherwise be underutilized.

This paper proposes an image-space method for detect-
ing interference between solid polyhedral bodies. The
algorithm makes use of virtual ray casting to determine
which portions of the edges of the polyhedrons in ques-
tion lie within volumes enclosed by other polyhedrons.

The technique exhibits a number of features which, to
our knowledge, no other interference detection algorithm
has successfully combined:

• Convex and non-convex geometry with hollow re-
gions can be handled.

• Large numbers of objects can be handled.
• Intersection tests are performed on the geometry it-

self, not on an approximation to the surface.
• No special data structures are required.
• No preprocessing of models is required.
• The algorithm’s expected asymptotic running time

is linear in both the number of objects being tested
and the number of polygons comprising the objects.

• Processing is done with the aid of commodity-level
graphics hardware.

The image-space nature of our technique means that
the algorithm is an approximate one. The precision of in-
terference computations is constrained by the resolution
of the frame buffer region that we render into. The al-
gorithm also cannot detect interference involving objects
whose projection lies outside of that region.

2 Previous and Related Work

Collision and interference detection is a widely re-
searched topic. For a comprehensive overview of the sub-
ject in general, we refer the reader to the surveys by Lin
and Gottschalk [15] and by Jiḿenezet al. [12]. There
has also been a good deal of recent research into using
graphics hardware for geometric computation [16].

There have been a number of previous attempts at us-
ing graphics hardware to aid in interference detection.

Perhaps the best known example is the work of
Rossignacet al. [21]. They use the depth and stencil
buffer capable hardware to aid in the inspection of cross-
sections of computer-modelled mechanical assemblies.
Clipping planes are moved through volumes occupied by
the solid assemblies and rays are cast toward points on the
planes. A point is known to be within the solid if a ray
passes through an odd number of polygonal faces before
reaching the point.

Shinya and Forgue [26] reported some early results of
using a hardware depth buffer to support interference de-
tection. They start with the assumption that all objects are
convex. For each pixel, a list of the maximum and mini-
mum depth values of each object is stored. These lists are
then sorted. If any object’szmax andzmin values are not
adjacent in the sorted lists, then two objects are interfer-
ing. The hardware is used to calculate thezmin andzmax

depth maps of each object. The main drawback of this
approach is the huge overhead of repeatedly copying the
depth buffer and then sorting pixel depth values. Storing
many depth maps also requires huge amounts of memory.

Myszkowskiet al. [18] describe using the depth and
stencil buffers in conjunction to detect inference. Of all
the previously reported results, their work most closely
resembles our own. As with our algorithm, they use the
stencil buffer to store a running count of how many solid
objects a ray enters and leaves before reaching a surface
point of another object of interest. As with Shinya and
Forgue, their method is applicable only to objects that are
convex in the direction of the rays being cast. Also, their
algorithm does not work for more than two objects.

This work was expanded on by Baciu and Wong [2, 3].
Their primary contribution was to extend the techniques
developed by Myszkowskiet al. to compute the area of
the region of overlap between two interfering solids.

Vassilevet al.[28] have used an image-space depth and
colour buffer technique for detecting collisions in cloth
animation for computer-generated characters.

Interference detection is a subset of a more general
class of computation which is sometimes called proxim-
ity queries. Hoffet al. [11] have demonstrated the use
of graphics hardware to generate proximity information
for two-dimensional objects. They perform image-space
computations for collision detection, separation distance,
penetration depth, and contact points and normals. Their
method is applicable only for individual pairs of objects,
and makes use of a distance field computation that was
originally used in the context of generating Voronoi dia-
grams [9]. The technique has also recently been extended
to proximity queries in three dimensions [10].

Graphics hardware has also recently been used by Kim
et al. for the computation of penetration depth between
pairs of 3D polyhedral models in the context of rigid-
body simulation [14]. They make use of the depth buffer
to aid in the computation of Minkowski sums in order to
find the minimum translational vector needed to separate
two interfering bodies.

2.1 Relationship to Shadow Algorithms
The initial inspiration for our algorithm came from the
one of the most common shadowing techniques in real-
time rendering: theshadow volumealgorithm [6]. Us-
ing the shadow volume technique, a polygonal mesh is
created that represents the volume of space that lies in
the shadow cast by an object. Determining whether or
not a point lies in shadow involves casting a ray from the
viewer toward the point. The point is in shadow if the ray
enters more shadow volumes than it exits. The test can be
performed in hardware by using the stencil buffer to count
the difference in the number of front-facing and back-
facing polygons lying between a point and the viewer [8].

3 Background

In the context of the following discussion, a polyhedral
solid is deemed to be a closed manifold, enclosing a finite
volume. Unless otherwise noted, the polyhedron may be
non-convex and may contain hollow regions.

3.1 Interference
Before describing our interference detection algorithm,
we will give a brief description of what exactly we mean
by interference.

We letp ∈ P denote that pointp is contained within
solid polyhedral objectP . Also let∂P be the set of edges
of P . We denote intersection of two polyhedral objects
by A∩B, and define it as follows:∃a ∈ A, b ∈ B|a = b.
When two objects intersect each other, we say that they
are ininterference.

Our interference detection algorithm is predicated on
the following property: Two polyhedral objects are inter-
fering with each other if and only if an edge of one object
intersects the volume occupied by the other. This is ex-
pressed by the following theorem [5]:

Theorem 1 A ∩ B 6= ∅ iff {∃a ∈ ∂A, b ∈ B|a = b} or
{∃a ∈ A, b ∈ ∂B|a = b}

We also note that this property is invariant under affine
and projective transformations [27], meaning that an in-
tersection test based on it may be applied at any point in
the graphics pipeline.

3.2 Counting Boundary Crossings
A central feature of our algorithm is the concept of locat-
ing a point relative to a solid by casting a semi-infinite

ray from the point. The number of polygons of the
solid’s boundary that the ray passes through are counted.
The two-dimensional version of this technique was first
introduced in 1962 by Shimrat [25] and corrected by
Hacker [7]. It is commonly used to solve the point-in-
polygon problem, and was first used in the context of in-
terference detection between solid models by Boyse [4].

It is a theorem of computational geometry that a semi-
infinite ray originating within a closed solid will intersect
the boundary of the solid an odd number of times [19].
This is a three-dimensional variation on theJordan Curve
Theorem, first formulated in two dimensions by Camille
Jordan in 1893 [13], which states that any simple closed
curve divides the plane into two regions.

In addition, for a directed ray, we can specify whether
or not an intersection of the ray with a solid corresponds
to the rayenteringor leavingthe solid’s volume. We can
make use of the fact that there may not be two consecutive
instances of either an “enter” or a “leave”. This means
that a semi-infinite ray cast from the interior of a solid
will “leave” the solid one more time than it “enters” the
solid (Figure1).

Figure 1:Casting rays from a point in a polygon

In our algorithm, we do not cast rays from objects to-
wards infinity, but rather cast them from infinity toward
objects. However, the same principles of counting bound-
ary crossings still apply.

4 The Algorithm

Interference detection is performed by point-sampling the
scene and looking for object edges that are interior to
other polyhedrons. This is done using hardware ray-
casting. Rays are cast through the pixels of the viewport
toward objects of interest. Rays that strike those objects’
edges are of particular interest. Figure2 shows this in two
dimensions. Note that the edge points appear disjoint. In
a one-dimensional slice of the viewport, edge points will
only be connected if the edge is colinear with the slice.

When a ray strikes an edge, then we count the differ-
ence in the number of back-facing and front-facing poly-
gons lying between the edge point and the ray’s origin at
the viewport. If the difference is not equal to zero, then
we know that the edge point lies within the volume of
space occupied by another object.

V

I

E

W

P

O

R

T

DEPTH

Figure 2:Rays cast at the edges of an object of interest.
Polygons of another object enclose some edge points.

4.1 The Rendering Passes
The primary interference detection algorithm consists of
the equivalent of three rendering passes. This is shown in
pseudocode in Algorithm1.

Algorithm 1 Detect Interference
1: for all pixelsdo {clear depth and stencil buffers}
2: Z = 0, stencil = 0
3: end for
4: depth test = none
5: Enabledepth update
6: stencil function = none
7: Disablecolour update
8: for all objectsdo {draw the edge depths}
9: Draw edges{Pass #1}

10: end for
11: Disabledepth update
12: depth test = ’<’
13: for all objectsdo
14: cull mode = back-face
15: stencil function = increment
16: Draw polygons{Pass #2: add front-facing polys}
17: cull mode = front-face
18: stencil function = decrement
19: Draw polygons{Pass #3: subtract back-facing polys}
20: end for
21: for all pixelsdo {check for interference}
22: if stencil> 0 then
23: RETURN(interference=true)
24: end if
25: end for
26: RETURN(interference=false)

We also illustrate the process with a sequence of ex-
planatory images showing a two-dimensional version of
two objects in interference. These figures show how we
test whether the edge points of one object lie within the
volume enclosed by the polygons of other object.

In the first rendering pass (lines 4-10), we render all of
the edges that we wish to check for interference, and ini-
tialize the depth buffer with their depth values (Figure3).
This ensures that all rays cast through pixels will be tar-
geted at polygon edges. The first pass is the only one
in which the depth buffer is altered. All subsequent ren-
dering passes perform depth tests relative to these values.
What this means is that all rays cast through pixels will

V

I

E

W

P

O

R

T

DEPTH

Figure 3:Initialize the depth buffer

either intersect an edge or go to infinity1.
In the second and third rendering passes, we do not

alter the depth buffer or the colour buffer. We do use
depth testing, and reject all pixels that fail the depth test.

In the second rendering pass (lines 14-16), we draw
only those polygons whose normals face toward the ray’s
origin (Figure 4). That is, we reject all polygons for
which the dot product of the normal with the ray direction
is positive. In the graphics hardware this corresponds to
a back-face cull. We increment the stencil buffer for each
pixel that passes the depth test.

DEPTH

S

T

E

N

C

I

L

DEPTH

S

T

E

N

C

I

L

DEPTH

S

T

E

N

C

I

L

Figure 4: Increment the stencil buffer when rendering
“front-facing” polygons.

In the third rendering pass (lines 17-19), we draw only
those polygons whose normals face away from the ray’s
origin (Figure 5). That is, we reject all polygons for
which the dot product of the normal with the ray direction
is negative. In the graphics hardware this corresponds to
a front-face cull. We decrement the stencil buffer for each
pixel that passes the depth test.

Passes two and three have the combined effect of us-
ing the stencil buffer to count the difference between the
number of front-facing and back-facing polygons that lie
between the ray’s origin (the viewport) and the edge point
in question.

After the third pass, the stencil buffer value at each
pixel gives the results of the collision detection:

• A positive stencil buffer value at a pixel represents a
ray cast toward an interfering edge point. The mag-
nitude of the value indicates how many objects the
edge point is interfering with.

1Actually the far clipping plane, which is infinity for our purposes

DEPTH

S

T

E

N

C

I

L

DEPTH

S

T

E

N

C

I

L

DEPTH

S

T

E

N

C

I

L

DEPTH

S

T

E

N

C

I

L

DEPTH

S

T

E

N

C

I

L

Figure 5: Decrement the stencil buffer when rendering
“back-facing” polygons.

• A stencil buffer value of zero indicates that the ray
represented by the pixel either (a) did not intersect
an edge point, or (b) intersected an edge point that
was not interfering with another object.

• A negative stencil buffer value means that the ray
intersected more back-facing than front-facing poly-
gons. This indicates that at least one object is not a
closed manifold.

To check for interference, the values in the stencil
buffer must be scanned. This requires the stencil values
to be passed from the graphics hardware to the CPU. Note
that at no point do we modify the colour buffer.

5 Object Identification

In our algorithm, an interference point corresponds to
an object edge that penetrates the volume contained by
another object. For each interfering edge point we can
therefore make a distinction between thepenetratingob-
ject and thepenetratedobject. Identifying the penetrat-
ing object is easy, but identifying the penetrated object is
more difficult.

We identify objects by assigning them bit-wise unique
integer values that we call identifiers. These identifiers
are written into the colour buffer at locations where inter-
ference has been detected. The penetrated and penetrat-
ing objects write their identifiers into separate channels
of the colour buffer. With a typical frame buffer, this af-
fords us between 12 and 16 bits per identifier, allowing
us to distinguish up to 65,000 objects. For most applica-
tions, this is enough identifiers to uniquely identify every
polygon and every edge.

Finding the identity of interfering objects then amounts
to retrieving the colour buffer and parsing through it. Any
pixel with non-zero colour will uniquely identify a pair of
interfering objects.

5.1 Identifying the Penetrating Object
To identify the penetrating object, we add an extra ren-
dering pass that redraws object edges at only those pixels
where the stencil buffer is positive. This writes the ob-
ject’s identifier at those locations where its edges were
found to be in interference.

5.2 Identifying the Penetrated Object
Before identifying the penetrated object, we reset all pos-
itive stencil buffer values to zero, in order to remove the
effects of identifying the penetrating object. This can be
accomplished in the same rendering pass that we use to
write the penetrating object’s identity.

The basic idea is to repeat the counting process for
each individual object. If, after repeating the counting for
a single object, the stencil buffer was incremented (i.e.
stencil=1), then we know that the object has an edge pen-
etrating it. We write the object’s identity into the frame
buffer by redrawing the object’s polygons and updating
the buffer only where the stencil equals 1. In the same
pass we also reset the stencil value to 0 whenever it equals
1, in order to restore the stencil buffer’s original state.

6 Other Issues

6.1 Avoiding Frame Buffer Reads
We have found that, in practise, one of the most com-
putationally expensive parts of the algorithm is the act
of retrieving the frame buffer to main memory and pars-
ing through it one pixel at a time. For instance, it can
be shown that, on a standard PC, transferring a 256 by
256 pixel area of the colour buffer will take at least 1
msec [17]. This is slightly mollified by the Unified Mem-
ory Architecture (UMA) of systems such as the Microsoft
XBox [1], but UMA is not common, and in any case we
prefer to keep as much computation as possible local to
the graphics processor.

We observe that, regardless of whether we are iden-
tifying the penetrating or penetrated object, we are re-
rendering either edges or polygons and writing pixels that
must pass both a stencil test and a depth test. Testing for
interference without reading the frame buffer can there-
fore be accomplished if the graphics hardware provides
information about whether or not rendering a primitive
resulted in some pixel passing both of these tests.

Fortuitously, this operation is supported in commodity-
level hardware via hardware-based occlusion queries.
Hardware occlusion queries were first introduced by
Hewlett-Packard in theirVisualize fx graphics hard-
ware [23] and are also available in NVidia’s latest graph-
ics accelerators. Furthermore, this functionality is ex-
posed in OpenGL through theHP occlusiontest and
NV occlusionquery extensions. These extensions re-
quire almost no extra CPU or GPU overhead and do not

require an extra rendering pass.
What is more, if objects are identified using occlu-

sion queries, then the colour buffer does not need to be
touched, since it is sufficient only to know that some pixel
passed both the depth and stencil tests. However, it is im-
portant to note that when multiple pairs of objects are in-
terfering, occlusion queries cannot be used to determine
exactly which objects constitute each pair. We must still
read the colour buffer to do this.

Early Non-Interference Detection
Even if we decide that the colour buffer needs to be read
in order to resolve interference pairs, we can still use
occlusion queries to performnon-interference detection.
The colour buffer needs to be retrieved and parsed only if
we know that interference is occurring. We can therefore
use occlusion queries to perform a boolean test for inter-
ference (at virtually no cost) and then retrieve the colour
buffer for inspection only if necessary.

6.2 Interference Localization
For many applications, it does not suffice to know only
that two objects are interfering with each other. Rigid
body simulation, for instance, requires knowledge of the
surface points at which objects are interpenetrating, in or-
der to correctly apply forces or impulses to separate con-
tacting bodies.

Using a variation of the object identification scheme,
it is possible to determine which edges are involved in
the interference. During interference detection, we ren-
der each edge with an unique colour, which is used to
identify the edge when we scan through the frame buffer.
We therefore have a list of edges that intersect the vol-
umes of other objects. This list obviously includes those
edges that penetrate the surfaces of other objects, which
makes the search for surface contact points much easier.

We also observe that every pixel in the frame buffer
has an associated depth value. The pixel location and
depth combine to give the screen-space location of an in-
terfering point located by the ray cast through the pixel.
The screen-space position can be subjected to a reverse
transformation to find the world-space (or object-space)
location of the associated interference point.

Additionally, our algorithm can easily be combined
with other hardware-based algorithms that are specialized
for localization. A good example is the proximity query
techniques of Hoffet al. [10, 11]. In such a situation, our
method can be used for coarse-grained detection, in order
minimize the number of objects or polygons that need to
be processed by the fine-grained proximity queries.

6.3 Offset Edges
Graphics hardware does not rasterize lines in exactly the
same way that it rasterizes polygons. In particular, an

V

I

E

W

P

O

R

T

DEPTH

Figure 6:An undetectable interference. Interfering edges
of one object are blocked by th e edges of another object.

edge of a polygon, when rasterized as a line, is not guar-
anteed to have exactly the same depth values as the corre-
sponding “edge” of the rasterized polygon. Therefore, it
is possible for the rasterized edge points of a polyhedron
to lie slightly inside or outside its polygonal boundary.
If an edge lies inside the boundary, then the algorithm
will (incorrectly) determine that the edge is in interfer-
ence with its own polyhedron. We therefore offset all
edges by a small amount in the direction of the normals
of their vertices, ensuring that such a situation cannot oc-
cur.

6.4 Multiple Objects and Non-Convex Geometry
Our ray casting algorithm, unlike previous efforts in
hardware-assisted interference detection, can handle both
non-convex geometry and large sets of potentially inter-
fering objects.

The reason for this stems from the previous observa-
tion that if two objects are interfering with each other,
then an edge of one of them must intersect the volume of
the other. The only way for an intersection to miss detec-
tion by the algorithm is if no ray can see an interfering
edge point. Recall that the depth buffer stores the depth
values of the closest edges to the eyepoint. An obscured
interference would require every interfering edge point to
be occluded by another, closer edge point (Figure6).

The most common cause of obscured interferences is
a locally dense cluster of edges in the projection of the
scene onto the viewport. Dense clusters of edges indicate
that either the objects have very large edge counts, or the
projection of the objects is taking up a small viewport
area. This can be solved by increasing viewport resolu-
tion, but doing so is not very practical beyond a small
amount. A better solution would be to perform some pre-
computation, such as bounding boxes, that minimizes the
world-space area that rays are cast into.

6.5 Interference Detection Precision
The resolution of the viewport through which rays are
being cast is of paramount importance. It directly affects
the precision of the interference detection.

Suppose that we are using an orthographic projection.

Let xv, yv be the image-space dimensions of the view-
port, andxw, yw, zw be the world-space dimensions of
the view frustum. World-space precision of interference
detection in the plane parallel to the viewport is then lim-
ited to xw

xv
by yw

yv
.

Precision in the dimension perpendicular to the view-
port is better, since this is limited by the higher preci-
sion of the depth buffer. For instance, a typical depth
buffer has 24 bits of precision, while viewport size has
the equivalent of between 7 and 10 bits of resolution.

It is therefore very important to make the view frus-
tum as tight as possible around the objects being tested,
in order to maximize the projection of the objects onto
the viewport. This can be accomplished by doing a fast
bounding volume calculation, for example.

If we use a perspective projection, then interference
detection is more precise for objects that are closer to the
viewpoint. For many applications this is actually a bene-
fit, since detection will be more precise for interferences
that are likely to be more noticable to a viewer [20].

7 Results

7.1 Implementation

We implemented the interference detection algorithm in
the C++ programming language, using OpenGL [24]
as the real-time rendering API. OpenGL is standard-
ized across multiple computing architectures and stencil
buffers are required by the standard, making it ideal for
our purposes.

Our timing tests were performed on a computer with
dual 1.8GHz Pentium IV CPUs and a graphics card that
used the NVidia GeForce4 chip set.

7.2 Examples

We have tested the algorithm with a wide variety of poly-
hedral objects.

An example is given in Figure7, which shows a scene
involving several highly non-convex objects [22] that are
entangled and interfering with each other. Figure7(a)
shows the edges of the objects being tested. Figure7(b)
shows an enhanced version of the interferences reported
in the stencil buffer.

Another example is given in Figure8, which shows a
large number of objects, many of which in interference.
Interfering objects are highlighted in red.

For low polygon count objects such as boxes, we were
able to simultaneously detect interference between sev-
eral hundreds of objects. We also tested the algorithm
with objects of high polygon count. With small num-
bers of objects, we were able to use models with polygon
counts of over five thousand before mesh density became
too high for the algorithm to function correctly.

(a) Scene (b) Stencil Buffer

Figure 7:Non-convex objects in interference

(a) Scene (b) Stencil Buffer

Figure 8:Multiple objects in interference

7.3 Complexity Analysis
For collision detection involving multiple objects, the
running time is usually a function of how many objects
are involved. The näıve algorithm forN objects involves
O(N2) pair-wise tests. Our algorithm draws each object
a constant number of times and is thereforeO(N) in the
number of objects involved.

For collision detection involving two polygonal ob-
jects, the running time is usually a function of the number
of polygons. If the two objects are constructed ofPi and
Pj polygons, respectively, then the naı̈ve algorithm in-
volvesO(PiPj) polygon-polygon intersection tests. Our
algorithm renders each edge or polygon a constant num-
ber of times and is thereforeO(P) in the number of poly-
gons, whereP is the total number of polygons of all ob-
jects being tested.

7.4 Timings
We start the timing with the first command issued to the
graphics card. Timing is concluded when either pixel
parsing is finished or the last occlusion query result be-
comes available.

Figure9 shows interference detection time as a func-
tion of the number of objects being tested. The objects
were all boxes constructed as strips of twelve triangles.

 0

 1

 2

 3

 4

 5

 6

 7

 0 40 80 120 160 200

tim
e

(m
se

c)

number of objects

using frame buffer read
using occlusion queries

Figure 9:Timing data as a function of object count

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000

tim
e

(m
se

c)

number of polygons

using frame buffer read
using occlusion queries

Figure 10:Timing data as a function of polygon count

The relationship is clearly linear.
Figure10 shows interference detection time as a func-

tion of the number of polygons in the objects. In this
example, we used objects with the same basic shape, but
constructed at several levels of detail. The relationship
here is also linear.

Timing values were taken as the mean over 100 trials.
Vertical bars at data points show the standard deviation.
The spatial configuration of the objects was randomized
for each trial.

Note in particular that reading the frame buffer rather
than using occlusion queries to identify objects can be
fairly costly. In this example we rendered to a 256 by
256 pixel off-screen rendering surface.

8 Conclusions and Future Work

We have presented an algorithm for performing interfer-
ence detection between solid polyhedral bodies in real-
time with the aid of graphics hardware. The algorithm is
linear in both the number of objects and the number of
polygons comprising those objects. Non-convex geome-
try can be handled and no specialized data structures or
preprocessing is required.

The precision of our hardware-assisted ray-casting is
currently constrained by the dimensions of the viewport
that we are rendering the objects into. Overcoming the
limitations imposed by viewport resolution is a natural
area for future work.

Our method could be extended to provide better in-
terference localization. For applications such as rigid

body simulation, this would entail identifying the surface
points at which edges intersect objects.

We believe there is some merit in combining our algo-
rithm with level-of-detail techniques. This would allow
us to perform fast rejection tests on coarse approxima-
tions to the polygonal models, and use the full model only
when higher accuracy is needed.

Ray-casting is commonly used for a variety of other
applications that require visibility information. Alternate
uses for our algorithm is an avenue of future research.

Finally, we note that although our technique does not
require the use of programmable graphics hardware, we
expect that it could lead to improvements in this work.
Vertex programs could be used to automatically generate
the offsets required to avoid detecting self-interference.
Similarly, using fragment shaders would allow us to ren-
der more complicated interference information.

Acknowledgements
We thank Dave Forsey for many interesting early discussions,
and Rod Davison for his input on practical uses for this research.

Our research group is supported by grants from IRIS and
NSERC. The first author was also supported by a Science Coun-
cil of British Columbia GREAT Scholarship.

References
[1] M. Abrash. Inside Xbox graphics.Dr, Dobb’s Journal,

pages 21–26, Aug. 2000.

[2] G. Baciu and W. S.-K. Wong. Rendering in object inter-
ference detection on conventional graphics workstations.
In Pacific Graphics ’97, Oct. 1997.

[3] G. Baciu, W. S.-K. Wong, and H. Sun. RECODE: An
image-based collision detection algorithm. InPacific
Graphics ’98, Oct. 1998.

[4] J. W. Boyse. Interference detection among solids and sur-
faces.Communications of the ACM, 2(1):3–9, Jan. 1979.

[5] J. F. Canny.The Complexity of Robot Motion Planning.
PhD thesis, Massachusetts Institute of Technology, 1987.

[6] F. C. Crow. Shadow algorithms for computer graphics.
In Computer Graphics (Proceedings of SIGGRAPH 77),
volume 11, pages 242–248, July 1977.

[7] R. Hacker. Certification of Algorithm 112: Position of
point relative to polygon.Communications of the ACM,
5(12):606, Dec. 1962.

[8] T. Heidmann. Real shadows real time.IRIS Universe,
(18):28–31, 1991.

[9] K. Hoff III, T. Culver, J. Keyser, M. Lin, and D. Manocha.
Fast computation of generalized Voronoi diagrams using
graphics hardware. InProceedings of SIGGRAPH 99,
Computer Graphics Proceedings, Annual Conference Se-
ries, pages 277–286, Aug. 1999.

[10] K. E. Hoff III, A. Zaferakis, M. Lin, and D. Manocha.
Fast 3D geometric proximity queries between rigid & de-
formable models using graphics hardware acceleration.

Technical Report TR02-004, Dept. of Computer Science,
University of North Carolina at Chapel Hill, 2002.

[11] K. E. Hoff III, A. Zaferakis, M. C. Lin, and D. Manocha.
Fast and simple 2D geometric proximity queries using
graphics hardware. In2001 ACM Symposium on Inter-
active 3D Graphics, pages 145–148, Mar. 2001.

[12] P. Jiḿenez, F. Thomas, and C. Torras. 3D collision detec-
tion: a survey. Computers & Graphics, 25(2):269–285,
Apr. 2001.

[13] C. Jordan.Cours d’analyse de l’Ecole Polytechnique, vol-
ume 1. 2nd edition, 1893.

[14] Y. J. Kim, M. A. Otaduy, M. C. Lin, and D. Manocha. Fast
penetration depth computation for physically-based ani-
mation. In2002 ACM SIGGRAPH Symposium on Com-
puter Animation, pages 23–31,187, July 2002.

[15] M. C. Lin and S. Gottschalk. Collision detection between
geometric models: A survey. InProc. of IMA Conference
on Mathematics of Surfaces, pages 37–56, Sept. 1998.

[16] M. C. Lin and D. Manocha, editors.Interactive Geomet-
ric Computations Using Graphics Hardware: SIGGRAPH
2002 Course Notes #31, July 2002.

[17] C. Maughan. Texture masking for faster lens flare. In
M. A. DeLoura, editor,Game Programming Gems 2,
pages 474–480. Charles River Media, Inc, 2001.

[18] K. Myszkowski, O. G. Okunev, and T. L. Kunii. Fast col-
lision detection between complex solids using rasterizing
graphics hardware.The Visual Computer, 11(9):497–512,
1995.

[19] J. O’Rourke.Computational Geometry In C. Cambridge
University Press, 2nd edition, 1998.

[20] C. O’Sullivan and J. Dingliana. Collisions and perception.
ACM Trans. on Graphics, 20(3):151–168, July 2001.

[21] J. Rossignac, A. Megahed, and B.-O. Schneider. Interac-
tive inspection of solids: Cross-sections and interferences.
In Computer Graphics (Proceedings of SIGGRAPH 92),
volume 26, pages 353–360, July 1992.

[22] R. G. Scharein.Interactive Topological Drawing. PhD
thesis, University of British Columbia, 1998.

[23] N. D. Scott, D. M. Olsen, and E. W. Gannett. An overview
of the VISUALIZE fx graphics accelerator hardware.The
Hewlett-Packard Journal, pages 28–24, May 1998.

[24] M. Segal and K. Akeley. The OpenGL graphics system:
A specification (version 1.4). 2002.

[25] M. Shimrat. Algorithm 112: Position of point relative to
polygon.Comm. of the ACM, 5(8):434, Aug. 1962.

[26] M. Shinya and M.-C. Forgue. Interference detection
through rasterization.The Journal of Visualization and
Computer Animation, 2(4):131–134, 1991.

[27] F. Thomas and C. Torras. A projectively invariant intersec-
tion test for polyhedra.The Visual Computer, 18(7):405–
414, 2002.

[28] T. Vassilev, B. Spanlang, and Y. Chrysanthou. Fast cloth
animation on walking avatars.Computer Graphics Forum
(Proc. of Eurographics 2001), 20(3):260–267, 2001.

