
Graphics Interface Conference 2015, 3–5 June, Halifax, Nova Scotia, Canada

	
 	
 	
 	
 	
 	
 	

Interactive Shading of 2.5D Models
João Paulo Gois∗ Bruno A. D. Marques† Harlen C. Batagelo‡

Universidade Federal do ABC, Brazil

Front

Top

Side

(a) (b) (c) (d) (e) (f)

Figure 1: Interactive shading of 2.5D models: On the left, three 2D user-drawn views of a model (front, side and top) and (a) the resulting
2.5D model which simulates 3D rotation; on the right the shaded 2.5D model with (b) Phong shading, (c) Gooch shading and screen-space
texture hatching, (d) cel shading and object-space texture hatching, (e) fur simulation and Phong shading, (f) screen-space texture hatching and
environment mapping. The modeling and the shading are both generated in real-time.

ABSTRACT

Advances in computer-assisted methods for designing and animat-
ing 2D artistic models have incorporated depth and orientation cues
such as shading and lighting effects. These features improve the
visual perception of the models while increasing the artists’ flex-
ibility to achieve distinctive design styles. An advance that has
gained particular attention in the last years is the 2.5D modeling,
which simulates 3D rotations from a set of 2D vector arts. This
creates not only the perception of animated 3D orientation, but also
automates the process of inbetweening. However, previous 2.5D
modeling techniques do not allow the use of interactive shading ef-
fects. In this work, we tackle the problem of providing interactive
3D shading effects to 2.5D modeling. Our technique relies on the
graphics pipeline to infer relief and to simulate the 3D rotation of
the shading effects inside the 2D models in real-time. We demon-
strate the application on Phong, Gooch and cel shadings, as well as
environment mapping, fur simulation, animated texture mapping,
and (object-space and screen-space) texture hatchings.
Keywords: 2.5D Modeling, Shading Effects, Real-time Rendering,
Cartoon

Index Terms: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1 INTRODUCTION

Animators have used computer-assisted techniques to automate or
facilitate animating 2D drawings. Particularly, strategies which
generate intermediate frames between two keyframes (inbetween-
ing techniques) [5, 12] and the simulation of 3D effects on cartoons
[16, 6, 24] have received much attention.

∗e-mail:joao.gois@ufabc.edu.br
†e-mail:bruno.marques@ufabc.edu.br
‡e-mail:harlen.batagelo@ufabc.edu.br

2.5D modeling techniques aim at simulating 3D rotations from a
set of 2D drawings composed of vector-art shapes [5, 21]. Gener-
ally, front, top and side views of the 2D drawings suffice to mimic
plausible 3D points of view.

Current 2D drawing tools employ shading techniques such as
light mapping, gradient-based region filling, texturing and shadows.
However, interactive 2.5D modeling techniques only support 2D
shapes filled with solid colors. This restricts not only the perception
of shading as the shapes are rotated but also the choice of materials
to achieve different artistic effects.

In the present work, we propose a technique to incorporate shad-
ing effects to 2.5D modeling. Fig. 1 presents examples of shaded
2.5D models generated by our approach. Specifically, we demon-
strate the technique for a variety of shading effects originally pro-
posed for 3D real-time rendering, such as Phong, Gooch and cel
shadings, environment mapping, static and animated texture map-
pings, texture hatchings and fur simulation. These effects depend
on geometric properties of 3D models such as surface normals and
surface parametrization, which are not available in previous 2.5D
modeling approaches.

Our method begins in the CPU with the 2.5D modeling (Sec.
3). After this initial 2.5D modeling, we delegate to the GPU the
2.5D shading simulation. Specifically, we estimate on the GPU the
3D properties in the interior of the 2D drawings and use shaded
3D reference models to guide the shading of the 2D shapes and to
simulate 3D rotations (Sec. 4). As a byproduct of our approach,
we present an interactive 2.5D modeling tool capable of simulating
different 3D shading effects in real-time (Sec. 5).

2 RELATED WORK

In the last few years, many approaches have been proposed to en-
rich the visual appearance of 2D drawings. Di Fiore et al. [5] com-
pute inbetweening of 2D drawings by simulating 3D rotations us-
ing 2.5D modeling. The artist provides a set of 2D point-of-views
of a 2D drawing and defines the depth order of each curve of each
drawing. The technique then generates new point-of-views for any
given 3D orientations while simultaneously interpolating the input
drawings and resolving the depth order of the curves. Rivers et al.

89

Copyright held by authors. Permission granted to

CHCCS/SCDHM to publish in print and digital form, and

ACM to publish electronically.

	
 	
 	
 	
 	
 	
 	

[21] also present a technique for simulating 3D rotations from 2D
drawings, titled 2.5D Cartoon Models. Unlike the previous work,
they determine the depth order automatically and use a pitch-yaw
parametrized orientation space to interpolate the 2D drawings.

A technique for automatically converting 3D objects into 2.5D
Cartoon Models was proposed by An and colleagues [1, 2]. In-
stead of using 2D graphics in different views, the method begins
with a 3D object that is segmented to generate the depth-ordered
2D curves used by the 2.5D Cartoon Models.

Di Fiore and Van Reeth [6] proposed an approach that assists the
artist in drawing new spatial point-of-views from a single 2D draw-
ing. 3D models are generated from rounded and circular shapes
of the initial 2D drawing. The outlines of these 3D models can be
drawn in new 3D orientations, thus guiding the artist in the creation
of new 2D views.

Yeh et al. [28] presented another use for the name 2.5D, called
double-sided 2.5D graphics, to simulate effects that use the front
and back sides of 2D drawings. Particularly, they attach textures to
both sides of the 2D shape and simulate geometrical effects such
as rolling, twisting and folding. Contrasting with previous 2.5D
modeling techniques [21, 5], the double-sided 2.5D graphics does
not simulate rigid 3D rotations.

Sýkora and colleagues [25] presented an easy-to-use interface to
incorporate smooth depth information in 2D cartoons. The method
employs a set of (in)equalities that avoid the need of absolute depth
levels. This is formulated as an optimization problem that can be
solved by quadratic programming. The authors noticed that this
approach is time-consuming for interactive rates and proposed an
approximate solution which depends on solving a Laplace equa-
tion. This formulation leads to a very sparse linear system that the
authors suggest solving on the GPU.

Literature provides two main strategies for simulating relief from
2D drawings. The first is based on reconstructing 3D geometry,
e.g., mesh-based [13, 10, 17, 18], point-set-based [4] or curve-based
[27] approaches. The second is based on producing visual effects
from estimated 3D normals inside the 2D curves [11, 26, 16, 9, 22].
The reason for using 3D normals to simulate the effect of relief is
the same employed by the normal mapping technique [14]. The
interaction of the light vector with the surface normals simulates
the effect of relief on a smooth surface as described in the Phong
reflection model. In the remaining of this section, we focus on this
strategy as our approach belongs to it.

Johnston [11] proposed the Lumo framework for computing nor-
mal mappings from 2D curves. It assumes that each drawing curve
belongs to the silhouette of a 3D object which implies that the nor-
mals on the curve are not only orthogonal to the curve but also is in
the screen plane. From normals sampled along each curve, Lumo
fills the region inside the curve with a 3D normal field that is prop-
agated by an iterative dampened-spring diffuser method.

Nascimento et al. [16] proposed an explicit method to accurately
compute the 3D normal fields inside the curves. The authors claim
that this method guarantees smoothness for a coherent illumination.
An advantage of this approach is that it is easily parallelizable on
the GPU.

The technique developed by Sýkora et al. [25], which propagates
depth estimates inside drawing curves, can be used to interpolate
normals with respect to depth discontinuities. This technique was
employed in later works for improving shading effects. Particularly,
this is used in Textoons, a method for coherent texture mapping for
hand-drawn cartoon animation [23], and Ink-and-Ray, a method for
global illumination effects [24]. The shading effects produced by
these methods are not generated in real-time and do not consider
the simulation of 3D rotations.

3 2.5D MODELING

The effectiveness of a 2.5D modeling relies on its ability to inter-
polate 2D drawings considering their designated space orientation,
and to determine the depth order of the shapes that compose the
resulting 2.5D model.

front
pitch = 0o
yaw = 0o

side
pitch = 0o
yaw = 90 o

top
pitch = 90 o

yaw = 0o

x

y

z

y
x

z

Figure 2: Set of 2D inputs and their respective positions in the pitch-
yaw orientation space.

In our approach, the user defines a set of 2D views (e.g. front,
side and top) of the same object. Figure 2 depicts an example
of a chair. The drawing in each view is composed of a set of
filled shapes. Each 2D view is assigned to a (pitch,yaw) param-
eter that corresponds to a position in the orientation space with
− π

2 ≤ pitch ≤ π

2 and −π ≤ yaw < π , similar to Rivers et al.
[21]. Notice that, although Figure 2 presents only three distinct
views with (pitch,yaw) = (0,0),

(
0, π

2
)
,
(

π

2 ,0
)
, any orientation and

any number of views are allowed. We also assume that the 2D
drawings for the parameters (pitch,yaw) = (0,0) (front view) and
(pitch,yaw) = (0,π) (back view) correspond to orthographic pro-
jections onto the xy-plane. Any 2D drawings defined in different
pitch-yaw parameters, for instance, side and top views, will corre-
spond to a projection in a plane nonparallel to the xy-plane, there-
fore with a uniquely defined z component that can be used to de-
termine the depth order. Thus, we can define a (x,y,z) reference
position for each drawing shape. Specifically, the (x,y) compo-
nents correspond to the center of the bounding box of the shape in
the front view. The z component could be the z value of any non-
front and non-back drawings. However, since the z values of the
same shape in different views may vary, we take the average of the
z values over all views that contain this depth information, i.e., all
drawings except the front and back one. An alternative solution
for automatic depth order estimation was proposed by Rivers et al.
[21], which computes the (x,y,z) reference position iteratively.

An effective approach to interpolate among the 2D drawings was
proposed by Rivers et al. [21]. In that approach, the pitch-yaw ori-
entation space is first mapped to a 2D plane. Each 2D user draw-
ing is associated with a 2D position on the plane. In addition, a
set of other 2D drawings is automatically generated by reflections
and rotations of the user drawings. These automatically generated
drawings are also associated to 2D positions on the plane. A De-
launay triangulation is then computed considering the 2D positions
of the drawings on the plane as vertices of the triangulation. New
drawings are determined by barycentric interpolation inside the De-
launay triangulation. We use this method in our approach.

In order to compute the interpolation among the 2D drawings, we
firstly discretise the contours by polylines with uniformly spaced
vertices. For computational simplicity, we assume that for each
contour the same number of vertices is used in all of its correspond-
ing contours in the other 2D views. For instance, considering the
chair in Fig. 2, its left armrest has the same number of vertices in
all 2D views. Once the contours are consistently discretised, the

90

interpolation is then performed among these vertices.

Figure 3: Overall control and data flow from the CPU to the GPU for
shading 2.5D models.

Since the depth ordering and the interpolation involve sequential
operations which are not computationally intensive, we implement
them on the CPU.

4 SHADING 2.5D MODELS

Our goal is to interactively simulate 3D shading effects in the inte-
rior of the shapes of the 2.5D models. Figure 3 presents a general
diagram of our technique, from 2.5D modeling on the CPU to the
final shaded model on the GPU. Bold arrows indicate processing
flow and dashed arrows show data communication. In this section
we detail this workflow.

4.1 Contour Normals
Our technique uses 2D cubic splines as input curves. Thus, we can
assume that the contour of any 2D shape of a 2.5D model corre-

sponds to the silhouette of a smooth surface. The 3D normals of
such surface silhouette have components (x,y,0) where (x,y) are
the normals along the contours of the 2D shapes [11, 16], as illus-
trated in Fig. 4-(a)-(b).

The contour normals are computed in the vertices of the poly-
lines that approximate the contours. This process is performed on
the CPU and the resulting normals are sent to the GPU as a texture
buffer object (TBO), shown in Fig. 3. Once the contour normals
are in the GPU, they will be propagated to the interior of the shape
as 3D normals.

4.2 Propagating Normals
To compute a normal n in a point p inside the shape, we consider
all the µi (i = 1, . . . ,N) normals at the pi points along the contour of
the shape. The x and y components of the normal n are then given
by

n{x,y} =

N

∑
i=1

µi{x,y}

‖p− pi‖2

ω
(1)

where

ω =
N

∑
i=1

1
‖p− pi‖2 . (2)

The normalization of the normal vector in p is ensured by imposing

nz =
√

1−n2
x −n2

y . (3)

There are different approaches in propagating normals. John-
ston [11] computes the normals inside the shape by iteratively
propagating the contour normals using a dampened-spring diffuser
method. More recently, Nascimento et al. [16] proposed an ex-
plicit formulation that employs line integrals. Our approach can be
seen as an approximation of this last one. It is found to be more
suitable for the SIMD architecture of the GPU since it is easily par-
allelizable. Particularly, the normal of each point is independently
computed in a single shader pass.

It is worth mentioning that the effectiveness of the method re-
lies on averages of isotropically distributed data, i.e., for reasonable
results, it is expected that the data are evenly placed. Our regu-
lar distribution of points along the curve and the use of a dynamic
regular grid, presented in Sec. 4.3, follow this assumption.

Besides the normals in the contour of the shape, we can also
consider normal constraints inside the shape for producing effects
such as ridges and creases.

4.3 Dynamic Grid
In order to avoid a computationally expensive per-pixel propagation
of 3D normals inside the contours, we compute the 3D normals only
at the vertices of the regular grids that fit the bounding rectangle of
the shapes (Fig. 4-(c)-(d)). Once these normals are computed, they
are interpolated for each fragment using linear interpolation in the
rasterizer (Fig. 4-(e)). The resolution of these grids is dynamically
adjusted according to the bounding rectangle of each shape.

In order to create the regular grid on-the-fly, we use the tessella-
tion control and tessellation evaluation shader stages. We start with
a single quad that is suitably scaled to fit the bounding rectangle of
the shape that will be shaded. The inner and outer tessellation levels
are adjusted to subdivide this quad in proportion to changes in the
horizontal and vertical scaling factors of the bounding rectangle. In
our experiments, the grid resolution ranges from 4×4 to 64×64 for
a corresponding bounding rectangle of 512×512 pixels. This suf-
fices for obtaining smooth normal fields at interactive frame rates.
The Phong-shaded Turtle Model (Fig. 11) achieves 103 fps with
this technique, while a per-pixel computation results in 50 fps with

91

(a) (b) (c) (d) (e)

CPU GPU

Figure 4: Pipeline for computing 3D normals inside a shape of a 2D drawing: (a) shape interpolated by the 2.5D modeling; (b) 2D normals
computed along the contour of the shape; (c) tessellation of the bounding rectangle of the shape (d) 3D normals estimated in the vertices of the
tessellated bounding rectangle; (e) normals interpolated for each fragment, encoded in RGB color.

(a) (b) (c)

Figure 5: Using the estimated normals (a) and the rendered 3D ref-
erence model as an FBO (b) to shade the shapes (c). We use the
reference model not only for speeding up lighting and texturing, but
also for simulating the rotation of the shaded surface in the interior of
the shape.

Clipping

Figure 6: Example of the clipping of a rendered regular grid (left) to
the interior of the shape (right).

equivalent visual quality. Generally, we experienced in our tests a
speed up of at least 60% compared to a per-pixel evaluation.

It is worth to mention that for bounding rectangles with aspect

ratios different from one, the tessellation level is conservatively ad-
justed according to the dimension of longest length. This may still
produce overly tessellated grids for highly stretched bounding rect-
angles, but guarantees that interpolation artifacts will not arise. We
could have used an adaptive grid, instead. However, the regular grid
is easily computed on the GPU and ensures smoothness to the nor-
mal field after linear interpolation on the rasterizer. It minimizes
problems of scale dependency as new vertices are evenly created
and scaled up or down proportionally to the contour size. In addi-
tion, the regular grid is necessary in our fur simulation approach to
avoid discrepancies in the fur density.

4.4 Illumination Mapping
With the normals estimated for each fragment, we are now able to
shade the interior of the shape. Instead of directly evaluating the
lighting equation for each fragment inside a 2D shape, we first ren-
der to a texture a 3D reference model with the user-selected shader
effect. This texture contains the shading result for every possible
visible normal and will be mapped to the interior of the correspond-
ing 2D shape according to the coordinates of the estimated normals
(Fig. 5). Specifically, each reference model is a sphere whose ren-
dering in a particular point of view is stored in a frame buffer ob-
ject (FBO), as depicted in Fig. 5-(b). This FBO is used in a second
shader pass as a look-up texture indexed by the x and y normal com-
ponents. Since these components are in the range [−1,1], we map
them to texture coordinates in the range [0,1] to sample the texture.
This choice of using a proxy model for lighting is well known in
the literature as a speed up approach for lighting [11] since the per-
formance of the illumination does not depend on the complexity of
the shapes. Another use of the 3D reference model is for texturing.

Albeit the 3D reference model is used for speeding up lighting
and texturing, it has another important role in our 2.5D modeling
approach. By performing a 3D rotation of this reference model us-
ing the same pitch and yaw angles used in the 2.5D interpolation
process, we simulate the rotation of the shaded surface in the in-
terior of the shape. Therefore, we must update the rendering of
the 3D reference model whenever a rotation or change of the light-
ing parameters occur. Sometimes, the 3D reference model is not
needed and the effect can be applied directly during the rendering
of the shape. For instance, we show effects such as fur simulation
and screen-space texture hatching where screen space suffices for
surface parametrization.

Differently from the technique of Johnston [11], which uses a
static texture of the rendered sphere, we must render this reference
model whenever a change of illumination occurs. This is required
due to the 3D rotations in the 2.5D Cartoon Models technique [21]
which may change the relative position between the light sources
and the viewer. This is also needed when the user changes the cur-
rent effect or when animated shading is employed.

92

(a)

(b)

Figure 7: The modeling and shading tool: (a) main window with a
Phong-shaded model in an oblique view; (b) main window present-
ing the advanced navigation interface, shown in the bottom part of
the window. It is also possible to see the application of shading con-
straints in the ears and cheeks.

4.5 Contour Clipping

So far, we presented our approach considering that shading is ap-
plied only in the interior of a shape. Actually, we implemented it in
a way that the entire area inside the bounding rectangle is shaded.
To discard the exterior of the shape, we perform a per-pixel clipping
operation in screen space (Fig. 6).

Another approach could be the creation of a mesh constrained to
the interior of the shape, thus avoiding the clipping and the shading
of the exterior of the shape. However, this would require a remesh-
ing operation whenever the shape changed, imposing an additional
overhead for updating the corresponding vertex buffer object to the
GPU. Our method is simpler since it uses a single static quad as
input geometry, and more effective since the clipping is per-pixel
accurate.

Figure 8: The modeling and shading tool: material library window
containing the scene materials used in Fig. 7-(a) and the list of preset
materials.

Figure 9: Example of use of curves for creating shading constraints
(regions of the eyes, nose and mouth).

4.6 Shading Effects

We demonstrate a set of well-known 3D shading effects to our 2.5D
modeling: Phong and Gooch shadings [8], cel shadings, environ-
ment mapping, static texture mapping, animated texture mapping
(lava shading using parallax scroll [3]) and texture hatching [19]
based both in screen space parametrization and 3D reference model
parametrization (object-space). We also demonstrate an additional

93

effect, the fur simulation, that is computed in the geometry shader
and thus does not depend on a 3D reference model for surface
parametrization.

Figure 10: Shaded 2.5D Coconut Head model: Fur shading effect
applied on the head and ears of the model.

Phong, Gooch and cel shadings, environment mapping, static
and animated texture mappings, and object-space texture hatching
are applied on the 3D reference model. For that reason, they are the
same shaders used for shading 3D models, i.e., they do not require
any special adjustment to our 2.5D modeling approach. Once the
3D reference model is rendered to a texture, it is mapped to the in-
terior of the 2D shape using the propagated normals. On the other
hand, instead of using the 3D reference model for texture mapping,
screen-space texture hatching uses the pitch-yaw parametrized ori-
entation space to translate the hatching textures directly in screen
space. This effect only employs the 3D reference model for simu-
lating the highlights on the surface.

Different from the previous effects, the fur simulation cannot be
applied to the 3D reference model because the new primitives gen-
erated for the simulation of fur would be distorted and clipped after
illumination mapping in the interior of the shape. Fur is computed
in the geometry shader after tessellation. We create a set of line
strips for each quad of the tessellated bounding rectangle that rep-
resents the fur. The line strips follow the direction of the propagated
normals. For a more realistic effect, each line strip is slightly per-
turbed and bended to simulate the influence of gravity. As the fur is
created in the geometry shader, it is only valid for the current view
and must be regenerated whenever the shape changes. Since the
fur is normally not dense enough to cover all the fragments inside
the shape, we can use any of the previous shaders to fill the back-
ground before applying the fur, for instance, Phong shading (Fig.
10) or texture mapping (Fig. 11-(c)). In such cases, the color of the
fur follows the color of the chosen background.

To avoid clipping the line strips that extrapolate to the exterior
of the shape, we must know if they start inside the shape. This is
determined by setting, for each vertex of the line strip, the texture
coordinate of the initial vertex in the tessellated bounding rectangle.
In the fragment shader, a binary mask texture indicating the inside
and outside of the shape is sampled for each fragment of each line

strip using the texture coordinate. If the sample corresponds to an
outside region, the fragment is part of a line strip that started outside
the shape and therefore is discarded.

5 MODELING AND SHADING TOOL

We implemented an interactive user interface for demonstrating our
2.5D modeling and shading approach (Figs. 7 and 8). The 2D draw-
ings are created similarly as in vector-art applications with support
to open and closed cubic splines. The user can navigate in the 3D
space with a virtual trackball or by manipulating a view cube lo-
cated in the top-right corner of the viewport. This functionality is
based on the camera rotation widgets normally found in 3D model-
ing applications, which makes the 2.5D modeling navigation more
intuitive.

Generally, the user draws three 2D views of the model. Front,
top and side views suffice for most cases. These orthogonal views
can be quickly accessed by clicking on the sides of the view cube.
Oblique views are accessed by freely rotating the view cube.

We also provide an advanced navigation interface that presents
the pitch-yaw map (Figure 7-(b)) as a grid of points that indicates
where the 2D views are placed in the orientation space, as proposed
by Rivers and colleagues [21].

The editing tools are accessed by an edit toolbar composed of
four buttons, shown in the top-left part of the main window (Fig.
7). The first three correspond to pen, move and select functionali-
ties. The fourth allows the definition of splines that produce shading
constraints in the shapes (Figs. 7-(b) and 9).

We also provide a material library (Fig. 8) that contains preset
shaders. The user can manipulate the parameters of the shaders in
the interface and save them as new effects.

6 RESULTS

We implemented a cross-platform application that integrates 2.5D
modeling capabilities with our interactive 2.5D shading approach.
The user interface is presented in Section 5. For this implemen-
tation, we employed the Qt framework [20] version 5.3.2. The
shaders were implemented in OpenGL Shading Language (GLSL),
version 4.2. Our tests were run on a PC Intel i5-4670K, with 8GB
RAM and ATI Radeon R9 290 graphics card.

Fig. 11 presents a set of different effects applied on a 2.5D Turtle
model. Fig. 10 illustrates the use of fur simulation to create the
2.5D Coconut-Head model. Fig. 12 shows the shaded 2.5D Chair
model corresponding to the 2D drawing inputs presented with solid
colors in Fig. 2. It can be observed that, for this model, despite
its simplicity, the shading strongly enriches the perception of a 3D
shape.

Table 1: Timing results for rendering the shaded 2.5D Turtle model.
All the shapes were rendered using the same effect.

Rendering effect fps
Solid colors 1035
Phong shading 103
Cel shading 104
Animated texture 102
Environment mapping 100
Gooch shading 99
Hatching (object-space) 96
Hatching (screen-space) 71
Fur simulation 41

For performance tests (Tabs. 1–2), we rendered the shaded 2.5D
Turtle model, which is composed of 15 shapes, in a viewport with
resolution of 800×600. Each contour was approximated by a poly-
line of 500 vertices. We found this number suitable for both ensur-

94

Front

Side

Top

(a) (b)

(c) (d) (e)

Figure 11: The 2.5D Turtle model rendered with different effects: (a) lava shading, Phong shading and fur simulation; (b) cartoon shading; (c)
texture mapping with fur simulation, Gooch shading, and screen-space texture hatching; (d) Gooch shading; (e) object-space texture hatching.
The 2D inputs are shown in the top-left box.

Figure 12: Shaded 2.5D Chair model rendered with Phong shading. The 2D inputs are presented in Fig. 2.

ing interactivity while generating smooth results for this viewport
resolution.

Table 1 presents the frames-per-second (fps) for this model
where all 15 shapes were rendered using the same effect. Most
shaded effects achieve around 100 fps. As it can be observed, solid
colors are the most efficient. This is caused by the estimation of nor-
mals, the use of 3D reference models, tessellation and mappings are
not required. Screen-space texture hatching is more time consum-
ing because, aside from the use of the 3D reference model to com-
pute the highlights, it requires additional processing time to map
the hatching textures in screen space. Lastly, fur simulation is the
most time-consuming effect because it demands the generation of
new primitives in the geometry shader.

Table 2 presents performance results showing the impact of the
number of shapes shaded with Phong shading for the 2.5D Turtle
model. The first column shows the number of shapes filled with
Phong shading. The remaining shapes of the Turtle model are filled
with solid colors. We also performed an analogous test where, in-
stead of applying the Phong shading for all shapes, we used dif-

Table 2: Timing results for rendering the shaded 2.5D Turtle model
for different numbers of shapes rendered with Phong shading.

Phong-shaded shapes fps
0 1035
1 550
2 410
7 212

15 103

ferent (randomly chosen) effects for each shape. In that case, the
timing results were similar to the previous test, which indicates that
the use of distinct shading effects in the same model does not im-
pact performance.

7 CONCLUSION

In this work, we proposed an approach for interactive shading of
2.5D models. Previous 2.5D modeling tools only supported shapes

95

filled with solid colors. Our approach estimates 3D geometric prop-
erties to simulate 3D shading effects such as, but not limited to,
Phong, Gooch and cel shadings, environment mapping, static and
animated texture mappings, texture hatchings, and fur simulation.
The availability of shading for 2.5D models not only enriches the
perception of depth but also allows the use of a broader range of
artistic effects. As a byproduct, we implemented an interactive
computational tool for demonstrating the different 3D shading ef-
fects in the 2.5D modeling.

The proposed technique presents some limitations. The first is
the use of a sphere as the 3D reference model for any type of shape.
For contours with deep concavities, the use of a sphere as 3D ref-
erence model may present distortions and aliasing artifacts in the
illumination and object-space texture mapping. Another limitation
can be observed in the fur effect. Since the fur must be regenerated
whenever the shape changes and we do not track the positions of
previous fur, a shower door effect may be noticeable.

Focusing on tackling the aforementioned limitations, we envi-
sion two main directions to follow as future work. The first aims
at investigating more sophisticate techniques for estimating relief
and parameterizations for the interior of the shapes [22, 15, 9]. The
second aims at providing new shading effects, for instance, global
illumination [24] and vector graphics effects [7]. In both cases, we
must be aware about the computational cost, since these techniques
and effects are not directly suitable for real-time rendering.

Finally, we plan to improve and enrich the user interface of our
application by incorporating more types of curves and objects as
well as brushes for the shape outlines, and a timeline tool for pro-
ducing animations.

ACKNOWLEDGEMENTS

The authors thank to Fundação de Amparo à Pesquisa do Es-
tado de São Paulo – FAPESP (proc. 2014/11067-1), the
National Council of Technological and Scientific Development
(CNPq), and Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior (CAPES) for the financial support of this work.
The authors also thank to Emil Persson for making avail-
able the cube map texture “FootballField 3” in the website
http://www.humus.name/index.php?page=Textures.

REFERENCES

[1] F. An, X. Cai, and A. Sowmya. Automatic 2.5d cartoon modelling. In
International Conference Image and Vision Computing, 2011.

[2] F. An, X. Cai, and A. Sowmya. Perceptual evaluation of automatic
2.5d cartoon modelling. In Proceedings of the 12th Pacific Rim con-
ference on Knowledge Management and Acquisition for Intelligent
Systems, PKAW’12, pages 28–42, Berlin, Heidelberg, 2012. Springer-
Verlag.

[3] A. Balkan, J. Dura, A. Eden, B. Monnone, J. Palmer, J. Tarbell, and
T. Yard. Parallax Scrolling. In Flash 3D Cheats Most Wanted, pages
121–164. Apress, 2003.

[4] E. V. Brazil, I. Macêdo, M. C. Sousa, L. H. de Figueiredo, and
L. Velho. Sketching variational hermite-rbf implicits. In Proceed-
ings of the Seventh Sketch-Based Interfaces and Modeling Symposium,
SBIM ’10, pages 1–8, Aire-la-Ville, Switzerland, 2010. Eurographics
Association.

[5] F. Di Fiore, P. Schaeken, K. Elens, and F. Van Reeth. Automatic in-
betweening in computer assisted animation by exploiting 2.5d mod-
elling techniques. In Proceedings of the Fourteenth Conference on
Computer Animation, pages 192–200. IEEE, 2001.

[6] F. Di Fiore and F. Van Reeth. Employing approximate 3d models to
enrich traditional computer assisted animation. In Proceedings of the
Fifteenth Conference on Computer Animation, pages 183–190. IEEE,
2002.

[7] M. Finch, J. Snyder, and H. Hoppe. Freeform vector graphics
with controlled thin-plate splines. ACM Trans. Graph., 30(6):166:1–
166:10, Dec. 2011.

[8] A. Gooch, B. Gooch, P. Shirley, and E. Cohen. A non-photorealistic
lighting model for automatic technical illustration. In Proceedings of
the 25th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’98, pages 447–452, New York, NY, USA,
1998. ACM.

[9] J. Hahn, J. Qiu, E. Sugisaki, L. Jia, X.-C. Tai, and H. S. Seah. Stroke-
based surface reconstruction. Numer. Math. Theor. Meth. Appl.,
6(1):297–324, 2013.

[10] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketching interface
for 3d freeform design. In Proceedings of the 26th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’99,
pages 409–416, New York, NY, USA, 1999. ACM Press/Addison-
Wesley Publishing Co.

[11] S. F. Johnston. Lumo: Illumination for cel animation. In Proceedings
of the 2nd International Symposium on Non-photorealistic Animation
and Rendering, NPAR ’02, pages 45–ff, New York, NY, USA, 2002.
ACM.

[12] B. Jones, J. Popovic, J. McCann, W. Li, and A. Bargteil. Dynamic
sprites. In Proceedings of Motion on Games, MIG ’13, pages 17:39–
17:46, New York, NY, USA, 2013. ACM.

[13] O. A. Karpenko and J. F. Hughes. Smoothsketch: 3d free-form shapes
from complex sketches. ACM Trans. Graph., 25(3):589–598, July
2006.

[14] M. J. Kilgard. A practical and robust bump-mapping technique for
today’s gpus. In Game Developers Conference, 2000.

[15] J. Lopez-Moreno, S. Popov, A. Bousseau, M. Agrawala, and G. Dret-
takis. Depicting stylized materials with vector shade trees. ACM
Trans. Graph., 32(4):118:1–118:10, July 2013.

[16] R. Nascimento, F. Queiroz, A. Rocha, T. I. Ren, V. Mello, and
A. Peixoto. Colorization and illumination of 2d animations based on a
region-tree representation. In 24th SIBGRAPI Conference on Graph-
ics, Patterns and Images, pages 9–16, Los Alamitos, CA, USA, 2011.
IEEE Computer Society.

[17] L. Olsen, F. Samavati, and J. Jorge. Naturasketch: Modeling from
images and natural sketches. IEEE Comput. Graph. Appl., 31(6):24–
34, Nov. 2011.

[18] L. Olsen, F. F. Samavati, M. C. Sousa, and J. A. Jorge. Sketch-based
modeling: A survey. Computers & Graphics, 33(1):85–103, Feb.
2009.

[19] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein. Real-time hatching.
In Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’01, pages 581–, New York,
NY, USA, 2001. ACM.

[20] Qt. Qt Project http://qt-project.org, 2014.
[21] A. Rivers, T. Igarashi, and F. Durand. 2.5d cartoon models. ACM

Trans. Graph., 29(4):59:1–59:7, July 2010.
[22] C. Shao, A. Bousseau, A. Sheffer, and K. Singh. Crossshade: Shad-

ing concept sketches using cross-section curves. ACM Trans. Graph.,
31(4):45:1–45:11, July 2012.

[23] D. Sýkora, M. Ben-Chen, M. Čadı́k, B. Whited, and M. Sim-
mons. Textoons: Practical texture mapping for hand-drawn cartoon
animations. In Proceedings of International Symposium on Non-
photorealistic Animation and Rendering, pages 75–83, 2011.

[24] D. Sýkora, L. Kavan, M. Čadı́k, O. Jamriška, A. Jacobson, B. Whited,
M. Simmons, and O. Sorkine-Hornung. Ink-and-ray: Bas-relief
meshes for adding global illumination effects to hand-drawn charac-
ters. ACM Transaction on Graphics, 33(2):16, 2014.

[25] D. Sýkora, D. Sedlacek, S. Jinchao, J. Dingliana, and S. Collins.
Adding depth to cartoons using sparse depth (in)equalities. Computer
Graphics Forum, 29(2):615–623, 2010.

[26] T.-P. Wu, C.-K. Tang, M. S. Brown, and H.-Y. Shum. Shapepalettes:
Interactive normal transfer via sketching. ACM Trans. Graph., 26(3),
July 2007.

[27] B. Xu, W. Chang, A. Sheffer, A. Bousseau, J. McCrae, and K. Singh.
True2form: 3d curve networks from 2d sketches via selective regular-
ization. ACM Trans. Graph., 33(4):131:1–131:13, July 2014.

[28] C.-K. Yeh, P. Song, P.-Y. Lin, C.-W. Fu, C.-H. Lin, and T.-Y. Lee.
Double-sided 2.5d graphics. IEEE Transactions on Visualization and
Computer Graphics, 19(2):225–235, 2013.

96

